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Abstract

The large conductance voltage- and Ca®*-activated K* channels from the inner mitochon-
drial membrane (mitoBK) are modulated by a number of factors. Among them flavanones,
including naringenin (Nar), arise as a promising group of mitoBK channel regulators from a
pharmacological point of view. It is well known that in the presence of Nar the open state
probability (p,,) of mitoBK channels significantly increases. Nevertheless, the molecular
mechanism of the mitoBK-Nar interactions remains still unrevealed. It is also not known
whether the effects of naringenin administration on conformational dynamics can resemble
those which are exerted by the other channel-activating stimuli. In aim to answer this ques-
tion, we examine whether the dwell-time series of mitoBK channels which were obtained at
different voltages and Nar concentrations (yet allowing to reach comparable p,s) are dis-
cernible by means of artificial intelligence methods, including k-NN and shapelet learning.
The obtained results suggest that the structural complexity of the gating dynamics is shaped
both by the interaction of channel gate with the voltage sensor (VSD) and the Nar-binding
site. For a majority of data one can observe stimulus-specific patterns of channel gating.
Shapelet algorithm allows to obtain better prediction accuracy in most cases. Probably,
because it takes into account the complexity of local features of a given signal. About 30%
of the analyzed time series do not sufficiently differ to unambiguously distinguish them from
each other, which can be interpreted in terms of the existence of the common features of
mitoBK channel gating regardless of the type of activating stimulus. There exist long-range
mutual interactions between VSD and the Nar-coordination site that are responsible for
higher levels of Nar-activation (Ap,,) at deeply depolarized membranes. These intra-sensor
interactions are anticipated to have an allosteric nature.
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Author summary

The large conductance voltage- and Ca®*-activated K* channels from the inner mitochon-
drial membrane (mitoBK) are modulated by a number of factors, including flavanones
like naringenin (Nar). In the presence of Nar the open state probability (p,,) of mitoBK
channels significantly increases, however the molecular mechanism of the mitoBK-Nar
interactions remains still unrevealed. It is also not known whether the effects of narin-
genin administration on channel gating can accurately mimic the dynamical conse-
quences exerted by other channel-activating stimuli. In order to answer this question, we
examine whether the dwell-time series describing the mitoBK channel activity obtained at
different voltages (U,,,) and Nar concentrations are discernible by means of artificial intel-
ligence (AI) methods (k-NN, shapelet learning). The key inferences from the current
study are as follows:

» Naringenin most significantly increases the p,, of highly voltage-activated mitoBK
channels.

o The Nar binding site and voltage sensor may cooperate allosterically.

o There are some U,,,- and Nar-specific effects on gating dynamics that allow for a proper
Al classification for the majority of input data.

o The local features of the signal seem to be highly stimulus-specific, which can be
inferred from a relatively good performance of the shapelet classification method.

Introduction
Naringenin as a mitoBK channel modulator

The mitoBK channels can be considered as mitochondrial variants of the large-conductance
voltage- and Ca®*-activated K* channels (BK) [1]. They play an important physiological role in
regulation of metabolism and ATP synthesis (via oxidative phosphorylation) within the inner
mitochondrial membrane [1]. Consequently, the mitoBK channels are considered as drug tar-
gets. Beside the two generic stimuli that activate the mitoBK channels (membrane depolariza-
tion and high availability of Ca®" ions) [2], their open state probability (p,,) can be increased
in the presence of other factors like mechanical strain [3] or pharmacologically by NS1619 [4],
NS11021 [5] or CGS7184 and CGS7181 [6]. In turn, the ionic conduction via mitoBK channels
can be effectively inhibited by paxilline (PAX), charybdotoxin (ChTx), iberiotoxin (IbTx),
4-aminopyridine (4-AP) or tetra-ethyl ammonium (TEA), as summarized in [7]. What is,
however, worth mentioning, is that many mitoBK channel modulators exhibit a wide spec-
trum of off-target effects including their cytotoxicity [8]. Thus, further search for the effective
and specific mitoBK modulators is needed. It would be also highly valuable to make progress
in our understanding of the possible molecular mechanisms of channel—modulator interac-
tions and the interplay between different sensors within the channel that can collectively affect
its gating.

Among the potential modulators of mitochondrial channels, flavonoids emerge as cost-
effective, non-toxic and easily available candidates for bioactive compounds used in future
medicine. Within this group of natural substances, naringenin (Nar) reached a reasonable sci-
entific interest [9, 10] due to its antioxidant, cytoprotective and anti-inflammatory properties.
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For this sake, naringenin became useful for reducing the risk of oxidative stress and inflamma-
tion-mediated processes underlying pathogenesis of many human diseases [11-13].

In the search of molecular mechanism of the Nar-mitoBK interaction

Considering the molecular mechanism accounting for the observed cellular, and, further, tis-
sue- or even systemic effects of Nar administration, one of the crucial component process is
activation of BK and mitoBK channels [5, 14-19]. The molecular mechanism of Nar-mitoBK
or Nar-BK interactions remains still not completely understood. Nevertheless, considering the
literature reports one can deduce that the binding site for Nar coordination is located within «
subunits of the channel [14], probably within the gating ring.

A similar level of activation by Nar was observed for the BK/mitoBK channels in different
types of cells, where the channel was coordinated with different types of § subunits [5, 14-19].
Thus, the presence of auxiliary subunits may exert only a minor indirect effect on channel-Nar
interactions.

