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1  |  INTRODUC TION

The statistical testing of genetic variants for the Hardy– Weinberg 
equilibrium (HWE) is an important part of the analysis of genetic data 
sets, for a variety of reasons. Gross deviations from equilibrium are 
often the result of genotyping errors, and testing can be helpful to de-
tect such errors (Chen et al., 2017; Hosking et al., 2004; Leal, 2005; Teo 
et al., 2007). Moreover, many methods used in genetic data analysis 
rely on the equilibrium assumption, and the filtering of variants on the 
basis of their p- values obtained in a test for HWE can be used as a 
safeguard to prevent violation of assumptions made. A recent over-
view of statistical tests for the Hardy– Weinberg equilibrium is given 

by Graffelman (2020). Currently, exact test procedures are the state of 
the art for testing biallelic genetic variants and are most commonly em-
ployed. Fast recursive procedures are available that can do exact test-
ing of biallelic variants for HWE on a genome- wide scale (Chang et al., 
2015; Wigginton et al., 2005). For variants with multiple alleles, the 
exact test is computationally more costly. Algorithms for the efficient 
exact testing of multiallelic variants have been proposed by several au-
thors (Guo & Thompson, 1992; Huber et al., 2006; Louis & Dempster, 
1987). A recursive network algorithm (Aoki, 2003; Engels, 2009) has 
been proposed for more efficient calculation of exact p- values. When 
the computational cost of the network approach becomes prohibitive, 
a permutation test based on the sampling of outcomes from the exact 
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Abstract
Statistical methodology for testing the Hardy– Weinberg equilibrium at X chromo-
somal variants has recently experienced considerable development. Up to a few years 
ago, testing X chromosomal variants for equilibrium was basically done by applying 
autosomal test procedures to females only. At present, male alleles can be taken into 
account in asymptotic and exact test procedures for both the bi-  and multiallelic case. 
However, current X chromosomal exact procedures for multiple alleles rely on a classi-
cal full enumeration algorithm and are computationally expensive, and in practice not 
feasible for more than three alleles. In this article, we extend the autosomal network 
algorithm for exact Hardy– Weinberg testing with multiple alleles to the X chromo-
some, achieving considerable reduction in computation times for multiallelic variants 
with up to five alleles. The performance of the X chromosomal network algorithm is 
assessed in a simulation study. Beyond four alleles, a permutation test is, in general, 
the more feasible approach. A detailed description of the algorithm is given, and ex-
amples of X chromosomal indels and microsatellites are discussed.
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distribution can still be used as an alternative in order to obtain an ap-
proximate p- value (Guo & Thompson, 1992).

Recently, the statistical testing for HWE of variants on the 
X chromosome has experienced considerable development. Up 
to a few years ago, X chromosomal variants were tested using 
autosomal procedures for the females only. Graffelman and Weir 
(2016) developed the full suite of frequentist test procedures (a 
two degrees of freedom asymptotic chi- square test, an exact 
test and a permutation test) specifically for X chromosomal vari-
ants, which take male alleles on X into account. This has the ad-
vantage of a larger sample size (more X chromosomes), implying 
higher precision for the estimation of allele frequencies, and the 
potential rejection of equilibrium when there is a difference in 
allele frequency between the sexes. The biallelic exact test for 
X is computationally feasible for a complete X chromosome, and 
efficient C++ code for this test is currently shared by the PLINK 
software (Chang et al., 2015; Purcell et al., 2007) and the R- 
package HardyWeinberg (Graffelman, 2015). Later, Graffelman 
and Weir (2018) extended their X chromosomal exact test for 
multiple alleles with a classical full enumeration algorithm, and 
reported on the analysis of all triallelic variants on X at consid-
erable computational cost, and suggesting the use of permuta-
tion tests based on sampling for X chromosomal variants with 
four or more alleles. In this article, we propose a modification 
of the network algorithms proposed by Aoki (2003) and Engels 
(2009), adapting the network algorithm for the X chromosome. 
The network algorithm efficiently avoids the repeated calcu-
lation of factorial terms that are shared in the list of possible 
outcomes generated by complete enumeration, leading to large 
computational savings. This way, we strive to extend the appli-
cation of the X chromosomal exact test towards variants with 
a larger number of alleles while maintaining computation time 
within feasible limits.

