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Abstract. Immune checkpoint inhibitors currently serve 
an important role in prolonging patients' overall survival. 
However, the prognostic signatures of immune checkpoint 
inhibitors in colorectal cancer (CRC) remain uncertain and 
more knowledge on the genetic characteristics of colorectal 
cancer is needed. Patients with CRC from The Cancer 
Genome Atlas were classified into high‑immunity group 
and low‑immunity group based on median scores from 
single‑sample gene set enrichment analysis using the GSVA 
package. We explored immune status by immune scores, 
stromal scores and tumor purity scores in ESTIMATE package 
and surveyed the difference of immune cells distribution with 

CIBERSORT package. Eighteen genes were selected using the 
LASSO Cox regression method and a prognostic risk model 
was constructed. Compared with patients in the low‑risk 
group, those in the high‑risk group had a significantly shorter 
survival time. For assessment of the prognostic validity of the 
risk model, receiver operating characteristic curves with areas 
under the curve of 0.769, 0.774 and 0.771 for 1, 3 and 5 years 
respectively. Differences in molecular mechanisms between 
high‑ and low‑risk groups were analyzed using the clusterPro‑
filer package. Tumor Immune Dysfunction and Exclusion data 
were downloaded and analyzed. The top 5 enriched pathways 
in the high‑risk group involved ‘calcium signaling’, ‘dilated 
cardiomyopathy’, ‘extracellular matrix receptor interaction’, 
‘hypertrophic cardiomyopathy’ and ‘neuroactive ligand 
receptor interaction’. HAMP was identified as a hub gene, 
which was highly expressed in tumor samples. The results of 
the present study indicate that the prognostic model based on 
both immune‑related genes and HAMP has the potential to 
support personalized treatment.

Introduction

In 2020, 1.9  million new cases and 935,000 deaths from 
colorectal cancer (CRC) were reported in the United States, 
and CRC had the third highest incidence and the second 
highest mortality rate among all cancers in the country (1). 
Furthermore, the incidence of colorectal cancer before the 
age of 50 has increased by 1‑4% per year in numerous coun‑
tries (2). CRC patients without metastasis have a good 5‑year 
overall survival (OS) rate at >84.0% (3). For CRC patients with 
metastasis, the 5‑year OS is <15% (4,5). The properties of the 
tumor microenvironment are strongly linked to the occurrence, 
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development, metastasis, recurrence and treatment resistance 
of CRC (6).

Currently, the main treatments for CRC include surgery, 
targeted therapy, radiotherapy, chemotherapy and immuno‑
therapy (7,8). Surgery, chemotherapy and radiotherapy are 
the preferred treatments because immunotherapy is generally 
less effective (9,10). However, among CRC patients receiving 
immunotherapy, patients with microsatellite instability tumors 
were reported to have shown greater therapeutic effects 
than patients with microsatellite stable tumors (11,12). The 
Tumor‑Node‑Metastasis (TNM) staging system is widely used 
to evaluate the prognosis of CRC patients (13). However, this 
system is insufficient for evaluating the effect of treatment in 
patients receiving immunotherapy and for making treatment 
decisions. The development of next‑generation sequencing 
will help to elucidate the biological molecular mechanisms 
underlying colorectal cancer, and further contribute to the 
development of personalized treatment (14,15). Therefore, new 
biomarkers for predicting the prognosis of CRC patients need 
to be identified.

Recent studies have reported biomarkers that can guide 
systemic therapy in colorectal cancer. For example, insensitivity 
to cetuximab or panitumumab is associated with mutations of 
the KRAS and NRAS gene exons 2, 3 and 4, and the presence 
of these mutations precludes the use of these drugs (16‑20). 
Furthermore, patients with CRC and the BRAF V600E muta‑
tion have a worse prognosis (21). The addition of cetuximab 
to first‑line treatment also showed no better OS benefit when 
compared with treatment without cetuximab, and is addition‑
ally associated with increased toxicity of the treatment (22). 
Immune checkpoint inhibitors have attracted great attention 
owing to their unique clinical therapeutic effects. According to 
a phase II clinical trial, the immune‑related objective response 
rate (ORR) was 40% in the DNA mismatch repair (dMMR) 
colorectal cancer group and 0% in the microsatellite insta‑
bility‑high/mismatch repair‑deficient (MSI‑H/dMMR) group, 
respectively  (12). An open‑label study (KEYNOTE‑164) 
reported that the ORR was 33% in dMMR/MSI‑H patients 
receiving pembrolizumab therapy regardless of whether they 
received first‑line or second‑line therapy (23).

