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Abstract

This study was aimed to explore the role of tanshinol in osteoblastic cells, and the role in

vivo using an ovariectomized (OVX) rat model of osteoporosis. MC3T3-E1 cells were pre-

treated with 0–400 μg/mL tanshinol, and then cell viability, apoptosis, alkaline phosphatase

(ALP) activity and the expressions of Collagen Type I Alpha 1 (Col1A1), Runt Related Tran-

scription Factor 2 (Runx2) and osteocalcin (OCN) were respectively detected. Rats under-

went OVX surgery was intervened with 5 mg/kg tanshinol or 25 μg/kg β-estradiol (E2) for

12 weeks. The triglycerides (TG), total cholesterol (TC), high and low density lipoprotein

cholesterol (HDL-C and LDL-C), ALP, OCN and Tartrate-resistant acid phosphatase-5b

(TRACP-5b) contents were measured. Besides, the expressions of main factors in nuclear

factor-kappa B (NF-κB) pathway were detected. The results showed that tanshinol signifi-

cantly promoted MC3T3-E1 cells viability and ALP activity, while inhibited apoptosis (P <
0.05); Col1A1, Runx2 and OCN were all up-regulated by tanshinol (P < 0.05). In OVX rats,

the contents of TG, TC, LDL-C, ALP, OCN and TRACP-5b were all increased (P < 0.05),

while HDL-C was decreased (P < 0.05). Tanshinol significantly alleviated these aberrant

regulations (P < 0.05). Inhibitory subunit of NF-κB (IκBα) and p65 were both remarkably

phosphorylated by OVX, while this phosphorylation was partially neutralized by tanshinol

(P < 0.05). In conclusion, we demonstrated that tanshinol exerted a bone-protective function

by modulating the markers of bone turnover possibly via blocking NF-κB pathway. This

study will provide new evidence that tanshinol is a potential therapeutic option for the relief

of estrogen deficiency-induced osteoporosis.

Introduction

Osteoporosis is one type of bone metabolic disease characterized by low bone mineral density

and deterioration of the bone microarchitecture [1]. It is an increasingly important health

problem which affects millions of people worldwide with significant impact on morbidity,

mortality, quality of life and cost [2]. The most important risk factors of osteoporosis are

advanced age and female sex, and estrogen deficiency following menopause or ovariectomized

(OVX) surgery is correlated with a rapid reduction in bone mineral density [3]. In the bone,

osteoblasts are responsible for bone formation while the duty of osteoclasts is bone resorption,
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that is, bone growth is maintained by the coordination of osteoblasts and osteoclasts [4]. Oste-

oblast differentiation, an important process for its function, confers marked rigidity and

strength to the bone while still maintaining some degree of elasticity [5]. Thus, it is beneficial

for osteoporosis prevention and treatment to investigate how to promote osteoblast differenti-

ation and increase bone mass.

Tanshinol, 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid, also known as danshensu is

a water-soluble components of Salvia miltiorrhiza Bunge [6]. Tanshinol is a polyphenolic com-

pound with two phenolic hydroxyl groups, and because of this it has been identified as an

effective natural product antioxidant [7]. In China, it is widely used in traditional medicine for

myocardial infarction, coronary heart disease, atherosclerosis, hypertension, hyperlipoidemia,

thrombopoiesis and acute ischemic stroke. In terms of osteoporosis, previous studies have

indicated tanshinol stimulated bone formation and attenuated dexamethasone-induced inhi-

bition of osteogenesis in larval zebrafish [6]. Additionally, in vitro investigation has provided

evidences that tanshinol could antagonize glucocorticoids-induced osteoporosis by controlling

osteoblast apoptosis [8]. However, the influence of tanshinol on osteoblastic differentiation

and OVX-induced osteoporosis has not been exhaustively investigated.

In the present study, mouse osteoblastic cell line MC3T3-E1 was used and pretreated with

tanshinol, to explore the role of tanshinol in osteoblastic cells. Moreover, female rats under-

went OVX surgery and tanshinol intervention were used to test whether tanshinol has func-

tional effects on OVX-induced dyslipidemia and bone turnover in vivo. Furthermore, the

main factors in nuclear factor-kappa B (NF-κB) pathway were detected to obtain a possible

understanding of tanshinol in OVX-induced osteoporosis deepen into the molecular mecha-

nism level.

