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Although substantial progress has been made in the immunotherapy of kidney cancer, its efficacy varies from patient to patient,
with many responding suboptimally or even developing metastases. Thus, research on the tumour immune microenvironment
and immune cell heterogeneity is essential for kidney cancer treatment. In this study, natural killer (NK) cell populations were
isolated using signature genes from the single-cell sequencing data of clear cell renal cell carcinoma (ccRCC) and normal
kidney tissues and divided into three subpopulations according to the differences in gene expression profiles: NK(GZMH),
NK(EGR1), and NK(CAPG). Gene set enrichment analysis revealed that NK(EGR1) and NK(CAPG) were closely related to
tumour metastasis, as shown by kidney cancer metastasis to Hodgkin lymphoma, T-cell leukaemia, and Ki-1+ anaplastic large
cell lymphoma. Thus, these two NK cell subpopulations are promising targets for inhibiting metastasis in ccRCC. Our findings
revealed heterogeneity in the infiltrating NK cells of kidney cancer, which can serve as a reference for the mechanisms
underlying metastasis in kidney cancer.

1. Introduction

Kidney cancer is one of the most common malignancies, rank-
ing ninth among male malignancies and 14th among female
malignancies [1]. More than 400,000 new kidney cancer cases
are diagnosed worldwide each year, accounting for 2.2% global
burden of all cancers [2]. Clear cell renal cell carcinoma
(ccRCC) is the most common type of renal cell carcinoma,

accounting for over 80% cases [3]. Presently, surgery is the main
treatment for ccRCC, whereas adjuvant interleukin 2 (IL-2)
therapy, interferon (IFN) therapy, chemotherapy, radiotherapy,
and hormonal therapy for ccRCC at high recurrence risk do not
prolong overall patient survival [4]. Many patients are treated
with a single approach (predominantly surgery) without adju-
vant treatment for tumour recurrence and metastasis, while
some patients experience tumour recurrence, progression, and
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metastasis, which can affect their therapeutic efficacy and sur-
vival quality. Therefore, exploring the mechanisms of progres-
sion and metastasis in ccRCC is crucial for its treatment.

Recently, tumour immunotherapy has demonstrated
strong antitumour activity in several tumours and been shown
to be effective in ccRCC treatment [5]. Therefore, understand-
ing the tumour microenvironment and tumour immune cell
infiltration can help to elucidate the mechanisms of tumour
growth, progression, and metastasis. Tumour infiltration of
B cells is associated with poor prognosis and distant metastasis
in ccRCC [6]. CCL5, a marker associated with CD8+ T-cell
infiltration, promotes the proliferation and invasive capacity
of ccRCC cell lines [7]. Moreover, neutrophil phenotype and
function can be affected by kidney cancer-related inflamma-
tion, leading to metastasis through the high expression of
CXC chemokines [8], while neutrophils may also be involved
in immunotherapy resistance [9]. Although natural killer
(NK) cells are important immune cells in the body that play
a vital role in tumour immunity, research on the status of
NK cells in the tumour microenvironment and NK cell hetero-
geneity, in particular, is relatively scarce.

NK cells are cytotoxic lymphocytes that play a crucial role
in tumour immune surveillance. Studies have shown that NK
cells are closely associated with many types of cancer, and the
degree of NK cell infiltration is related to patient survival
[10]. Although some kidney cancer patients have benefitted
from immunotherapy, not all patients respond to current
immunotherapies, and some studies have found a high NK cell
infiltration in kidney cancer, suggesting that NK cells are
heterogeneous in kidney cancer, which may affect the efficacy
of immunotherapy [11]. Exploring the heterogeneity of NK
cells in infiltrating ccRCC can help us to understand the mech-
anisms underlying kidney cancer development and immune
escape. In this study, NK cells were identified in ccRCC speci-
mens, and three subtypes were isolated. Further analysis
revealed that two of these subtypes promoted colorectal cancer,
breast cancer, Hodgkin’s lymphoma, T-cell leukaemia, and Ki-
1+ anaplastic large cell lymphoma.

2. Materials and Methods

2.1. scRNA-Seq Bioinformatic Analysis. The scRNA-seq data
of ccRCC and normal kidney tissues were retrieved from the
NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/)
under the accession codes GSE121636 [12] and GSE131685
[13], respectively. SCTransform wrapper was used to mini-
mise the technical variations between different panels and
platforms. R package Seurat (v4.0.2) was used to isolate the
cell cluster at a resolution of 0.7, gene nebula maps were
used to show the specific gene expression levels, and R pack-
age EnhancedVolcano (v1.11.3) was used to show the differ-
entially expressed genes (DEGs). After calculation, the DEGs
with |Log2FC|>1 and p < 0.05 were considered as signifi-
cant ones. The R package clusterProfiler (v4.0.0) was used
to perform gene set enrichment analysis (GSEA).

2.2. Human Biopsies. The cancerous biopsies were isolated
from ccRCC patients by surgery. After pathological exami-
nation, the redundant tissues were used for this study. The
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written informed consent was provided by the patients. This
study was approved by the Ethics Committee of Youjiang
Medical University for Nationalities.