Immune‑related genes and immune‑infiltrating cells 
undoubtedly serve an indispensable role in the tumor micro‑
environment and their roles in CRC are worth exploring. A 
comprehensive analysis of immune cells and immune‑related 
genes is needed to further elucidate the underlying mecha‑
nisms of immune resistance and immune response in the 
context of CRC (24,25).

Materials and methods

Data download and processing. Level 3 RNA sequencing 
data (such as TPM or FPKM data), high throughput 
sequencing‑counts transcriptome data and clinical infor‑
mation for colon adenocarcinoma (COAD) and rectum 
adenocarcinoma (READ) were downloaded from TCGA 
database (https://portal.gdc.cancer.gov/). After processing, 
data on 659 COADREAD patients (51 normal patients and 
608 patients with colorectal cancer) with both gene expression 
profile and clinical information were included for subsequent 
analysis. The gene expression profiles were normalized using 

the DEseq2 package (Bioconductor version 3.14) (26). The 
clinical features of the patients were presented in Table  I. 
Gene expression data and clinical data were downloaded 
from the National Center for Biotechnology Information Gene 
Expression Omnibus (GEO) under the accession number 
GSE87211.

ssGSEA and cluster analysis. A total of 29 immune gene sets 
were collected from the literature  (27). Three R packages 
(GSVA, GSEABase and limma; all Bioconductor version 3.14) 
were used to obtain the ssGSEA algorithm results and estimate 
the scores of immunological cells infiltrating in all TCGA 
samples (28). All COADREAD patients were divided into a 
high immune cluster (Immunity_H) or a low immune cluster 
(Immunity_L) based on the median ssGSEA score (29,30). 
Rtsne [version 0.16, CRAN‑Package Rtsne (r‑project.org)] 
package was used to generate the t‑SNE result and evaluated 
the distribution between the two groups (31).

Immunity and immune cell type distribution analyses. 
ESTIMATE analysis, performed using the ESTIMATE 
package (version  1.0.13, ESTIMATE: R Package; mdan‑
derson.org), was used to calculate the tumor purity, stromal 
score and immune score of each CORDREAD patient (32). 
CIBERSORT (R version 1.03; https://cibersort.stanford.edu) 
was used to calculate the distributions of 22 types of immune 
cells (33). Wilcoxon's rank‑sum test was used to compare the 
scores between the high‑ and low‑immunity groups.

Construction of the immune‑related gene prognostic 
risk signature. Immune‑related genes associated with 
OS of COADREAD patients were screened using 
univariate Cox regression analysis using the survival 
(version 3.2‑13; https://cran.r‑project.org/src/contrib/
Archive/survival /survival_3.2‑13.tar.gz) package in 
R. Then, a LASSO regression model was constructed 
using the glmnet (version  4.1‑4; https://cran.r‑project.
org/src/contrib/Archive/glmnet/glmnet_4.1‑4.tar.gz) package 
based on the results of univariate Cox regression, and the 
COADREAD patients were divided into high‑risk group and 
low‑risk groups according to the median risk score. The risk 
signature in the GSE87211 cohort was then validated, and 
survival and survminer (version 0.4.9; https://cran.r‑project.
org/web/packages/survminer/index.html) packages were used 
to construct a Kaplan‑Meier curve between the high‑ and 
low‑risk groups. The sensitivity and specificity of the prog‑
nostic signature were evaluated using a receiver‑operating 
characteristic (ROC) curve.

GSEA analysis. The signaling pathway differences were 
analyzed using functional enrichment analysis by the clus‑
terProfiler package (version 4.4.4; Bioconductor‑clusterProf
iler) (34,35). The dataset named c2.cp.kegg.v7.5.1.symbols.
gmt was download from the GSEA website (https://www.
gsea‑msigdb.org/gsea/msigdb/collections.jsp#C2) (36).

Immune checkpoint inhibitors response prediction. The 
COADREAD gene expression data were uploaded to the TIDE 
website (http://tide.dfci.harvard.edu/) and then the prediction 
response results were visualized using a violin plot. Wilcoxon 
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rank‑sum test was used to compare the scores between the 
high and low‑immunity groups.