Materials and methods

Cell culture and tanshinol treatment

Mouse osteoblastic cell line MC3T3-E1 was purchased from the American Type Culture Col-

lection (ATCC; Manassas, VA). Cells were cultured in α-MEM medium (Gibco, Grand Island,

NY) supplemented with 10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA), 100 U/mL

penicillin and 100 U/mL streptomycin (Sigma-Aldrich, St. Louis, MO), and were maintained

at 37˚C in a humidified atmosphere containing 5% CO2 [9].

Over 99.0% purity of tanshinol was obtained from Tong Ren Tang Company (Beijing,

China). The chemical structure of tanshinol was shown in Fig 1. The cells were pre-treated

with 0–400 μg/mL concentrations of tanshinol for 48 h.

Cell viability assay

Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

(MTT) assay. Briefly, MC3T3-E1 cells were seeded into 96-well plates at a density of 1 × 103

cells/well and incubated for 24 h. After 48 h incubation of 0–400 μg/mL tanshinol, 20 μL MTT

(5 mg/mL; Sigma-Aldrich) was added into each well and the plates were incubated at 37˚C for

4 h. Then, 150 μL dimethyl sulfoxide (DMSO; Sigma-Aldrich) was added to dissolve formazan

crystals. The absorbance was measured under a microplate reader (Bio-rod, Hercules, CA) at

570 nm.

Apoptosis assay

Cell apoptosis was detected by the Annexin V-FITC/PI Kit (4A Biotech Co. Ltd., Beijing,

China; Cat. No.: FXP018-100), according to the manufacturer’s protocol. Cells were seeded
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into 6-well plates at a density 1 × 105 cells/well and treated with 0–400 μg/mL tanshinol for 48

h. Cells were then collected and re-suspended in 200 μL binding buffer containing 10 μL

Annexin V-FITC and 5 μL PI with an incubation in the dark for 30 min. Finally, the apoptotic

cells were distinguished by a FACS Calibur flow cytometer (Becton-Dickinson) immediately.

Alkaline phosphatase (ALP) activity

ALP activity was determined by the SensoLyte pNPP ALP Assay Kit (AnaSpec, Fremont, CA,

USA; Cat. No.: AS-72146) according to the manufacturer’s protocol. Cells were seeded on the

24-well plates at a density of 2 × 104 cells/well and treated with 0–400 μg/mL tanshinol for 4

days. Afterward, 0.2% Triton X-100 lysis buffer was used to lyses cells, and the optical density

of the supernatant of the lysate was measured at 520 nm. The ALP activity was normalizing to

the total protein content.

Real-time quantitative PCR (qPCR)

Cells were first treated with 0–400 μg/mL tanshinol for 48 h, and the total RNA in cells were

extracted by using Trizol reagent (Invitrogen, Carlsbad, CA; Cat. No.: 15596–018). Transcrip-

tor First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland; Cat. No.: 04896866001) and

500 ng RNA were used to synthesize cDNA. Real-time qPCR was performed by using Fas-

tSTART Universal SYBR Green Master (ROX; Roche, USA; Cat. No.: 04913850001), according

to the instructions of manufacture, and conduced on the PCR System 7500 (Applied Biosys-

tems, Foster City, CA, USA). Data were normalized to Glyceraldehyde-3-Phosphate Dehydro-

genase (GAPDH) expression, and were analyzed using the classic 2-44Ct method [10]. All

primers were synthesized by GenePharma (Shanghai, China).

OVX surgery on rats and tanshinol treatment

A total of 40 three-month-old female Sprague-Dawley rats (191–220 g in weight) obtained

from Animal Center of the Academy of Military Science of the Chinese PLA (Beijing, China)

were employed in this study. Animals were bred and housed under standard conditions as pre-

vious described [11]. Experiments using rats were performed in accordance with the National

Institute of Health Guide for the Care and Use of Laboratory Animals and were approved

by Institutional Animal Care and User Committee of the 2nd Affiliated Hospital of Harbin

Fig 1. The chemical structure of tanshinol.

https://doi.org/10.1371/journal.pone.0181175.g001
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Medical University. Precautions were taken to minimize suffering and the number of animals

used in each experiment.