The structure of the remainder of this article is as follows. In 
Section 2, we review exact tests with multiple alleles for the au-
tosomes and for the X chromosome, and present the adaptation 
of the network algorithm to the X chromosome. In Section 3, we 
assess the performance of the new network algorithm in a simu-
lation study. Section 4 shows the examples of the network- based 
test for a varying number of alleles with data taken from the 1,000 
genomes project (The 1,000 Genomes Project Consortium, 2015). 
We describe the HWE analysis of a complete X chromosome of the 
Tuscan population (TSI) of the 1,000 Genomes Project and also 
address the analysis of a forensic database of X chromosomal mi-
crosatellites (Chen et al., 2018). The Discussion in Section 5 com-
pletes the manuscript.

2  |  THEORY

In this section, we review exact inference for HWE with multiple al-
leles and explain the operation of the network algorithm for both the 
autosomal and X chromosomal cases with a toy example.

2.1  |  Autosomal exact inference with 
multiple alleles

Exact inference for autosomal variants with multiple alleles is based 
on the conditional distribution of the genotype counts, considering 
all observed allele counts as given. This distribution was derived by 
Levene (1949) and is given by

where n represents the sample size; ni, the count of the i th allele; 
nij, the count of genotype ij; and d =

∑
nii, the total homozygote 

frequency. Equation (1) describes the distribution of the genotype 
counts under the assumption of HWE. One first calculates the 
probability of the observed sample according to Eq. (1). Next, a full 
enumeration is made of all possible genotype arrays that are com-
patible with the observed total allele counts, and their probabilities 
are calculated. Finally, the exact p- value is obtained by summing the 
probabilities of all genotype arrays that are less likely than or equally 
likely to the observed sample. The full enumeration approach com-
bined with the calculation of Eq. (1) is computationally expensive, 
in particular for large samples with many alleles. A full enumeration 
algorithm for an arbitrary number of alleles has been described by 
Louis and Dempster (1987).

A drawback of the classical full enumeration algorithm is that 
many genotype arrays involve the same factorials, which will be re-
peatedly calculated if a simple loop is used to iterate over all possible 
arrays. The network algorithm enables the sharing of the calcula-
tion of common factorials across similar genotype arrays and can so 
produce considerable computational savings. The network approach 
was proposed by Mehta and Patel (1983) who developed this algo-
rithm for a more efficient calculation of Fisher's exact test for large 
contingency tables. Aoki (2003) presented the first network algo-
rithm for exact testing in the context of Hardy– Weinberg equilib-
rium. The computation of Eq. (1) is simplified by recognizing that for 
given allele counts, the part

is a common factor for all genotype arrays and can be taken as a con-
stant, which is calculated only once. To further simplify the calcula-
tions, we take the logarithm of Eq. (1) and have

Figure 1 shows the operation of an autosomal network algorithm 
for a triallelic variant, with a sample of size n = 8 and allele counts 7, 5 
and 4 for A, B and C, respectively. Each path from left to right gener-
ates a particular genotype array. The probability of the sample gen-
erated by the traced path is 0.028, and if this sample is observed, the 
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exact test p- value is 0.167. The network has 21 paths corresponding 
to 21 different possible genotype arrays for the given allele counts.

The algorithm proceeds by computing the second term of log-
factorials in Eq. (3) incrementally, exhausting alleles one by one. As 
Figure 1 shows, the edge from 754 to 550 is shared by three geno-
type arrays, and the corresponding logfactorials of nAA and nAC only 
need to be computed once. For more details on the autosomal net-
work algorithm, we refer to Aoki (2003) and Engels (2009).