Exploration of immune‑related hub genes. The STRING 
online tool (https://string‑db.org/cgi/input?sessionId=bojBmg
AExQGs&input_page_show_search=on) was used to explore 
protein‑protein interaction pairs with a combined score of 
>0.15 and the cytoHubba (version  0.1) app in Cytoscape 
(version 3.8.0) was used to calculate the node scores  (37). 
The expression of the hub genes and the relationship between 
the hub genes and OS were analyzed in TCGA cohort. In the 
present study, hub genes were considered to be those with a 
high Clustering Coefficient, with a threshold value of 1, as 
presented in Table II.

Hub gene validation using reverse transcription‑quantitative 
PCR (RT‑qPCR). To further validate the expression of 
hub genes in the present study, tissue was collected from 3 
CRC patients who had not undergone any treatment. The 

transcription level of the hub gene in the colorectal cancer 
tissue and adjacent tissues was assessed. Total RNA was 
extracted from tissues using TRNzol (cat. no. DP424; Tiangen 
Biotech Co., Ltd.), and cDNA was synthesized using the 
Evo M‑MLV RT premix kit (cat.  no.  AG11601; Accurate 
Biotechnology; Hunan Aikerui Biological Engineering Co., 
Ltd.) according to the manufacturer's instructions. RT‑qPCR 
was performed using the SYBR Green Real‑time PCR Master 
Mix kit (cat. no. 11201ES08; Shanghai Yeasen Biotechnology 
Co., Ltd.). The following conditions apply to the reaction: 
An initial 5 min at 95˚C and denaturation at 95˚C for 15 sec, 
followed by 40 cycles of annealing at 60˚C for 30 sec and 
extension at 72˚C for 30 sec. Relative mRNA expression levels 
were calculated using the 2‑ΔΔCq method (38) and assessed 
statistically using Student's t‑test. The primer sequences used 
were as follows: HAMP forward (F), 5'‑CTC​CTT​CGC​CTC​
TGG​AAC​AT‑3' and reverse (R), 5'‑AGT​GGC​TCT​GTT​TTC​
CCA​CA‑3'; and GAPDH F, 5'‑GAA​GAT​GGT​GAT​GGG​ATT​
TC‑3' and R, 5'‑GAA​GGT​GAA​GGT​CGG‑3'.

Statistical Analyses. All statistical analysis was performed 
using R 4.1.0 (ht tps://mi r rors. tuna. tsinghua.edu.
cn/CRAN/src/base/R‑4/R‑4.1.0.tar.gz). The relationship 
between high‑ and low‑risk scores and OS were evaluated 
using univariate and multivariate Cox analyses. The sensitivity 
and specificity of high‑ and low‑risk groups and OS were 
examined by ROC analysis. P<0.05 was considered to indicate 
a statistically significant difference.

Results

Construction of colorectal cancer groups based on ssGSEA. 
Data for patients with CRC were obtained from TCGA data‑
base, and the distribution of 22 types of immune cells in these 
patients was analyzed using the ssGSEA algorithm. CRC 
patients were divided into high‑immunity and low‑immunity 
groups according to consensus cluster analysis based on the 
median ssGSEA scores. The t‑SNE method preliminarily 

Table I. Patient clinical information and features (n=608).

Group	 n	 Proportion (%)

Age		
  <60	 177	 29.1
  ≥60	 431	 70.9
Sex		
  Female	 280	 46.1
  Male	 328	 53.9
M stage		
  M0	 450	 74.0
  M1	 85	 14.0
  MX	 63	 10.4
  NA	 10	 1.6
N stage		
  N0	 345	 56.7
  N1	 147	 24.2
  N2	 112	 18.4
  NA	 2	 0.3
  NX	 2	 0.3
T stage		
  T1	 20	 3.3
  T2	 106	 17.4
  T3	 414	 68.1
  T4	 65	 10.7
  Missing	 3	 0.5
Pathologic stage		
  I	 106	 17.4
  II	 220	 36.2
  III	 175	 28.8
  IV	 86	 14.1
  NA	 21	 3.5

T, tumor; N, node; M, metastasis; NA, not available.

Table II. Hub genes with high Clustering Coefficient.