Rats were randomly allotted into 4 groups (n = 10 in each group) and namely sham, OVX,

OVX + E2, and OVX + tanshinol groups. For rats in OVX group, both ovaries were excised

under 2% isoflurane anesthesia (Yuyan Instruments, Shanghai, China), according to the tech-

nique described previously [12]. The rats in sham group were undergone an incision and

suturing without ovary removal. The rats in OVX + E2 and OVX + tanshinol group were first

undergone OVX surgery and were respectively treated with 25 μg/kg β-estradiol (E2) [13] and

5 mg/kg tanshinol via oral gavage, started 2 weeks after the surgery and lasted 12 weeks. The

rats in sham and OVX group were treated daily with corn oil (Luhua Group, Shandong,

China).

Rats were sacrificed by cervical vertebra dislocation to collect the blood samples and

femurs.

Serum lipid analysis

Blood samples from the rats in the four groups were collected and the serum triglycerides

(TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C) were determined

by using diagnostic kits (Asan Pharmaceuticals, Hwasung, Korea; Cat. No.: AM157S-K,

AM202-K and AM203-K) on an automatic analyzer (Abbott, model Alcyon 300, USA). Low

density lipoprotein cholesterol (LDL-C) was calculated as follows: LDL-C = TC—HDL-C—

TG/5.

Analysis of bone markers

Serum ALP activity was determined by SensoLyte pNPP ALP Assay Kit (AnaSpec; Cat. No.:

AS-72146). Both carboxylated and decarboxylated rat serum osteocalcin (OCN) and serum

bone-specific ALP concentrations were determined using a rat-specific radioimmunoassay

(EIA) kit (Biomedical Technologies, Stoughton, MA, USA; Cat. No.: BT-490) and a commer-

cially available ELISA kit (QUIDEL, San Diego, CA, USA; Cat. No.: 8012). Tartrate-resistant

acid phosphatase-5b (TRACP-5b) concentration was determined using a commercial kit

(Kamiya Biochemical Company, Seattle, WA, USA; Cat. No.: KT-008) according to the manu-

facturer’s instructions [14].

Western blot analysis

Rat femurs were excised and all muscles and connective tissue was removed. The femoral neck

were immediately frozen in liquid nitrogen and stored at -80˚C until used. Bone protein was

extracted from powdered metaphysis and diaphysis as previously described [15]. Cellular pro-

teins in MC3T3-E1 cells were isolated by lysis buffer (Beyotime, Shanghai, China). Protein con-

centration was determined by Bicinchoninic Acid (BCA) Kit (Thermo Scientific1, Rockford,

IL; Cat. No.:23225). Proteins were resolved over sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis (SDS-PAGE) and transferred to nitrocellulose membranes (Merck Millipore, Biller-

ica, MA). After blocked with 5% non-fat milk (BD Sciences, CA) for 1 h, the membranes were

incubated with primary antibodies: BCL2 Associated X Protein (Bax; Cat. No.: sc-20067), B-Cell

CLL/Lymphoma 2 (Bcl-2; Cat. No.: sc-509), Collagen Type I Alpha 1 (Col1A1; Cat. No.: sc-

293182), Runt Related Transcription Factor 2 (RunX2; Cat. No.: sc-390715), OCN (Cat. No.: sc-

376835; Santa Cruz Biotechnology, Santa Cruz, CA), inhibitory subunit of NF-κB (IκBα; Cat.

No.: ab32518), phosphorylated IκBa (p-IκBa; Cat. No.: ab92700), p65 (Cat. No.: ab16502), phos-

phorylated p65 (p-p65; Cat. No.: ab86299) and GAPDH (Cat. No.: ab8245; Abcam, Cambridge,

MA), at 4˚C overnight. The membranes were then incubated in the secondary antibodies for
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(Cat. No.: ab131368, and ab191866; Abcam) 1 h and the blots were visualized by using enhanced

chemiluminescence (ECL) reagent (GE Healthcare, Little Chalfont, UK).

