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Two and a half years after COVID-19 was first reported in China, thousands of people are still dying from the disease every day
around the world. )e condition is forcing physicians to adopt new treatment strategies while emphasizing continuation of
vaccination programs. )e renin-angiotensin system plays an important role in the development and progression of COVID-19
patients. Nonetheless, administration of recombinant angiotensin-converting enzyme 2 has been proposed for the treatment of
the disease. )e catalytic activity of cellular ACE2 (cACE2) and soluble ACE2 (sACE2) prevents angiotensin II and Des-Arg-
bradykinin from accumulating in the body. On the other hand, SARS-CoV-2 mainly enters cells via cACE2. )us, inhibition of
ACE2 can prevent viral entry and reduce viral replication in host cells. )e benefits of bradykinin inhibitors (BKs) have been
reported in some COVID-19 clinical trials. Furthermore, the effects of cyclooxygenase (COX) inhibitors on ACE2 cleavage and
prevention of viral entry into host cells have been reported in COVID-19 patients. However, the administration of COX inhibitors
can reduce innate immune responses and have the opposite effect. A few studies suggest benefits of low-dose radiation therapy
(LDR) in treating acute respiratory distress syndrome in COVID-19 patients. Nonetheless, radiation therapy can stimulate
inflammatory pathways, resulting in adverse effects on lung injury in these patients. Overall, progress is being made in treating
COVID-19 patients, but questions remain about which drugs will work and when.)is review summarizes studies on the effects of
a recombinant ACE2, BK and COX inhibitor, and LDR in patients with COVID-19.

1. Background

)e renin-angiotensin system (RAS) plays an important role
in the regulation of the cardiovascular system. Angiotensin
II (Ang II) is one of the main products of RAS produced
from angiotensin I (Ang I) under the action of the angio-
tensin conversion enzyme (ACE). Ang II acts via the AT1
receptor, leading to vasoconstriction, direct and indirect
reabsorption of sodium through the kidneys, releasing va-
sopressin and stimulating the hypothalamus’s thirst center
[1]. All these effects are essential in emergency conditions to
maintain the blood flow of vital organs within normal limits.
However, a high concentration of Ang II for a long period
may cause cardiac hypertrophy and fibrosis, endothelial
dysfunction, thrombosis, atherosclerosis, and arrhythmia
[2]. Stimulating the AT2 receptor has the opposite effects of

the AT1 receptor, like vasodilation and lowering blood
pressure (BP) [3]. Ang II is converted into Ang 1–7 by ACE2,
a transmembrane enzyme with carboxypeptidase terminal
activity. Ang 1–7 acts through Mas receptors and has a
counter-regulating action, leading to vasodilation and re-
duced parameters such as BP, cardiac hypertrophy, fibrosis,
thrombosis, and arrhythmia [2–4].

COVID-19 was first detected in China and quickly
spread across the globe [5]. It is mainly characterized by cold
symptoms that last for a few days. However, moderate to
severe COVID-19 can be associated with acute pulmonary
inflammation, cardiovascular failure, and coagulopathy.
Despite large-scale vaccine programs and a variety of
therapeutic approaches used in the treatment of COVID-19
patients, morbidity and mortality remain high. RAS plays an
important role in inflammatory reactions, clot formation,
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and COVID-19-related virus infections [6–8]. )e imbal-
ance between the two arms of RAS (classical and protective
arms) contributes to cytokine storm, hypercoagulability, and
multiple organ damage in COVID-19 patients [8–11]
(Figure 1). )e pathogenesis of COVID-19 is related to a
novel SARS coronavirus (SARS-CoV-2) that, like previous
coronaviruses, enters host cells through ACE2 [12, 13].
Expressions of ACE2 have been described in many organs of
the body, including the kidneys, fat tissue, the gastroin-
testinal tract, the heart, and airway epithelial cells [14–18].
ACE is a key enzyme for the inactivation of bradykinin (BK),
while ACE2 breaks down the active metabolites of BK [19].
As a result, downregulation of ACE2 can accumulate active
BK metabolites and worsen inflammatory reactions in pa-
tients with COVID-19. In addition, a relationship between
cyclooxygenase (COX), a key enzyme of inflammation, and
RAS has been suggested in COVID-19 patients [20]. A few
studies also report the benefits of low-dose radiation (LDR)
in the treatment of patients with COVID-19. However,
radiation therapy can increase Ang II, the active metabolites
of BK, and COX-2, which has an adverse effect on body
tissues [21–24]. In this review, we discussed the studies
related to the effects of recombinant ACE2, inhibitors of BK
and cyclooxygenase (COX), and low-dose radiation (LDR),
and their interactions with COVID-19 infection are sum-
marized in Figure 2.