Node name	 Clustering Coefficient

NUMBL	 0.00
PMCH	 0.00
MC1R	 0.00
VAV2	 1.00
HAMP	 1.00
IL20RB	 0.00
SEMA5B	 1.00
CX3CL1	 0.67
CD1B	 0.00
CD1A	 0.00
NRG1	 0.40
PPARGC1A	 0.47
EPO	 0.33
ANGPTL4	 1.00
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evaluated the distribution between the two groups, and the 
high‑ and low‑immunity groups were well differentiated in 

colorectal cancer samples (Fig. 1A). A significant difference 
in OS was observed between the high‑immunity group and 

Figure 1. Classification immune landscape of high‑ and low‑immunity groups in colorectal cancer. (A) The distribution of colorectal patients in high‑ and 
low‑immunity groups. (B) The Kaplan‑Meier curves predict the overall survival in the high‑ and low‑immunity groups. (C) The immune scores, stromal 
scores and ESTIMATE scores for the high‑ and low‑immunity groups. (D) Distribution of 22 types of immune cells in the high‑ and low‑immunity groups. 
(E) Heatmap of ESTIMATE scores and immune gene sets for high‑ and low‑immunity groups. *P<0.05, **P<0.01 and ***P<0.001. tSNE, T‑distributed stochastic 
neighbor embedding; TME, tumor microenvironment; H, high; L, low; CD, cluster of differentiation; NK, natural killer; aDCs, activated dendritic cell; pDCs, 
plasmacytoid dendritic cell; Th, helper T cells; Tfh, follicular helper T cells; iDCs, immature dendritic cells; APC, antigen‑presenting cell; HLA, human 
leukocyte antigen; CCR, chemokine receptor; DCs, dendritic cell; TIL, tumor infiltrating lymphocyte.
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low‑immunity group using the KM curve (Fig. 1B; P=0.026). 
Stromal, immune and ESTIMATE scores were calculated 
using ESTIMATE analysis. The Wilcoxon rank‑sum test 
method was used to assess the statistical significance and the 
violin plot demonstrated significantly higher scores in the 
high‑immunity group compared with the low‑immunity group 
(Fig.  1C; P<2x10‑16). In particular, CIBERSORT analysis 
demonstrated significantly higher CD8+ T cell levels in the 
high‑immunity group compared with the low‑immunity group 

(Fig. 1D; P=0.0019). The heatmap demonstrated that in the 
high‑immune group, the stromal, immune and ESTIMATE 
scores had a similar trend to immune cell expression (Fig. 1E).

Exploration of differentially expressed genes between high‑ 
and low‑immunity groups. Differentially expressed genes 
(DEGs) between the high‑ and low‑immunity groups were 
assessed (Fig. 2A). Immune‑related genes were downloaded 
from two websites, ImmPort (https://www.immport.org/home) 

Figure 2. Evaluation of DEGs in the high‑ and low‑immunity groups. (A) Volcano plot and (B) Venn of the DEGs in the high‑ and low‑immune groups and 
immune‑related genes from ImmPort and innateDB databases. (C) Heatmap of the 1195 upregulated genes and 241 downregulated genes. DEGs, differentially 
expressed genes; H, high; L, low.
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and innateDB (https://www.innatedb.com/). Among the DEGs, 
1,436 genes were immune system related (Fig. 2B), with 1,195 
being upregulated and 241 being downregulated (Fig. 2C).

Construction of immunity‑related prognostic signature. 
To construct a risk model, 111 mRNAs related to OS were 

identified using the univariate analysis (Fig. 3A). Among the 
identified mRNAs, 18 genes were used to build a risk model 
by LASSO Cox regression analysis. The risk score was calcu‑
lated using the coefficients of the 18 genes (Fig. 3B and C) 
as follows: risk score=USP7 x (‑0.0153034090477698) 
+  VAV2 x  0.065501116 0 04 4214 +  CX3CL1 x 

Figure 3. Construction of the risk signature. (A) Univariate analysis identified 111 genes related to overall survival. (B and C) The minimum criteria and 
coefficients were calculated by LASSO regression analysis. (D and E) Distributions of the risk score and mortality status. (F) Clinical outcome of patients 
with colorectal cancer in the high‑risk and low‑risk groups. (G) Receiver operating characteristic curve of the predictive efficiency for 1, 3 and 5 year survival. 
AUC, area under the curve.
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0.00124855618096817 + NUMBL x 0.0548798283592552 
+ PPARGC1A x (‑0.052320825824987) + ANGPTL4 x 
0.00461031918855942 + MC1R x 0.165908532485693 + 
MID2 x 0.115738969177335 + NRG1 x (‑0.108632261933379) 
+ SEMA5B x 0.00929691428939524 + IL20RB x 
0.238904701764134 + RBP7 x 0.127007108169451 + CD1A 
x (‑0.0254834618450881) + PTH1R x 0.0610074708594601 
+  H A M P x  0. 0 0478998991273158  +  CD1B x 
(‑0.150298945645048) + PMCH x (‑0.0339401840839164) + 
EPO x 0.00100587552113195. The coefficient values of the 
18 genes was calculated by glmnet package using the coef 
function. Using the median risk scores, the CRC patients were 
divided into high‑risk and low‑risk groups. Patients' mortality 
and risk score distributions were plotted (Fig. 3D and E) and a 
higher death rate was demonstrated in patients in the high‑risk 
group. Compared with patients in the low‑risk group, those in 
the high‑risk group had a significantly shorter overall survival 