Statistical analysis

For quantitative data, all results were expressed as the mean ± standard derivations (SD) from

at least three independent experiments. Statistical analysis was performed by using the SPSS

version 13.0 software (SPSS Inc., Chicago,IL, USA). Different significance between two groups

was analyzed by Student’s t test; while between three or more groups, different significance

was calculated by one-way analysis of variance (ANOVA) with LDS (L) procedure. A P-

value < 0.05 was considered statistically significant.

Results and discussion

Tanshinol promoted osteoblast viability and ALP activity while reduced

apoptosis

To explore the functional effects of tanshinol on osteoblast, MC3T3-E1 cells were treated with

0–400 μg/mL tanshinol, and then cell viability, apoptosis and ALP activity were respectively

detected by MTT, flow cytometry, Western blot analysis and ALP assay kit. Results in Fig 2A,

2B and 2E showed that, cells treated with 100, 200, and 400 μg/mL of tanshinol possessed

higher cell viability and ALP activity, and possessed lower apoptotic cell rate than the control

cells without tanshinol treatment (P< 0.05). There was no significant change in cell viability,

apoptotic cell rate and ALP activity were found in cells treated with 50 μg/mL Tanshinol

(P> 0.05) when compared to the control cells. Down-regulation of Bax whereas up-regulation

of Bcl-2 were found in tanshinol treated cells, and the Bcl-2/Bax ratio were significantly

increased (P< 0.05; Fig 2C and 2D). Besides, it seems that higher concentration of tanshinol

possessed a greater alteration, indicating tanshinol promoted osteoblast viability and ALP

activity while reduced apoptosis, all in a dose-dependent manner.

Tanshinol up-regulated the expression of Col1A1, Runx2 and OCN

Col1A1, Runx2 and OCN are three marker genes of osteoblastic differentiation, to further

explore the effects of tanshinol on osteoblastic cells, the expression of these three markers were

detected before and after tanshinol treatment. qPCR and Western blot assays (Fig 3A–3E)

showed that, both the mRNA and protein levels of Col1A1, Runx2 and OCN were significantly

up-regulated after tanshinol treatment (P< 0.05). In addition, higher concentration of tanshi-

nol had a stronger regulation in the expression of these three factors, indicating tanshinol up-

regulated the expression of Col1A1, Runx2 and OCN, also in a dose-dependent manner.

Tanshinol improved OVX-induced dyslipidemia

Next, we explored the functions of tanshinol in vivo by detection of TG, TC, HDL-C and

LDL-C levels in rats which underwent OVX operation, E2 or tanshinol treatment. We found

that (Fig 4A–4D), TG, TC and LDL-C were all increased by OVX, whereas HDL-C was

decreased by OVX (P< 0.05). More important, E2 and tanshinol alleviated the aberrant regu-

lation of these four plasma lipid index induced by OVX (P< 0.05).

Tanshinol reduced OVX-elevated the markers of bone turnover

To explore whether tanshinol plays a role in bone metabolism, four metabolic markers of bone

turner in rats which underwent OVX operation, E2 or tanshinol treatment were evaluated.

The increase of serum and bone-specific ALP, OCN and TRACP-5b were found in OVX rats
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(P< 0.05; Fig 5A–5D). Surprisingly, E2 and tanshinol recovered these remarkable increases

induced by OVX (P< 0.05).

Fig 2. Tanshinol promoted osteoblast viability and ALP activity while reduced apoptosis. MC3T3-E1 cells were treated

with 0–400 μg/mL tanshinol, and then (A) cell viability, (B) apoptotic cell rate, (C and D) Bax and Bcl-2 levels, and (E) ALP activity

were respectively detected by MTT, flow cytometry, Western blot analysis and ALP assay kit. ALP, alkaline phosphatase; Bax,

BCL2 Associated X Protein; Bcl-2, B-Cell CLL/Lymphoma 2; GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase; MTT, 3-

(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide. n = 3. Different lowercase letters above the columns indicate that

the mean values of different groups are significantly different (P < 0.05).