2. Interaction between ACE2 and SARS-CoV-2

Investigation of the interaction between coronaviruses and
ACE2 in humans dates back to 2003 when it was reported
that the SARS coronavirus (SARS-CoV) entered cells via
ACE2 [25–27]. In 2004, the amino acid fragment of the
virus’s S protein that binds to ACE2 was identified [28].
Moreover, the outbreak of the disease in 2003–04 was shown
to be lower than in 2002–03 due to the lower affinity of
SARS-CoV protein to ACE2 protein [29]. In addition, it was
demonstrated that SARS-CoV-2 can infect several cell types
and immune cells, depending on the level of expression of
ACE2 [30]. Several therapeutic approaches were recom-
mended to reduce viral cell penetration or complications of
the disease. Soluble recombinant human ACE2 (hrsACE2)
was suggested to hide the SARS-CoV binding site, thereby
preventing the virus from entering cells. [31]. In addition, a
number of antibodies, peptides, and small compounds were
introduced to slow viral replication, blocking the binding
site of the S protein, or inducing conformation into the S
protein [27, 32, 33]. However, a number of investigations
were discontinued due to a decline in the incidence the
disease in 2004.

3. Interaction between COVID-19 and ACE2

Two forms of ACE2 have been identified: cellular (cACE2)
and soluble (sACE2). SARS-CoV-2 enters the cells through
cACE2 and downregulates transmembrane protein [8].
Furthermore, the expression of ACE2 decreases in patients
with COVID-19 [34].)ere is a negative correlation between
the ACE2 expression and the COVID-19 mortality rate [35].

)e entrance of SARS-CoV-2 into host cells is blocked by
serine protease TMPRSS2 inhibitors [36]. TMPRSS2 is
shown to facilitate the entry of the virus by the S1 and S2
cleavages of SARS-CoV-2 [20, 37]. )ere are also other
proteases that can play roles in SARS-CoV-2 internalization
[37, 38]. Furthermore, the ADAM-17 protease releases
ACE2 in a soluble form (sACE2) that circulates in the ex-
tracellular environment [39]. sACE2 has no membrane
anchor used as a cell entry point for SARS-CoV-2 [8, 10].
)erefore, it is suggested to be a therapeutic target to prevent
viral entrance in host cells. Studies on Vero cells and kidney
organoids can confirm the role of hrsACE2 in preventing cell
entry and replication of the virus [40, 41]. However, one
study has raised the hypothesis that the effect of sACE2 on
viral entry is dose-dependent: sACE2 with physiological
concentration leads to viral entry through AT1 and vaso-
pressin receptors, while, pharmacologic concentration may
have an inhibitory effect [42]. Furthermore, the use of
engineered extracellular vesicles (EVs) exposed to cACE2
and TMPRSS2 is demonstrated to be much more effective
than the use of sACE2 for viral trapping and reduction of
infection [43] (Table 1). It is important to mention that a
high concentration of hrsACE2 is tolerated in ARDS patients
without significant side effects [44]. As a result, a high
concentration of hrsACE2 may influence COVID-19 pa-
tients with ARDS. In a case report study, an intravenous
infusion of hrsACE2 twice daily for seven days was well
tolerated in a 45-year-old woman with COVID-19. )e
patient survived until she was discharged on day 57 [45]
(Table 2). )ere are also some review papers proposing the
treatment of COVID-19 patients with hrsACE2
[9, 10, 46–48]. Plasma from patients who have recovered
from COVID-19 may be an excellent source of neutralizing
antibodies against the virus [49]. Soluble ACE2 has also been
detected in plasma and may be of value in predicting
COVID-19 outcomes [50]. Depending on the concentration
of sACE2, sera from highly exposed uninfected subjects
could more effectively neutralize SARS-CoV-2 infection in
cellular assays, even in the absence of sufficient anti-CoV-2
IgG antibodies [51]. However, additional clinical studies are
necessary to explore the effect of sACE2 as a promising
therapeutic target on patients with COVID-19.