2.1.1  |  X chromosomal exact inference with 
multiple alleles

For exact testing for Hardy– Weinberg equilibrium at X chromosomal 
variants with multiple alleles, Graffelman and Weir (2018) derived, 
assuming equality of allele frequencies in the sexes and Hardy– 
Weinberg proportions in females, the exact joint distribution of the 
number of female heterozygotes and the number of hemizygous 
males given by

where nm and nf represent the numbers of males and females; 
nt = 2nf + nm, the total number of alleles; nmi and nfij, male and 

female genotype counts; and d, the total number of homozy-
gote females. To show the increase in computational complex-
ity, we use the same set of allele counts (A = 7, B = 5, C = 4) as in 
Figure 1, but now consider gender, assuming the sample is com-
posed of 4 males and 6 females, totalling 16 alleles. Figure 2 shows 
the network for this case, and the construction of the genotype array 
(mA = 3,mB = 1,mC = 0, fAA = 1, fBB = 2, fCC = 1, fAB = 0, fAC = 2, fBC = 0) is 
indicated. The number of possible genotype arrays, 136, has increased 
considerably in comparison with the previous autosomal variant with 
the same total allele counts. We follow the same approach as before, 
now defining two constants Kp and Km as

Taking logarithms, one has

and again, the sum of the logfactorials is incrementally evaluated one 
allele at a time. In essence, for X chromosomal variants we first gen-
erate all possible male genotype arrays and next apply the autosomal 
network algorithm using the remaining female allele counts.
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F I G U R E  1  Graph for an autosomal 
triallelic variant for a sample size of 
n = 8 with allele counts (A = 7, B = 5, 
C = 4). Nodes represent allele counts, 
and edges, the assignment of alleles to 
genotypes. The dashed path illustrates 
the generation of 1 CC homozygote 
and 2 AC heterozygotes, leaving allele 
counts (A = 5, B = 5, C = 0), followed by 
the generation of two BB homozygotes 
and one AB heterozygote, leaving (A = 4, 
B = 0, C = 0), and finally the generation of 
two AA homozygotes to arrive at (A = 0, 
B = 0, C = 0). The generated genotype 
array is (AA = 2, BB = 2, CC = 1, AB = 1, 
AC = 2, BC = 0). Each path in the network 
traces the generation of a genotype array 
that is compatible with the observed allele 
counts. The network exhausts all possible 
genotype arrays for the given allele counts
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3  |  SIMUL ATION STUDY

The X chromosomal exact test involves the computation of the 
probabilities of all possible genotype arrays for the given allele 
counts, according to Eq. (4). The number of arrays is, in general, 
larger than for the autosomes, and the X chromosomal exact test 
is computationally expensive for systems with multiple alleles. We 
compare the computational cost of the network algorithm with 
a classical enumeration algorithm for bi-  and triallelic variants, 

and also compare the network algorithm with a permutation test 
for three or more alleles. We expect the network algorithm to be 
computationally cheaper because it is able to store partial results 
thanks to recursion through the network, which avoids repeating 
calculations from the beginning for every possible table of gen-
otypes under analysis, as explained in the previous section. Full 
enumeration algorithms for X chromosomal exact test are cur-
rently only available for bi-  and triallelic variants. Figure 3a shows 
the computation time as a function of the number of biallelic X 

F I G U R E  2  Network for an X chromosomal triallelic variant for a sample size of 4 males and 6 females with total allele counts (A = 7, 
B = 5, C = 4). Nodes represent allele counts, and edges, the assignation of alleles to genotypes. The second column of the network shows all 
possible male allele counts given the available alleles and given that there are 4 males. The third column gives the allele counts available for 
females, once male allele counts have been subtracted from the total. Fourth, fifth and sixth columns give the remaining female allele counts 
after assigning C, B and A female alleles, respectively. The dashed path illustrates the generation of 3 A males and 1 B male, followed by the 
generation of the females. The generated genotype array is (mA = 3,mB = 1,mC = 0, fAA = 1, fBB = 2, fCC = 1, fAB = 0, fAC = 2, fBC = 0). Each path 
in the network traces the generation of a genotype array compatible with the observed allele counts. The network exhausts all possible 
genotype arrays for the given allele counts and the given number of males and females. For simplicity, the network for female genotypes is 
shown only for two sets of female allele counts
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chromosomal SNPs. X chromosomal SNPs were simulated under 
the assumptions of Hardy– Weinberg proportions in females and 
equality of male and female allele frequencies, using a sample size 
of n = 100. For example, biallelic X chromosomal SNPs were sim-
ulated by drawing samples from a multinomial distribution with 
probability vector 