time (P<0.001; Fig. 3F). For assessment of the prognostic 
validity of the risk score, ROC curves were generated, the area 
under the curve (AUC) values of 0.769, 0.774 and 0.771 for 1, 
3, and 5 year survival rates respectively, indicated that the risk 
model was valid (Fig. 3G).

Validation of the immunity‑related risk signature. To better 
understand the value of the immunity‑related risk signature, 
a GEO cohort (GSE87211) with a survival time <9 years was 
used to construct ROC curves and for KM analysis. Consistent 
with the trend demonstrated in the TCGA cohort, the OS in 
the high‑risk group was shorter and the risk scores were higher 
compared with the low‑risk group (Fig. 4A and B). The patients 
in the high‑risk group in the GSE87211 dataset demonstrated 
significantly shorter OS compared with those in the low‑risk 
group (P=0.034; Fig. 4C). ROC analysis was performed to 
test the stability and robustness of the immunity‑related risk 

Figure 4. Validation of the risk signature. (A and B) Mortality rate was associated with high risk scores. (C) The validation cohort demonstrated distinctly 
different survival curves between the high‑ and low‑risk groups. (D) Receiver operating characteristic curves predicted the risk model efficiency in the valida‑
tion cohort. AUC, area under the curve.
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model. The AUC values were 0.673, 0.620, and 0.617 for 1, 3, 
and 5 year OS, respectively (Fig. 4D).

Relationship between clinical features and prognosis of CRC. 
To evaluate the correlation between the clinical features and 
the prognosis of CRC, univariate Cox regression analysis was 
performed, which demonstrated that age, T stage, N stage, 
M stage and risk score were significantly associated with 

OS (P<0.001; Fig. 5A). More importantly, multivariate Cox 
analysis demonstrated that risk score could be an independent 
prognostic risk factor (P<0.001; Fig. 5B).

Functional enrichment analysis by GSEA and clinical 
characteristics between high‑ and low‑risk groups. GSEA 
analysis indicated that the extracellular matrix (ECM) receptor 
interaction was enriched in the high‑risk group (Fig. 6A), 

Figure 5. Univariate and multivariate Cox analyses for clinical features and risk model. (A) Univariate analysis results. (B) Multivariate analysis results. T, 
tumor; N, node; M, metastasis.
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which directly or indirectly controls cellular activities. Other 
enriched pathways in the high‑risk group involved calcium 
signaling, dilated cardiomyopathy, hypertrophic cardiomy‑
opathy and neuroactive ligand receptor interaction (Fig. 6A). 
The low‑risk group demonstrated enrichment of pathways 
such as chemokine signaling pathway or cytokine‑cytokine 
receptor interaction (Fig. 6B). The correlation between risk 
score and clinical characteristics was analyzed and there were 
significant differences in T, N and M stages between the high‑ 
and low‑risk groups, but there were no differences in age and 
sex (Fig. 6C).

Potential role of risk signature in predicting immune checkpoint 
blockade responses. To evaluate the clinical function of the risk 
model, the TIDE method was used to compare the differences 
in TIDE, dysfunction and exclusion scores between high‑ and 
low‑risk groups. Patients in the high‑risk group had higher 
scores for all measures (P=8.3x10‑5, P=9.5x10‑5 and P=1.1x10‑8, 
respectively; Fig. 7). These findings suggested that the poor 
immune response of patients in the high‑risk group was due to 
immune dysfunction and immune rejection.