)e downregulation of cACE2 increases the impact of
ACE and Ang II in the body of COVID-19 patients. A cohort
study showed that Ang II increases in the blood of patients
suffering from COVID-19 [52]. It has been reported that
hospitalized hypertensive COVID-19 patients who use ACE
or AT1 antagonists had a lower risk of mortality than the
others [53, 54]. Furthermore, COVID-19 patients with
hypertension treated by Ang II receptor inhibitors are less
likely to develop severe lung disease [55]. On the contrary,
other studies did not show a difference between using ACE
or AT1 inhibitors and COVID-19 severity markers [56–59].
In addition, a case-population study has indicated that the
administration of RAS inhibitors does not increase the risk
of COVID-19 for admission to the hospital and intensive
care unit [60]. Moreover, there is no correlation between the
administration of RAS inhibitors and the mortality rate in
COVID-19 patients [61].
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Other researchers also believe that treatment with RAS
inhibitors should not stop in COVID-19 infections [62]. In
general, the effects of RAS inhibitors on COVID-19 may be
affected by the complexity of the pathophysiology of the
disease. Furthermore, studies suggest that increased Ang II
in a hypoxic environment may activate cancer pathways and
tumorigenicity in body tissues, which should be considered
in the future follow up of severe COVID-19 patients [63].

4. Interaction between COVID-19, BK,
and ACE2

BK is an active polypeptide released by the kinin-kallikrein
system (KKS) from damaged tissues. BK is produced from
kininogens through kallikrein enzymes and converts to Des-
Arg-BK (DABK) and other metabolites by kininase I and
kininase II (ACE). DABK is one of the active metabolites of
BK, which is hydrolyzed by ACE2 [19, 64–67]. BK and
DABK may cause local vasodilation or vasoconstriction
through B2 and B1 receptors, whereas both of them may
decrease the mean systemic blood pressure. Mechanisms are
related to species, vessels, and their downstream signaling
pathways such as NO, cyclooxygenase (COX) products, and
prostaglandins [68–70]. )ere are some interactions be-
tween RAS and KKS within the cardiovascular system. ACE
inhibitors increase the blood levels of BK and Ang 1–7. BK
may potentiate the effect of Ang 1–7 in the cardiovascular
system and lead to vasodilatation and decreased BP [71].)e
mechanism of this interaction can be related to the gener-
ation of NO [72]. In contrast, stimulation of B2 receptors
potentiates the constrictive effect of the AT1 receptor on

small mesenteric vessels in endotoxemia. )is finding
suggests the presence of AT1/B2 receptor heterodimers that
lead to a strong contractile response to BK and Ang II [73].

KKS is a major component of inflammatory reactions
and intrinsic coagulation pathways [74]. Inhibition of
ACE2 during inhalation of endotoxin increases BK axis
activity, neutrophil infiltration, and severe inflammation
in the mouse lung [67]. BK is indicated to induce lung
damage in ischemia-reperfusion and inflammation caused
by parainfluenza-3 [75, 76]. A significant increase in BK
and DABK increases vascular permeability, inflammatory
reactions, and lung injury, leading to a serious illness
called BK storm [77–79]. In addition, both Ang II and
KKS stimulate plasminogen activator inhibitor-1 and clot
formation, while Ang 1–7 has anti-inflammatory and
antithrombotic effects [77, 80]. )e relation between BK
and COX activity has been reported in several experi-
mental contexts. Inhibitions of the B2 and COX-2 re-
ceptors have an additive effect in reducing tissue damage
[81, 82]. )erefore, these combination therapies can be
useful for patients with COVID-19.

Alveolar epithelial cells express transcripts encoding
proteins that play essential roles in the regulation of the KKS,
RAS, and coagulation system [83]. In one case-control study,
it was reported that the use of the icatibant B2 antagonist
improved oxygenation in COVID-19 patients [84]. Fur-
thermore, one randomized clinical trial reported that ica-
tibant and Cle/kallikrein reduce the complications of
COVID-19 and the duration of hospitalization (Table 2)
[85]. Also, the administration of recombinant neprilysin, as
an alternative ACE-2/Ang 1–7/Mas receptor axis, has a
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Figure 1: )e imbalance in two arms of the renin-angiotensin system in COVID-19 infection: the classical arm vs. the protective arm.
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higher activity than ACE to BK degradation, and suggest for
the treatment of COVID-19 patients [86]. Also, one of the
side effects of ACE inhibitors, coughing, is associated with

BK accumulation andmay exacerbate symptoms in COVID-
19 patients [87, 88]. It is also suggested that the use of KKS
and BK inhibitors can be considered a therapeutic approach
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TMPRSS2-
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COX-
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COX-
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BK-
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COX-1, COX-2 

Plasma therapy
(Antibody, sACE2)

Combination
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Figure 2: )e relationship between sACE2, BK, and COX inhibitor, and plasma therapy in the patients with COVID-19. CVR:
cardiovascular.

Table 1: )e effect of recombinant ACE2 in SARS-CoV-2 infection in vitro.