(
1

2
p,

1

2
q,

1

2
p2, pq,

1

2
q2
)
. All computations were car-

ried out in the R environment (R Core Team, 2020), using a server 
with thirty- two compute nodes, half of the nodes were 16- core 
Intel Xeon E5- 2630 Systems (2.40 GHz; 128 Gb RAM); the other 
half were 24- core Intel Xeon Gold 5118 (2.30 GHz; 384 Gb RAM). 
For two alleles, the network algorithm is seen to take more time 
in comparison with an enumeration algorithm. The computation 
time of the network algorithm is seen to increase, as expected, lin-
early with the number of SNPs, though most conveniently shown 
in a logarithmic scale as in Figure 3a,b. We simulated up to 4.5 M 
biallelic SNPs, because the 1,000 Genomes Project (The 1,000 
Genomes Project Consortium, 2015) reports about 3.5 M bial-
lelic SNPs on X. For biallelic SNPs, we used the HWExactStatS im-
plementation of the enumeration algorithm and the HWNEtWork 
implementation of the network algorithm. The first uses C code 
shared with PLINK, and the latter modified C code of Engels' au-
tosomal algorithm. We also compared the actual results (the p- 
values) of the network algorithm and the enumeration algorithm. 
For biallelic SNPs, we found a very good agreement between p- 
values obtained with the enumeration algorithm and the network 
algorithm. The largest difference between the p- values of the two 

algorithms was as small as 2.62e− 13. The theoretical expectation is, 
as the data are simulated under the equilibrium hypothesis, that at 
a 5 per cent significance level, about 5 per cent significant results 
will be observed. In this sense, for the simulations with 10,000 bi-
allelic variants we obtained a rejection rate of 4.55 per cent, close 
to the theoretically expected rate.

These calculations were repeated for simulated triallelic vari-
ants, for which the results are shown in Figure 3b, where we 
simulated up to 5,000 variants, which is close to the amount of tri-
allelics found on X in the 1,000 Genomes Project (see Figure 4a). 
These figures show that for triallelic variants the network algo-
rithm is much faster than the enumeration algorithm. We note 
that it takes the enumeration algorithm 85.5 hours to calculate the 
maximum of 5,000 X- triallelics, whereas the network algorithm 
does this in 53.4 seconds. Execution times also increase linearly 
with the number of SNPs. For larger numbers of alleles, an enu-
meration algorithm is currently not available. For three through 
six alleles, we compare the network algorithm with the permuta-
tion test. We generated 250 multiallelic polymorphisms for a given 
number of alleles under the assumption of equal allele frequencies 
in the sexes and Hardy– Weinberg proportions for females, using 
the Dirichlet distribution with all concentration parameters equal 
to 1 to simulate the allele frequencies. Figure 3c,d shows box plots 
of the execution time (in seconds) for the 250 simulated variants 
as a function of the number of alleles for both the network and 
permutation tests. The execution time of the permutation tests 

F I G U R E  3  Execution times in 
seconds for the classical enumeration 
algorithm, the network algorithm and the 
permutation test. (a) Execution time (in 
a logarithmic scale) as a function of the 
number of biallelic SNPs with uniform 
allele frequencies. (b) Execution time 
(in a logarithmic scale) as a function of 
the number of triallelic SNPs with the 
Dirichlet (1, 1, 1) allele frequencies. (c) Box 
plot of execution times of the network 
algorithm for 250 SNPs with three and 
four alleles. (d) Execution times of the 
permutation test for 250 SNPs with three, 
four, five or six alleles
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only experiments a minor increase when the number of alleles in-
creases from three to four. For three and four alleles, the network 
algorithm generally provided the fastest solution. For four alleles, 
Figure 3c shows some hard polymorphisms appear for which the 
network needs more time than a permutation test. On average, the 
network algorithm is much faster and outperforms the permuta-
tion test with 17,000 draws. Beyond four alleles, the permutation 
test is feasible for all polymorphisms, whereas the computational 
cost of the network algorithm becomes prohibitive.

4  |  EMPIRIC AL DATA E X AMPLES

We present examples of the application of X chromosomal exact 
tests based on the network algorithm for multiallelic variants taken 
from the 1,000 Genomes Project (The 1,000 Genomes Project 
Consortium, 2015) and for a forensic database of X chromosomal 
microsatellites (Chen et al., 2018).