2.3. Flow Cytometry. The surgically isolated ccRCC cancerous
tissues were used for the preparation of single-cell suspensions
after digestion with collagenase IV (30 mg/mL, Gibco, #17104-
019). To remove debris, the samples were filtered through a
70 pm cell strainer. After counting, 1 x 10° cells were used for
staining for each sample, and the cells were suspended with
MACS buffer (Miltenyi Biotec, #130-091-221). After blocking
the potential unspecific binding sites, the cells were performed
surface and intracellular staining with FITC anti-human CD16
(Biolegend, #980112), APC anti-human CD56 (Biolegend,
#981204), Alexa Fluor 405 anti-human GZMH (GBiosciences,
#ITT2050-405), PE anti-human EGRI1 (Invitrogen, # 12-9851-
42), and anti-human/anti-mouse CAPG (Creative Biolabs,
#CBMAB-C0844-FY). The CAPG antibody was conjugated
with Alexa Fluor 700 (Invitrogen, #A20110). The dead cells
were counterstained with fixable viability dye. The stained sam-
ples were resuspended with PBS/0.5%BSA/2 mM EDTA buffer
and recorded on a flow cytometer (ThermalFisher Attune Nxt).

3. Results

3.1. NK Cell Identification. The genes from normal human
kidney cells were grouped into 18 clusters with the retrieved
scRNA-seq data, while those from ccRCC immune cells were
grouped into 24 clusters (Figure 1(a)). NCR1 and KLRF1 are
used to identify NK cells [14, 15], which were preferentially
expressed in cluster 12 in normal kidney cells and clusters 8,
9, 14, and 17 in ccRCC (Figure 1(b)), indicating these clus-
ters contain genes from the NK cells.

3.2. Human Kidney and ccRCC Cells Are Heterogeneous. To
compare the biological characteristics of NK cell subpopula-
tions of kidney cancer and normal kidney tissues, NK cells were
isolated from normal kidney and tumour tissues and then
divided into subpopulations according to the differences in
gene expression profiles. Three subpopulations were obtained
(Figure 2(a)), which preferentially expressed GZMH, EGR1,
and CAPG, respectively (violin plots, Figure 2(b)). A compara-
tive analysis of the gene expression profiles of the three subpop-
ulations revealed that 212, 192, and 271 genes were
preferentially expressed in NK(GZMH), NK(EGRI1), and
NK(CAPG) subpopulations, respectively. To confirm the
classification of NK subpopulations by scRNA-seq, the ccRCC
biopsies were isolated from patients and underwent further
analysis (Figure 2(c)). The three subpopulations could be vali-
dated by flow cytometry (Figure 2(c)). The top 20 gene expres-
sions of each cluster are depicted as heat maps (Figure 2(d)).

3.3. NK Cell Subpopulations Promote Kidney Cancer Metastasis.
A comparison of subpopulation characteristics between normal
kidney tissues and ccRCC revealed that the proportion of cells
in the NK(EGR1) and NK(CAPG) subpopulations was signifi-
cantly higher in ccRCC than that in these subpopulations in
normal kidney tissues (Figures 3(a) and 3(b)), thus suggesting
that the NK(EGR1) and NK(CAPG) subpopulations play a
facilitatory role in tumourigenesis. Therefore, the NK(EGR1)
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F1GURE I: Isolation and identification of natural killer (NK) cells. (a) UMAP plot showing 18 cell types in normal human kidney tissues and
24 cell types in clear cell renal cell carcinoma (ccRCC). (b) Nebulograms showing that NK cell markers (NCR1 and KLRF1) are
preferentially expressed in cluster 12 in normal kidney tissues and clusters 8, 9, 14, and 17 in ccRCC.

and NK(CAPG) subpopulations were the focus of this study.
Further comparative analysis of gene expression differences
between these two subgroups in kidney cancer and normal kid-
ney tissues yielded 2,534 DEGs in NK(EGR1), of which 1,306
were significantly upregulated and 9 were significantly down-
regulated (Figure 3(c)). NK(CAPG) had 2,347 DEGs, of which
430 were significantly upregulated and 10 were significantly
downregulated (Figure 3(d)). GSEA revealed that NK(EGR1)
inhibited oxidative phosphorylation (Figure 4(a)), while rele-
vant reports have confirmed that oxidative phosphorylation is
significantly reduced in many solid tumours [16]. NK(EGR1)

is upregulated in primary immunodeficiency (Figure 4(a)),
which in turn is associated with tumourigenesis in several can-
cers [17, 18]. The GSEA findings indicate that NK(CAPG) pro-
motes the FoxO and MAPK signalling pathways (Figure 4(b)),
both of which are involved in various carcinogenic mechanisms
[19, 20]. Furthermore, NK(CAPG) also promotes colorectal
cancer and breast cancer (Figure 4(b)). These results suggest
that NK(EGR1) and NK(CAPG) play a role in promoting can-
cer. Gene correlation network analysis of DEGs in these two NK
subpopulations yielded the following results: NK(EGR1) pro-
motes kidney cancer metastasis to Hodgkin’s lymphoma
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FIGURE 2: scRNA-seq analysis showing three natural killer (NK) cell subpopulations. (a) UMAP plot showing the clustering in normal
kidney cells and clear cell renal cell carcinoma (ccRCC). Three subpopulations were identified based on genetic mapping. (b) Violin plot
showing the preferential expressions of the signature genes GZMH, EGR1, and CAPG in three NK cell subpopulations, respectively. (c)
Flow cytometric validation of NK subpopulations. NK cells were identified as CD3-CD16-CD56+ cells and were subdivided by
counterstaining of antibodies against EGR1, GZMH, and CAPG. (d) Heat map showing the expression patterns of the top 20 genes in