Study/subject Drugs or exposure Time of treatment Outcome

Extracellular vesicles (EVs) exposing
cACE2

1) SARS-CoV-2 First phase :1.5 h second
phase: after 24 h

(i) Effective in vesicular viral
trapping

2) TMPRSS2 (ii) More efficient: cACE2 with
TMPRSS2 [43]

Vero cells (monkey), human blood
vessels, and kidney organoids

1) Clinical grade of hrsACE
2) and murine rsACE2:
different concentrations

1 hour followed by
washing,

or 15 h without washing

Block the cell entry of SARS-CoV-2
[41]

Vero E6 cells (monkey) and kidney
organoids

1) hrsACE2 APN01
(50–800 μg/ml)

Kidney organoid: after 3
days

Liver spheroids: after 15 h
Measurement of

cytotoxicity: after 24 h

Block the cell entry and replication
of SARS-CoV-2 [40]2) Remdesivir (4–80 μM)

Renal cell line of HK2 (human) and
Vero E6 cells (monkey)

1) Different concentrations of
rACE2 3 days treatment

High concentration: inhibition of
SARS-CoV-2 cell entry

Physiologic concentration:
increased viral cell entry [42]
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for the patients with COVID-19, even prior to the admin-
istration of a COX inhibitor [79, 84].

5. Interaction between COVID-19, COX-2,
and ACE2

Increased activity of COX-2 has been indicated in numerous
experimental preparations such as lung injury induced by
mechanical ventilation [89]. Inhibition of COX-2 is protective
against lung damage caused by LPS in mice [90]. COX-2
inhibitors have antiviral and anti-inflammatory effects [91].
COX-2 inhibitor indomethacin has also been reported to be
useful in treating the early stages of SARS-CoV-2 infection in
dogs [92]. Moreover, the administration of nonsteroidal anti-
inflammatory drugs (NSAIDs), ibuprofen and meloxicam,

inhibits the production of proinflammatory cytokines and
antibodies against SARS-CoV-2 infection in mice. However,
it does not affect ACE2 expression, viral entry to cells, or viral
replication in vitro or in vivo [93]. Another study reported
that ibuprofen facilitates membrane ACE2 cleavage through
the activation of ADAM-17 and prevents membrane-de-
pendent virus entry into the cell by lowering the expression of
TMPRSS2 [20]. Consequently, the antiviral effects of ibu-
profen may be caused by its direct inhibitory effect on
proinflammatory mediators, and indirectly, through its im-
pact on the ACE2 cleavage within the cell membrane [20].
However, a decrease in cACE2 in patients with COVID-19
may augment the activity of the first arm of RAS and
downstream COX-related inflammatory pathways, which
must be explored in future studies on COVID-19 infection.

Table 2: Drug administration in patients with COVID-19.

Study/Subject Drugs and doses Time (T) and duration
(D) of treatments Outcome

BK inhibition

Man and woman (case-
control)

1) 3 doses of 30mg of icatibant (B receptor
blocker of BK) by sc injection at 6-hour
intervals

(i) T: at the onset of
admission to hospital A significant reduction in oxygen

supplementation [46]
2) Standard medications (ii) D: 18 h (3 times each

6 hours)

Man and woman
(randomized trial
protocol)

1) Icatibant 30mg subcutaneously, 3 doses (i) T: ≤12 days since the
onset of the symptoms Reducing the complications caused by

COVID-19 pneumonia and duration of
hospitalization [84]

2) )e inhibitor of C1e/kallikrein 20U/kg,
i.v on day 1 and 4 (ii) D: 4 days

3) Standard medications
COX inhibition

Man and woman
(prospective cohort
study)

1) Different NSAIDs

(i) T: acute: day1
chronic: before
COVID-19
(ii) D: different

Mortality and hospital admission did not
differ in acute and chronic treatments

[85]
2) Standard medications

Man and woman
(prospective cohort
study)

1) Different NSAIDs

(i) T: different
(ii) D: within 14 days
before hospital
admission

It was not associated with higher
mortality or increased severity of disease

[94]
2) Standard medications

Man and woman
(retrospective cohort
study)

1) Different NSAIDs T: different (i) Effective in mild disease
(ii) COX-2 inhibitor was effective in
severe disease
(iii) Nonselective COX inhibitors had
worse effects [107]

2) Standard medications D: different

ACE2

45-year-old woman
(case report)

1) Soluble recombinant ACE2 (APN01),
0·4mg/kg)

(i) T: 9 days after the
onset of symptoms

ACE2 was well tolerated with no obvious
side effects [97]

2) Hydroxychloroquine, FIO2 of 70%,
intubation, mechanical ventilation,
cefuroxime, aztreonam