4.1  |  TSI sample of the 1,000 Genomes Project

We consider the analysis of a complete X chromosome of a sample 
of the TSI population (Tuscany, Italy) of the 1,000 Genomes Project, 
using all its multiallelic variants stored in the VCF files of the project, 
and using the VCFR package (Knaus & Grünwald, 2017) to process 
the data. This data set consists of 107 individuals, 53 males and 54 
females. Variants in the pseudo- autosomal regions (Graves et al., 
1998) were excluded from the analysis. Figure 4a shows a bar plot 
with the prevalence of variants with a given number of alleles and 
confirms the well- known fact that for a given human population, 
most variants are monomorphic or biallelic. We calculated the frac-
tion of significant variants (using � = 0.05) for each given number of 
alleles, which reveals that for multiallelic variants more evidence for 
disequilibrium is found, as shown in Figure 4b.

Using the enumeration algorithm for all biallelic X chromosomal 
variants, the network algorithm for all variants with three through 
five alleles and the permutation test to analyse variants with six or 
more alleles, it took about 10 minutes to analyse all polymorphisms 
of the TSI sample (n = 107); this could be reduced if a few hard three 
through five allelic variants would be resolved by using the permu-
tation test, at the expense of less precision. We illustrate the ob-
served faster computation of X chromosomal exact test results with 
some triallelic polymorphisms. Table 1 shows genotype counts and 
execution times for six different SNPs. Enumeration and network 
algorithm produce the same p- value, and the permutation p- value is 
close to these p- values. For 17,000 permutations, which are needed 
to estimate the p- value with a precision of 0.01 (Ziegler & König, 
2006, Chapter 4], the permutation test takes about half a minute to 
complete. The enumeration algorithm is faster than the permutation 
test for those variants that have a dominant major allele. For vari-
ants rs200225892 and rs11439044, alternate alleles have substan-
tial counts, and in these cases, the permutation test is faster than 
full enumeration. In all cases, the network algorithm outperforms 
the permutation and enumeration tests. The network algorithm also 
requests more computation time for the two variants with larger al-
ternate allele frequencies.

Interpreting the genotype patterns, one sees that for 
rs369254025 HWE is rejected because of different allele fre-
quencies for the sexes and excess heterozygosity for females; for 
rs56005969, no significant deviations are found; for rs185941206, 
HWE is rejected because females are monomorphic, whereas males 
carry all three alleles; for rs200225892, all three alleles are common 
and no significant deviations are found; for rs11439044, females 
are out of HW proportions; and finally, for rs112679846 males are 
monomorphic, but females have a large number of alternate alleles. 
Notice that disequilibrium would have gone unnoticed for variants 
rs185941206 and rs112679846 if equilibrium would have been 
tested in females only. SNP rs58533540 is, according to the exact 
test significant at a usual significance level of five per cent, though 

F I G U R E  4  (a) Number of variants with a given number of alleles for the TSI population. (b) Fraction of significant variants for a given 
number of alleles. Vertical lines represent 95% confidence intervals for the theoretical fraction. The horizontal dotted reference line 
represents the significance level � = 0.05. Blue open dots represent observed fractions of significant variants. Red open triangles present 
observed fractions of significant variants when the polymorphism is recoded as biallelic
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not significant if a genome- wide significance level of 5 ⋅ 10− 8 is em-
ployed, as if often used in large- scale association studies in order to 
correct for multiple testing (Fadista et al., 2016; Panagiotou et al., 
2012; Roeder & Wasserman, 2009; Xu et al., 2014). We note that the 
permutation test fails to correctly assess the significance of this vari-
ant at this level for not having sufficient precision (see Discussion).

4.2  |  X chromosomal STRs of Han Chinese

We use a forensic database of 19 X- STRs of 206 unrelated Han 
Chinese individuals from Guizhou (104 females and 102 males) de-
scribed by Chen et al., (2018). Table 2 gives the p- values of permuta-
tion tests and network algorithm exact tests for HWE along with 
the execution time. The X chromosomal exact test for all individuals 
was used, as well as an autosomal test that uses the females only. 
On average, the X chromosomal permutation test with 17,000 draws 
takes about 52 seconds to complete. We observe good agreement 
between the p- values obtained by the permutation test and by the 
network algorithm. The X chromosomal network algorithm is seen to 
be much faster for a four- allele STR, slower for a five- allele STR and 
not feasible for the remaining STRs which have 7+ alleles, for taking 
too much computation time.