https://doi.org/10.1371/journal.pone.0181175.g002
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Fig 3. Tanshinol up-regulated the expression of Col1A1, Runx2 and OCN. MC3T3-E1 cells were treated with 0–400 μg/

mL tanshinol, and then the mRNA level expressions of (A) Col1A1, (B) Runx2 and (C) OCN were detected by qPCR. (D) and

(E) The protein expressions of these three factors were determined by Western blot. Col1A1, Collagen Type I Alpha 1; Runx2,

Runt Related Transcription Factor 2; OCN, osteocalcin; qPCR, quantitative PCR; GAPDH, Glyceraldehyde-3-Phosphate

Dehydrogenase. n = 3. Different lowercase letters above the columns indicate that the mean values of different groups are

significantly different (P < 0.05).

https://doi.org/10.1371/journal.pone.0181175.g003
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Tanshinol blocked NF-κB pathway

To further explore the possible mechanism in which tanshinol affected OVX-elevated the

markers of bone turnover, the expressions of main factors in NF-κB pathway were determined

in rats which underwent OVX operation and tanshinol treatment. Western blotting (Fig 6A

and 6B) showed that, both p-IκBα and p-p65 were up-regulated by OVX (P< 0.05), while the

up-regulations were partly abolished by addition of tanshinol (P< 0.05). Both OVX and tan-

shinol had no impacts on the expression of IκBα and p65.

Discussion

In this study, we found that tanshinol promoted osteoblast viability and ALP activity while

reduced apoptosis; additionally, Col1A1, Runx2 and OCN were all up-regulated by tanshinol

in vitro. In vivo investigations, tanshinol alleviated OVX-induced abnormal regulation of TG,

Fig 4. Tanshinol improved OVX-induced dyslipidemia. Rats underwent OVX surgery, tanshinol or E2 treatment, and then (A) TG,

(B) TC, (C) HDL-C and (D) LDL-C levels in rats were respectively detected by commercial kits. OVX, ovariectomized; E2, β-estradiol;

TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. n = 3. *,

P < 0.05.

https://doi.org/10.1371/journal.pone.0181175.g004

The potential role of tanshinol in osteoporosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0181175 July 26, 2017 8 / 13

https://doi.org/10.1371/journal.pone.0181175.g004
https://doi.org/10.1371/journal.pone.0181175


TC, HDL-C, LDL-C, ALP, OCN and TRACP-5b. Furthermore, the up-regulation of phos-

phorylation form of IκBα and p65 in OVX rats were both recovered by tanshinol.

Bone formation is primarily functioned by osteoblast, and the increased proliferation and

differentiation of osteoblast can enhance bone formation [16]. Previous study has demon-

strated that tanshinol could attenuate suppression of osteoblastic differentiation induced by

oxidative stress via Wnt/forkhead box O3A (FoxO3a) signaling pathway [17]. A later study

confirmed the notion that tanshinol attenuated the decrease of bone formation and bone mass

and bone quality elicited by glucocorticoid [18]. In line with these previous studies, our data

suggested that tanshinol might be beneficial for bone formation by promoting osteoblast via-

bility and ALP activity, as well as by suppressing apoptosis. Col1A1, Runx2 and OCN are three

osteogenic specific genes which have been identified as osteoblastic markers [19]. Moreover,

Runx2 is expressed in the earliest stage of osteogenic differentiation, and can trigger bone

extracellular cartilage matrix proteins Col1A1 and OCN [20]. In the present study, both the

Fig 5. Tanshinol reduced OVX-elevated the markers of bone turnover. Rats underwent OVX surgery, tanshinol or E2

treatment, and then the contents of (A) serum and (B) bone-specific ALP, (C) OCN and (D) TRACP-5b in rats were measured by

using commercial kits. OVX, ovariectomized; E2, β-estradiol; ALP, alkaline phosphatase; OCN, osteocalcin; TRACP-5b, Tartrate-

resistant acid phosphatase-5b. n = 3. *, P < 0.05.

https://doi.org/10.1371/journal.pone.0181175.g005
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mRNA and protein levels of these three markers were all up-regulated by tanshinol. These

data provided evidence that tanshinol might have regulatory effects on the markers of bone

formation.