Evaluation of the hub gene. An analysis of the 18 genes was 
performed using the STRING website (https://string‑db.org/) 
to evaluate the hub gene among the risk signatures. The 
minimum required interaction score was set at 0.15, which 
resulted in a file containing interactions among all degrees 
of nodes for 14 genes. cytoHubba was used to further assess 
hub objects among the complex interactions. The genes were 
sorted according to clustering coefficient, and VAV2, HAMP, 
SEMA5B and ANGPTL4 were indicated as the hub genes 
(Table II). The expression differences of these four genes and 
survival were further analyzed and no significant differences 
in the expression of ANGPTL4 between the tumor group 
and the normal group were demonstrated (data not shown). 
Furthermore, no significant difference in survival was demon‑
strated between the high and low expression groups with regard 
to SEMA5B and VAV2 expression (data not shown). Therefore, 
HAMP demonstrated significant differences and was selected 
for subsequent analysis. In both the unpaired and the paired 
groups, significant differences were demonstrated in the 
mRNA expression levels of HAMP (P<0.05; Fig. 8A and B). 
In the tumor group, the expression of HAMP was significantly 

Figure 6. Functional and clinical characteristics between high‑ and low‑risk groups. Top 5 enrichment pathways in the (A) high‑risk group and the (B) low‑risk 
group. (C) Heatmap for risk group and clinical characteristics. ***P<0.001. T, tumor; N, node; M, metastasis.
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correlated with tumor pathological stage, T stage and N stage; 
however, no significant difference was demonstrated for M 
stage (Fig. 8C‑F). The mRNA expression of HAMP was also 
positively correlated with PDCD1 (PD1) and CD274 (PD‑L1) 
(Fig. 8G‑H). The relationship between HAMP expression and 
22 types of immune cells was assessed, which demonstrated 
that HAMP was mainly expressed in CD8+ T cells, NK cells, 
monocytes and macrophages (cells with importance in immune 

therapy) (Fig. 8I). After removing duplicated data and data 
missing clinical information, it was demonstrated that high 
expression of HAMP was significantly associated with shorter 
OS (P=0.004), shorter progression free interval (P=0.015) and 
shorter disease specific survival (P<0.001) (Fig. 8J‑M) (39). 
The ROC curve was used to evaluate the predictive perfor‑
mance of HAMP, the AUC was 0.743, which indicated good 
predictive performance (Fig.  8N). To evaluate the role of 
HAMP in tumor immunity, the correlations between HAMP 
expression and stromal score, immune score and ESTIMATE 
score were analyzed. The results demonstrated that HAMP 
expression was significantly positively correlated with all 
three scores (Fig. 8O‑Q). To validate the expression of HAMP, 
qPCR was performed in colorectal cancer and adjacent tissues, 
which demonstrated a similar pattern of expression (P=0.0031; 
Fig. 8R).

Discussion

CRC is the third most common type of malignant tumor and 
the second most common cause of tumor‑related death in the 
United States (1). Targeted therapy for CRC is still ineffective 
for patients with advanced tumors (40). PD1 and PD‑L1 are the 
main indicators used to guide the use of immune checkpoint 
inhibitors (41). A small number of patients with MSI‑H/dMMR 
have a durable response to immune checkpoint inhibitor 
therapy, which can effectively prolong the OS of patients with 
advanced CRC (42,43). However, the results in patients with 
MSI‑H/dMMR cannot be generalized to the entire patient 
population receiving immune checkpoint inhibitor therapy. 
As the importance of the immune microenvironment in tumor 
progression is increasingly recognized, there is a critical need 
to elucidate the molecular pathogenesis of colorectal cancer 
and to identify reliable prognostic biomarkers based on the 
immune landscape (44).

In the present study, transcriptomic and clinical informa‑
tion were downloaded from TCGA database and patients with 
CRC were divided into high‑ and low‑immunity groups based 
on ssGSEA scores. Previous research reported a pan‑cancer 
tumor inflammation signature and divided patients into high‑ 
and low‑immune groups, and that patients with renal clear cell 
carcinoma (45), melanoma (46), lung tumors (47) and head and 
neck tumors (48) in the high‑immune group were more likely 
to be sensitive to immune checkpoint inhibitors. However, this 
model has been reported to have limited predictive ability 
for colorectal cancer (49), because tumor cells could rapidly 
proliferate by transitioning from an immune homeostasis state 
to an immune escape state. Therefore, patients in the immune 
elimination and immune editing phases have higher immunity 
and better prognosis (50). The antitumor role of the immune 
system can be summarized as preventing pro‑inflammatory 
effects, protecting the host from viral infection and killing 
tumor cells (51).