The permutation test is, as expected, slightly faster for tests that 
use females only because of a smaller number of alleles. The applica-
tion of the network algorithm to the females only leads to spectacu-
lar savings in computation time for the two STRs with four and five 
alleles; for seven or more alleles, the permutation test outperforms 
the network algorithm. Two STRs, DXS8378 and DXS10101, appear 
as significant at the 5% level; DX8378 for having different allele fre-
quencies in the sexes (p = 0.022); and DXS10101 for having females 
out of Hardy– Weinberg proportions (p = 0.008).

5  |  DISCUSSION

We have developed a network algorithm for the X chromosomal 
exact test for the Hardy– Weinberg equilibrium with multiple al-
leles. X chromosomal exact tests were hitherto only feasible for 
two or three alleles by using a classical full enumeration algorithm. 
For analysing variants with more alleles, a permutation test was 
required. The network algorithm proposed in this study extends 
the feasibility of the X chromosomal exact test. It is now possi-
ble to obtain exact p- values for triallelic X chromosomal variants 
within fractions of a second (see Table 1). In general, for variants 
with over four alleles, the computational cost of the network algo-
rithm is still prohibitive, and one still needs to resort to a permu-
tation test or Markov chain approach to resolve these cases. The 
current implementation of the X chromosomal network algorithm 
is based on Engels’ autosomal network algorithm (Engels, 2009), 
which is still based on exhaustive listing of all tables. We expect 
that further computational savings can be achieved by trimming 
paths in the network (Aoki, 2003). In principle, exact p- values TA
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are preferable over permutation p- values for giving an exact an-
swer. In exact tests with discrete count data, such as the exact 
test for HWE, the p- value of the test can be defined in different 
ways (Graffelman & Moreno, 2013, Figure 1). The standard way to 
calculate the p- value is to sum the probabilities of all possible out-
comes that are as likely or less likely as the observed data. In the 
context of HWE, using this standard p- value is known to be con-
servative (Wigginton et al., 2005). Graffelman and Moreno (2013) 
advocated the use of the mid p- value in exact tests for HWE, in 
a biallelic setting, for having a rejection rate that is closer to the 
nominal significance level. In this study, in the current multial-
lelic setting, we have used the standard p- value; the mid p- value 
can easily be obtained by subtracting half the probability of the 
observed sample, using Eqs. (1) and (4) for the autosomal and X 
chromosomal case, respectively, from the standard exact p- value 
obtained by the network or the permutation algorithm.

In modern genetic studies, a genome- wide significance level 
of � = 5 ⋅ 10− 8 is often employed in order to correct for multiple 
testing. Assessing significance at such a threshold with a preci-
sion of 10− 8 would require over 1016 permutations, which is com-
putationally not feasible, and this clearly emphasizes the need 
for obtaining exact p- values. For example, SNP rs58533540 in 

Table 1 has an exact p- value of 1.7 ⋅ 10− 5 and is not significant 
at the threshold � = 5 ⋅ 10− 8. The p- value of the permutation test 
obtained for this variant is 0, because none of the 17,000 (by de-
fault) permuted genotype tables had a probability below that of 
the observed table. The permutation test suggests the variant to 
be significant, but in fact the test is not able to assess the sig-
nificance at the given genome- wide level, or would only be able 
to do so at an astronomical computational cost. X chromosomal 
STRs with over four alleles are common, and it remains a chal-
lenge to further improve algorithms for obtaining exact instead 
of approximate p- values in this setting. In forensics, where STRs 
with many alleles are widely used, a permutation test and Markov 
chain algorithm thus remain the best general purpose methods 
that will serve for all STRs. The network algorithm may be more 
interesting for the analysis of indels (Mills et al., 2006), which have 
in general a much smaller number of alleles. The execution times 
of the network algorithm can vary considerably for variants with 
the same number of alleles (see Figure 3c). For example, STRs 
DXS10162, DXS7424 and DXS10159 all have ten alleles but take 
6.9, 37.1 and beyond 37.1 hours to compute. The particular set of 
allele counts will determine the complexity of the network and its 
computational cost.