OVX induces postmenopausal osteoporosis in rats is a commonly used experimental, and

this model is characterized by bone loss and an increased bone turnover due to estrogen defi-

ciency [21]. In OVX rats, a significant increase of serum and bone ALP, OCN and TRACP

have been recorded [22, 23]. ALP and TRACP are respectively secreted by osteoblasts and

osteoclasts, ALP is essential for bone mineralization while TRACP, especially TRACP-5b, is

correlates with resorptive activity [24, 25]. It seems that these two factors are associated with

bone formation, but the mechanism of this formation is still unclear. OCN is known as serum

markers reflecting osteoblast activities including bone formation and turnover [26]. In the cur-

rent study, tanshinol remarkably recovered OVX-induced up-regulation of ALP, OCN and

TRACP-5b, which indicated a protective role of tanshinol in OVX-induced bone turnover.

In addition, recent studies demonstrated lipid metabolic disorders with hyperlipidemia and

hypercholesterolemia as a distinct risk for osteoporosis in OVX rats [27]. Also, an increase of

visceral fat accumulation, TC and LDL-C, as well as a decrease of HDL-C were found after

OVX surgery [28]. Interestingly, our data displayed that tanshinol notably recovered the dysre-

gulation of TG, TC, HDL-C and LDL-C induced by OVX, suggesting tanshinol could improve

OVX-induced dyslipidemia. Similarly, previous studies have indicated tanshinol exerted a pro-

tective action on bone formation in glucocorticoid treated rats by stimulating osteogenesis and

depressing adipogenesis [29, 30].

NF-κB pathway plays critical role in many cellular processes, such as cell survival, inflam-

mation and differentiation [31, 32]. NF-κB pathway is activated through degradation of IκBα
and then triggering the translocation of various heterodimers, predominantly p65/p50, to the

nucleus [33]. Currently, studies have revealed that NF-κB suppressed osteoblast differentiation

and ultimately caused bone loss [32]. In an OVX mouse model, the inhibitory function of NF-

κB pathway on osteoblast differentiation was uncovered [34]. In the current study, the IκBα
and p65 were both remarkably phosphorylated by OVX, while the phosphorylation was

Fig 6. Tanshinol blocked NF-κB pathway. (A) and (B) Rats underwent OVX surgery with or without tanshinol treatment, and then the

expressions of main factors, i.e., IκBα, p-IκBα, p65 and p-p65, in NF-κB pathway in rat metaphyseal and diaphyseal bone were

determined by Western blot analysis. OVX, ovariectomized; NF-κB, nuclear factor-kappa B; IκBα, inhibitory subunit of NF-κB; p-IκBα,

phosphorylated IκBa; p-p65, phosphorylated p65; GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase. n = 3. *, P < 0.05.

https://doi.org/10.1371/journal.pone.0181175.g006
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partially neutralized by tanshinol. Our data provide the evidence that tanshinol promoted

bone formation possibly via blocking NF-κB pathway.

There are several limitations exist in this study. First, we revealed the effects of tanshinol on

the immortalized MC3T3-E1 cells, while we did not investigate whether tanshinol also has the

similar impacts on primary osteoblast, which may further improve the findings. Second, this

study lack of assessment of the phenotype of cultured MC3T3-E1 cells, matrix mineralization

should be quantified by performing Alizarin red S staining, which may provide stronger evi-

dence of differentiation. Third, micro-computed tomography for analysis of the trabecular

bone mass phenotype of OVX rat was required, to further evidence that tanshinol might have

functional effects on bone formation. Fourth, deeper of investigations are needed to scrutinize

the underling mechanisms of tanshinol in osteoporosis.

Conclusions

To sum up, our in vitro and in vivo investigations indicated tanshinol may has benefical for

bone turnover. Tanshinol may exert a bone protective function at least in part via blocking

NF-κB pathway. This study will provide new evidence that tanshinol is a potential therapeutic

option for the relief of estrogen deficiency-induced osteoporosis.
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