each NK cell subpopulation.
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FiGurg 3: Comparison of natural killer (NK) cell subpopulations between normal kidney and kidney cancer tissues. (a) Split UMAP plots
showing the distribution of NK cell subpopulations in normal kidney tissues and clear cell renal cell carcinoma (ccRCC). (b) Stacked bar
graph showing the frequency of NK cell subpopulations (normal tissues vs. ccRCC). (c) Volcano plot showing differentially expressed
genes (DEGs) in the NK cell subpopulation NK(EGR1) between ccRCC and normal kidney tissues. (d) Volcano plot showing DEGs in
the NK cell subpopulation NK(CAPG) between ccRCC and normal kidney tissues.
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(Figure 4(c)), while NK(CAPG) promotes metastasis to T-cell
leukaemia, Ki-1+ anaplastic large cell lymphoma, and adult
classical Hodgkin’s lymphoma (Figure 4(d)).

4. Discussion

Metastasis is a common issue that frequently occurs in the
tumour treatment, with up to 17% renal cell carcinomas
exhibiting distant metastases during diagnosis [21]. Therefore,
surgery alone is currently not suflicient to treat kidney cancer.
However, kidney cancer is also insensitive to radiotherapy
and chemotherapy, which has prompted scientists to continue
exploring new treatment strategies. Immunomodulators (IL-2
and IFN-alpha) have limited effectiveness in treating metastatic
ccRCC [22]. Targeted drug therapy is effective in treating
metastatic ccRCC, particularly in cases of pancreatic metasta-
ses, but less effective in metastases to other organs [23]. The
in-depth investigations on the tumour immune microenviron-
ment have led to the rapid development of tumour immuno-
therapy, which is now a research hotspot in tumour
treatment. The discovery of the PD-1 and CTLA-4 signalling
pathways gave rise to new advances in immunotherapy for
ccRCC [24, 25]. However, due to its limitations, a significant
number of patients have exhibited poor outcomes [25, 26].
Therefore, there is still a need to explore the tumour immune
microenvironment and immune cell infiltration, to combat
tumour escape and immune cell-mediated metastasis.

NK cells have long been considered to have tumour sup-
pressive effects (including in ccRCC) [10, 27, 28], but research
on their heterogeneity has been scarce. A high infiltration of
NK cells largely infiltrates kidney cancer tissues [11], which
do not effectively eliminate kidney cancer cells, suggesting that
NK cells may be heterogeneous and even play a role in promot-
ing tumour immune escape and metastasis. Cancer cells can
directly reprogram NK cells to promote metastatic colonisation
[28]. Traditionally, NK cells are classified into two subpopula-
tions, CD56dim and CD56bright, based on differences in the
density of CD56 expression on NK cells. CD56dim primarily
exerts cytotoxic effects, expressing the moderate affinity IL-2
receptor (IL-2R), which has a potent killing activity, whereas
CD56bright produces several cytokines and primarily exerts
immunomodulatory effects. Evidently, this classification does
not explain the high NK cell infiltration in kidney cancer. This
is mainly due to the limitations of flow cytometry, which can
only detect a limited number of possible markers. sScRNA-seq
measures thousands of markers in a single cell. Thus, in this
study, NK cells were reclassified based on the similarities/differ-
ences in their genetic characteristics (Figure 2(a)) into three
subpopulations: NK(GZMH), NK(EGR1), and NK(CAPG).
Compared to that in the normal kidney cells, the NK(EGR1)
and NK(CAPG) subpopulations were abnormally elevated in
c¢cRCC and could mediate ccRCC metastasis, such as Hodg-
kin’s lymphoma, T-cell leukaemia, and Ki-1+ anaplastic large
cell lymphoma development in kidney cancer (Figures 4(c)
and 4(d)). Thus, the NK cell subpopulations NK(EGR1) and
NK(CAPG) are promising as therapeutic targets for metastasis
in ccRCC. However, further investigation is needed to elucidate

the exact mechanisms involved, and relevant genetically mod-
ified animal models are needed to evaluate the status of metas-
tasis in ccRCC.

5. Conclusions

The scRNA-seq technique is a powerful tool to discover the
heterogeneity of NK cells in cancerous biopsies. In this
study, we identified 3 subpopulations of NK cells in surgi-
cally isolated ccRCC biopsies, based on their genetic profiles.
Furthermore, 2 of them should be taken as therapeutic tar-
gets for metastasis. This discovery shed lights in improving
immunotherapy against ccRCC.
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