The present study demonstrated that the stromal score, 
immune score and ESTIMATE score were higher in the 
high‑immune group. By performing CIBERSORT analyses, 
it was demonstrated that the levels of CD8+ T cells and macro‑
phage M1 cells in the high‑immune group were significantly 
increased compared with the low‑immune group. As key 
components of the adaptive immune system, CD8+ T cells 

Figure 7. Prediction of immune checkpoint blockade responses in the high‑ 
and low‑risk groups. (A) TIDE score, (B) dysfunction score and (C) exclusion 
score in the high‑ and low‑risk groups. ***P<0.001.
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Figure 8. Evaluation of the hub gene and validation with reverse transcription‑quantitative PCR. (A and B) The expression of HAMP in unpaired and paired 
groups. (C‑F) The relationship between HAMP expression and clinical features. (G and H) The relationship between HAMP expression and PDCD1/CD274. 
(I) Different distributions of tumor‑infiltrating cells in high/low HAMP expression groups. The Kaplan‑Meier curves for (J) overall survival, (K) progression 
free interval and (L) disease specific survival in The Cancer Genome Atlas datasets and (M) overall survival in GSE17537 for patients between groups with 
high and low HAMP expression. (N) The receiver operating characteristic curve analysis of HAMP expression. (O‑Q) The relationship between HAMP 
expression and stromal scores, immune scores, and ESTIMATE scores. (R) Validation of HAMP expression in three colorectal cancer specimens and three 
matched normal adjacent tissues (n=3). *P<0.05, **P<0.01 and ***P<0.001. HAMP, hepcidin antimicrobial peptide; TPM, transcripts per million; CD, cluster of 
differentiation; NK, natural killer; AUC, area under the curve; CI, confidence interval; T, tumor; N, node; M, metastasis.
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serve important roles in immune defense against intracellular 
pathogens such as viruses and bacteria, and tumors (52,53). 
In general, cytotoxic T cells serve an important antitumor 
role through interferon‑γ, tumor necrosis factor‑α, inter‑
leukin‑2 and interleukin‑17 (54,55). An increase in T‑cell 
infiltration is more likely with high‑immune status  (56). 
Similarly, an increase in CD8+ T cells was demonstrated in 
the high‑immune group in the present study. Tumors contain 
a large amount of macrophages, and M1 macrophages have 
anti‑tumor and pro‑inflammatory effects (57,58). Elevated 
CD8+ T cell infiltration has been reported to be associated 
with better prognosis in colorectal cancer  (59), improved 
OS in oral squamous cell carcinoma (59) and disease free 
survival in laryngeal carcinoma (60‑62). High macrophage 
infiltration is also associated with improved prognosis 
in colorectal cancer  (63). These reports together with the 
results of the present study explain why colorectal cancer 
patients in the high‑immune group have a better prognosis. 
By analyzing the DEGs of the high‑ and low‑immune 
groups, and the intersecting immune‑related genes from 
the ImmPort and innateDB immune databases, a risk model 
was constructed for the identified intersecting genes. Risk 
scores and clinical characteristics were combined to evaluate 
the model's effectiveness, and the ROC curve demonstrated 
the effectiveness of the model. Univariate and multivariate 
analyses demonstrated that the model had a better prognostic 
result than the TNM classification system. The risk model 
was also validated using external GEO data (GSE87211). 
Functional enrichment analysis of the high‑ and low‑risk 
groups was performed and the results demonstrated that the 
genes in the high‑risk group were mainly enriched in the 
ECM receptor signaling pathway. To evaluate the predic‑
tive effect of the model for immune checkpoint inhibitors, 
the TIDE algorithm was used, which demonstrated that the 
high‑risk group had a high score of immune dysfunction and 
immune rejection, which may indicate a poor response to 
immunotherapy (24,25).

Finally, a hub gene, HAMP, was identified using a 
protein‑protein interaction network. HAMP is involved in 
iron homeostasis and ferroptosis. Ferroptosis, an intracellular 
iron‑dependent form of cell death, serves a key role in tumor 
suppression and is clearly associated with resistance to cancer 
therapy (64‑66). Ferroptosis is associated with T‑cell immu‑
nity and cancer immunotherapy, and inhibition of ferroptosis 
may lead to resistance to immune checkpoint inhibitor 
therapy (67). Immune checkpoint inhibitor therapy has clear 
clinical benefits in inducing long lasting responses, but drug 
resistance remains a formidable challenge (68).