TA B L E  2  Test results and execution times for X chromosomal STRs. STR identifier, number of STR alleles, permutation test p- value and 
execution time, network- based exact test p- value and execution time, and the same test results based on an autosomal test for the females 
only, for 19 X- STRs. Dashes (– ) represent results not available for requiring too much computation time. Execution times are expressed in 
seconds (s), minutes (m) or hours (h) as convenient

STR
No. 
alleles

All individuals Females only

Permutation Network Permutation Network

p- value Time
p- value open dots 
represent obser Time (s) p- value

Time 
(s) p- value Time (s)

1 DXS8378 5 0.0355 42 s 0.0345 951 0.0548 40 s 0.0545 0.012 s

2 DXS7423 4 0.5171 40 s 0.5099 0.3 0.2678 39 s 0.2628 0.003 s

3 DXS10148 17 0.4152 69 s – – 0.3905 67 s – – 

4 DXS10159 10 0.0768 49 s – – 0.0846 48 s – – 

5 DXS10134 16 0.3472 64 s – – 0.6156 62 s – – 

6 DXS7424 10 0.9619 48 s – – 0.8616 47 s 0.8573 37.1 h

7 DXS10164 9 0.5226 46 s – – 0.3258 45 s 0.3238 77.0 s

8 DXS10162 10 0.6986 48 s – – 0.3981 47 s 0.4025 6.9 h

9 DXS7132 8 0.7882 45 s – – 0.5960 45 s – – 

10 DXS10079 10 0.6003 49 s – – 0.8403 49 s – – 

11 DXS6789 9 0.4776 47 s – – 0.7255 47 s – – 

12 DXS101 12 0.1845 54 s – – 0.1572 53 s – – 

13 DXS10103 7 0.8630 44 s – – 0.8957 44 s – – 

14 DXS10101 19 0.0456 75 s – – 0.0082 73 s – – 

15 HPRTB 8 0.7551 45 s – – 0.3819 44 s 0.3800 8.1 m

16 DXS6809 10 0.1722 49 s – – 0.1194 49 s – – 

17 DXS10075 9 0.4762 46 s – – 0.3136 46 s 0.3109 72.2 m

18 DXS10074 11 0.6746 50 s – – 0.1791 49 s – – 

19 DXS10135 21 0.5691 83 s – – 0.1308 82 s – – 
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The analysis of the complexity of the algorithms to use is cer-
tainly one of the key factors to study, in order to understand whether 
a new solution can achieve a certain type of efficiency in relation to 
the existing ones. For this reason, we want to briefly sort out the 
reasons that confirm theoretically why the new algorithm is faster 
than the old one. Looking at the classical full enumeration algorithm 
from this point of view, because of the two nested cycles, that allow 
to enumerate a priori all possible genotype matrices obtainable from 
the total number of alleles, it follows a quadratic complexity. The 
calculations are made using the matrices obtained in a linear way. 
Therefore, we can conclude that the classical algorithm for the HWE 
test follows an O

(
n2
)
 complexity, since we take the worst- case sce-

nario, which is always achieved regardless of the problem. About the 
new network algorithm, instead, there is a first recursion that goes 
to list all possible male individuals, constructing the vector of the al-
leles and analysing every possible case. This is in addition to the next 
recursion launched for female individuals that analyses at each iter-
ation a vector of size always smaller by a factor of 1 compared with 
that of the previous iteration (movement from one column of the 
network to the next). Therefore, the trend, in this case, is logarithmic 
and does not result in the worst- case linear because computationally 
the results stored during the path are considered, so as not to start 
again to analyse each vector from the beginning. The combination of 
the two considerations can lead us to the conclusion of an algorithm 
with a complexity O n log (n). So, from a first theoretical analysis on 
the complexity of the two algorithms compared, since the network 
algorithm follows, in the worst case, the proportion just explained, it 
is more advantageous to use. In general, in computer science, when 
trying to find faster ways to solve certain problems, the price to pay 
is that of memory to be used. The new network algorithm assumes 
that the enumeration of the matrices of genotypes will be complete 
as for the classical algorithm, what changes is the way to exploit 
these data in the calculations. In order to achieve computational im-
provement, the proposed new approach takes full advantage of the 
strength of the recursive technique by building an ever- deepening 
stack of nested function calls. This certainly creates a complication 
from the point of view of the space used that the classical algorithm 
did not provide. To do this, it was decided to use the C language, 
more oriented to this approach, rather than R. To conclude, on the 
one hand a computationally better approach was fully exploited, on 
the other hand the best programming- level tool was chosen to put it 
into practice. The combination of the two makes the new approach 
faster than the previous one.