(ii) D: 5 minutes
infusion twice a day
lasting for 7 days

Low-dose radiation

Man and woman
(clinical trial)

1) Whole lung irradiation
2) National protocol for the management of
COVID-19

Radiation in a single
fraction of 0.5Gy

Encouraging results for oxygen
dependency in 3 of 5 patients [104]

Man and woman
(clinical trial) 1) Whole lung irradiation A single-fraction

radiation dose of 1.5Gy
No worsening of the cytokine storm was
observed in 4 of the 5 patients [105]
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Data from two prospective cohort studies reported in
Table 1 support the use of COX-2 inhibitors in patients with
COVID-19. One study revealed that acute or chronic use of
ibuprofen and other NSAIDs is not associated with wors-
ening COVID-19 outcomes [94]. Celecoxib, a selective
COX-2 inhibitor, is useful for the short-term treatment of
patients with COVID-19 without worrying about major
cardiovascular side effects [95]. Diclofenac is recommended
as the best COX-2 inhibitor in the treatment of patients with
COVID-19 at therapeutic doses [91]. Indomethacin is ef-
fective at reducing cough caused by BK during COVID-19
[96]. Meanwhile, a retrospective study found that NSAIDs,
particularly selective COX-2 inhibitors, influence mild and
severe COVID-19, while nonselective COX inhibitors have
worse effects [97]. )ese findings indicate that the use of
selective COX-2 inhibitors is essential for the treatment of
patients with COVID-19. In addition, the use of NSAIDs in
COVID-19 could reduce the natural host reactions necessary
to fight viral infection and mask signs of infection [98].

6. Effects of Radiation Therapy on ACE,
Bradykinin, and COX in COVID-19

Radiation therapy has been used to treat cancer and
damaged tissue. However, the level, duration, and severity
of damaged organs can predict the outcomes of the in-
tervention. Basically, radiation acts as a double-edged
sword. On the one hand, the anti-inflammatory effect of
LDR has been identified in various experimental settings
as well as in patients. However, even LDR can damage
some organs like the heart, lungs, and kidneys. )e
monocyte adherence to the endothelium of the rat aorta
increases by 1 to 24 hours after X-ray radiation with a dose
of 2.5 Gy, whereas radiation with a dose of 7.5 Gy had no
effect because of monocyte damage [99]. It has been
demonstrated that radiation-induced heart disease is
associated with the activity of the Ang II-aldosterone axis
[100]. AT1 receptor antagonists and ACE inhibitors are
effective in treating lung and kidney injuries after ra-
diotherapy [21, 22]. Besides, LDR of 0.5 Gy with gamma-
ray downregulates B2 receptors in HF-15 cells and con-
sequently reduces inflammation [23]. )ese data suggest
that the inflammatory or anti-inflammatory effects of B2
receptors are influenced by radiation levels and cell types.
In addition, COX-2 can be activated by gamma radiation
in PC-3 cells, dose dependently, which is inhibited by
COX—an inhibitor of NS-398 [24].

A few studies have suggested the beneficial effects of low-
dose radiation therapy in patients suffering from COVID-19
[101–103]. Two clinical trials with a small population revealed
that 05–1.5G of LDR led to low oxygen dependency of pa-
tients or no worsening of cytokine storm in COVID-19
patients, though extensive population studies are required for
validation [104, 105] (Table 2). ARDS can be associated with a
reduction in the number of leukocytes in blood, which can
have a detrimental effect on the immune system. In addition,
it takes 24 hours for radiation to have a maximum effect on
macrophages. )erefore, it could not be recommended for
treating COVID-19 patients with critical conditions [106].

7. Conclusion

Effective therapeutic approaches alongside global vaccina-
tion are needed to overcome such a challenging pandemic.
)e renin-angiotensin system appears to play a central role
in the inflammatory response and cardiovascular disease in
COVID-19 patients. Data from this review demonstrate that
the timing of medication and disease severity are important
for outcomes in patients with COVID-19.)e use of BK and
COX inhibitors can be recommended as a first step to
prevent early inflammatory responses. Recombinant ACE2
can be administered to prevent increased viral internaliza-
tion and replication, but several preclinical studies should be
conducted before clinical trials in COVID-19 infection for
final validation. Additionally, low-dose radiation may not be
an option in severe COVID-19 patients. Moreover, com-
bination therapy of recombinant ACE, BK inhibitors, and
COX inhibitors should be evaluated in more animal models
and large-scale clinical trials in the future. Of course, our
study does not exclude multiple drug therapies for COVID-
19 patients, but due to the wide spectrum of drug therapies,
we investigated drugs that are somehow related to the renin-
angiotensin system.
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