HAMP encodes hepcidin antimicrobial peptide (HAMP), a 
pro‑peptide of 84 amino acids. HAMP is cleaved into mature 
peptides of 20, 22 and 25 amino acids, undergoing enzymatic 
digestion (69). Its product, hepcidin, serves an important role 
in regulating macrophage iron storage and intestinal iron 
absorption (70).

Hepcidin, as an acute‑phase protein, participates in innate 
immune reactions in an interleukin‑6 dependent manner (71). 
Hepcidin in conventional dendritic cells can promote mucosal 
repair in a nutritional immunity manner (72). Macrophages 
serve an important role in regulating iron levels with hepcidin, 
which in turn influences inflammation, infection and possibly 

cancer, and overexpression of hepcidin is linked with cancer 
development and prognosis (73).

HAMP affects iron homeostasis, inflammation and 
oxidative regulation through the mTOR, JAK/STAT and 
BMP/SMAD signaling pathways  (74‑76). Hepcidin serves 
an important role in the occurrence, development and metas‑
tasis of liver cancer. Iron sensing is dysregulated in patients 
with liver cancer, which in turn leads to the dysregulation of 
hepcidin. As such, hepcidin may serve as a drug therapy target 
in liver cancer (77‑79). Hepcidin is also involved in breast 
cancers, promoting proliferation, invasion and metastasis (80). 
In prostate cancer, hepcidin dysregulation contributes to the 
development and progression of the cancer  (81,82). Serum 
hepcidin levels are significantly correlated with lymph 
node metastasis status and T stage in non‑small cell lung 
cancer (83). In colorectal cancer, patients with adequate iron 
have superior outcomes and increased response to therapy (84). 
If hepcidin is deficient, tumor number, burden and size are 
diminished (85‑87). A previous in vitro study reported that 
hepcidin promotes growth in the colorectal cancer cell line 
HT‑29 cell; however, similar results were not reported in other 
colorectal cell types (87). A previous immunohistochemistry 
study reported that the positive rate of hepcidin in CRC tissues 
was significantly higher than that in adjacent tissues (88). In 
the present study, differences in HAMP expression between 
colorectal cancer and normal tissues were demonstrated. 
Furthermore, in terms of clinical features, HAMP expres‑
sion was higher in patients with advanced clinical features 
(such as T1 and T2 vs. T3 and T4, and N0 vs. N1 and N2). 
Colorectal cancer patients were divided into groups based 
on high and expression of HAMP, using the median value of 
HAMP expression. Patients with high HAMP expression had 
a worse prognosis. Furthermore, in the high HAMP expres‑
sion group, CD8+ T cell and macrophage M1 cell levels were 
significantly increased compared with the low HAMP expres‑
sion group. Finally, qPCR was performed using tissue samples 
from colorectal cancer patients to verify the differences in 
expression levels. Based on the results of the present study, 
HAMP could be further used to identify target molecules for 
subsequent studies and as possible treatment candidates.

The present study demonstrated for the first time, to the 
best of our knowledge, the role of HAMP in the immune 
microenvironment of colorectal cancer, combining the current 
immune microenvironment with the ferroptosis hotspot. The 
present study has certain limitations. These research findings 
are preliminary and there are still mechanisms needing further 
elaboration. Firstly, only the GEO database was used to verify 
the model, and prospective clinical trial results are needed in 
the future. Secondly, more clinical samples and in vivo and 
in vitro experiments are needed to verify the role of HAMP in 
colorectal cancer. Thirdly, the present study only analyzed the 
risk model and the correlation between HAMP and immune 
cells and immunotherapy. More clinical samples are needed to 
evaluate the roles in the model and HAMP in immunotherapy 
in the future. The mechanism of HAMP in the progression 
of colorectal cancer still needs to be further elucidated, and 
clinical data and molecular experiments are needed to verify 
these results.

The present study constructed an immune‑related prog‑
nostic model, and then identified the key gene HAMP, which 



ONCOLOGY LETTERS  26:  360,  2023 13

linked the immune microenvironment with ferroptosis. Risk 
models and HAMP may provide evidence for colorectal cancer 
prognosis and drug selection. The finding of HAMP gene as a 
hub gene is significant and it is important to perform further 
experiments to elucidate how this gene is related to colorectal 
cancer. Furthermore, whether modified HAMP could change 
tumor environment and allow more people to benefit from 
immunotherapy or reverse immunotherapy resistance should 
be studied further in future.
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