In exact testing for HWE with multiallelic genetic variants, tied 
outcomes can easily arise. A pair of tied outcomes refers to two 
different genotype arrays that have theoretically exactly the same 
probability under the equilibrium null distribution. Tied outcomes 
can be problematic if they involve the observed sample. If a geno-
typing array has the same probability as the observed sample, its 
probability should be included in the calculation of the p- value. Due 
to finite precision in the comparison of floating point numbers on a 
computer, a theoretically tied outcome may not be recognized as hav-
ing the same probability as the observed sample, and may eventually 

not be counted towards the p- value. A good computational strategy 
for comparing probabilities and deciding upon equality of floating 
point numbers is therefore crucial for a correct implementation of 
exact test procedures. A permutation test will not resolve the prob-
lem of ties, because it also relies on the comparison of the prob-
ability of the observed sample with those of other, possibly tied 
outcomes generated under the null distribution. The exact p- values 
obtained by two different algorithms or on two different computers 
may not be the same, due to finite precision in the comparison of 
floating point numbers. Such differences are often explained by ties. 
If A is the observed table of genotype counts, and table B a tied 
outcome, for one algorithm the difference in their probability may be 
less than the tolerance used in the floating point comparison, so that 
the probability of B is correctly included in the p- value. For another 
algorithm, which potentially calculates the probabilities of the tables 
with numerical operations that are carried out in a different order, 
the difference in their probability may exceed the tolerance, such 
that B is incorrectly not counted towards the final p- value. If the 
probability of table B is large, then the difference in p- value due to 
the ties issue can be large too.

Test results for STRs (see Figure 4b) show more evidence against 
HWE for multiallelic variants. At first sight, this may suggest multial-
lelic variants are more prone to genotyping error. This is, however, 
hard to tell because the statistical power of tests for disequilibrium 
depends on the distribution of the allele frequencies, and tests have 
less power at low MAF (Graffelman & Moreno, 2013; Wigginton 
et al., 2005). On the other hand, if all multiallelic variants are recoded 
as biallelic (A the most common allele, B any other allele) then the 
fraction of significant variants remains increasing with the number 
of alleles, finally indicating that there is apparently more disequilib-
rium in multiallelic variants.

The comparison of execution times of different algorithms re-
flects the performance of current state- of- the- art functions in the R 
environment. The comparison is facilitated by the fact that all exe-
cution time measurements were made inside the R environment on 
the same Linux cluster. However, observed differences are not only 
due to the algorithm being used, but inevitably also to the coding of 
the algorithms. It is well known that loops are slower in R than in C, 
C++ or Fortran, and consequently, many R programs can be speeded 
up by recoding parts in one of these programming languages. In 
Figure 3b, on triallelic variants we used an enumeration algorithm, 
which was fully written in R, whereas large part of the network al-
gorithm was written in C. Therefore, the better execution time of 
the network algorithm can at least in part be ascribed to its coding 
in C. If the enumeration algorithm had been coded in C, probably 
a less striking difference between the two algorithms would have 
been observed.

In summary, we have made progress in obtaining a great compu-
tational improvement for exact HWE testing at three and four allelic 
X chromosomal variants. The advantage of exact tests is that they do 
not rely on approximation. It remains a challenge to further improve 
algorithms and coding for the exact testing of variants with more 
alleles.
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The network algorithm for the X chromosomal exact test with mul-
tiple alleles is implemented in function HWNEtWork of version 1.7.1 
of the R- package HardyWeinberg (Graffelman, 2015). We adapted 
C code for an autosomal network algorithm from Engels’ HWxtest 
package available at https://github.com/wreng els/HWxtest. We im-
ported C functions into R through the Rcpp package (Eddelbuettel & 
Francois, 2011). An R script reproducing the test results reported in 
Tables 1 and 2 is available at the Dryad Digital Repository (https://
doi.org/10.5061/dryad.8sf7m 0cm1).
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