Moreover, the BK and mitoBK channel variants can be activated by Nar to a similar extent.
Accordingly, the presence of the structural differences between the plasma membrane- and
mitochondrial channel variants are anticipated not to affect naringenin binding.

It has been also observed that the popular blockers of BK and mitoBK channels can antago-
nize the effects of Nar, which was described in case of PAX [5, 17, 19], IbTx [5], and TEA [16].
The blockers may be coordinated to the channel residues which determine its transport prop-
erties to a higher extent than Nar-binding sites (e.g. coordination of inhibitors impose a physi-
cal block of a channel pore).

It is well known that the voltage-sensing domain (VSD) strongly affects the channel gating
dynamics through allosteric mechanism [20-23]. The current knowledge about the interac-
tions between the Nar-binding site and the channel gate as well as the possible VSD-Nar-bind-
ing site communication is limited. Thus, in this research we will compare the effects of
membrane depolarization and the increase of Nar concentration on the mitoBK channel
gating.

A perspective to utilize Al methods in ion channel research

To unravel the details of the molecular mechanism of the interactions between Nar and BK or
mitoBK channels, one should carry out a series of calculationally demanding Nar docking by
the use of molecular dynamics (MD) methods. Later, its results should be validated in appro-
priately designed biological models. Despite of the rapid evolution and progress in computa-
tional modeling of proteins [24-28] still there exist limitations which preclude them to be used
in the studies of conformational dynamics of ion channels on long time scales. Direct tracking
of the functional effects exerted by the coordination of modulator like naringenin to a given
BK channel variant may stay out of range for modern modeling and simulation techniques. To
enable for such studies, some simplifications of the investigated BK-Nar system are needed.
They should include indication of anticipated active sites for Nar coordination and description
of the possible interferences of naringenin with other channel-regulating stimuli.

In this aim, the single-molecule electrophysiological techniques such as patch-clamp [29]
and the following signal analyses can be exploited. In this work, we show that the easily avail-
able recordings can be directly utilized to gain some valuable information about the channel’s
conformational dynamics. Thus, the aforementioned problems with limitations of simulation
techniques can be avoided to a certain degree. We decided to join the advantages of the stan-
dard experimental method (patch-clamp) and the techniques of artificial intelligence (AI). The
last ones are still progressive in ion channel research. There are only several studies that discuss
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the use of machine learning approaches to the analysis of the single-channel patch-clamp sig-
nals. In the research of Celik et al. the authors present the method of Al utilization to detect
and discern the single-molecule events [30] In turn, in the work [31] the use of machine learn-
ing methods allows one to classify the patch-clamp signals that correspond to different variants
of - BK channel complexes which are typical for particular cell lines. The main advantages
of the Al approach in the context of functional analysis of ion channels are that it is directly
signal-based and neither requires knowledge about the mechanism of channel gating nor
expertise in statistical description of gating kinetics. In a broader context of the research on
ion channels, the Al techniques can be also successfully exploited in the channel’s proteomics
and genomics, as discussed in [32, 33].

In this work we will answer the question whether voltage- and Nar-activation exert suffi-
ciently specific effects on conformational dynamics that allow them to be discerned from each
other by the machine learning (ML) methods. Membrane depolarization changes the location
and spatial orientation of VSD within the membrane (so also the exposition of VSD charge).
Whereas, naringenin is coordinated within the gating ring (located outside the membrane). In
consequence, the structural changes of the channel induced by the voltage activation and the
naringenin coordination are evidently disparate. Nevertheless, it is quite interesting whether
these stimuli affect the stability of conducting and nonconducting channel’s conformations as
well as the overall kinetics of conformational switching in a discernible way.

We use the sequences of dwell-times of subsequent open and closed mitoBK channel states
as input data. Such a choice was dictated by the fact that the dwell-time series can be easily
constructed from the raw patch-clamp data (which, in turn, have the form of time series of sin-
gle-channel currents), but they are not biased by the effects of different signal-to-noise ratio at
different membrane potentials. Moreover, dwell-time series directly refer to the conforma-
tional dynamics of a given channel.

According to the popular Markovian models of the channel kinetics [34], under fixed exter-
nal conditions there is a limited number of stable channel conformations and possible connec-
tions between them (as presented in Fig 1). These are however not known a priori. Depending
on the relative stability of the channel conformations and the heights of energetic barriers sep-
arating them, they should have different average dwell-times and occur more or less frequently
during the recording of channel activity. A single dwell-time brings not sufficiently specific
information to recognize to which channel conformation does it correspond. That’s because
each channel conformation is described by its own dwell-time distribution [34-37]. Stable
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Fig 1. Schematic representation of a general Markovian model of the ion channel gating kinetics [34]. From a
simplified point of view the channel can exist in two functionally distinct states: open (O) and closed (C), which are
represented by green and red color, respectively. These states can be, in turn, constituted by a discrete number of
substates (i.e. (n+2)-(k+2) closed substates C; and (k+1) open substates O;). The channel’s substates are thought to
correspond to its stable conformations. For example, in case of the BK channels, 3-4 open and 5-6 closed substates can
represent its kinetics [35]. The possible transitions between channel’s substates are depicted by arrows.

https://doi.org/10.1371/journal.pcbi.1010315.g001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010315  July 20, 2022 4/20


https://doi.org/10.1371/journal.pcbi.1010315.g001
https://doi.org/10.1371/journal.pcbi.1010315

PLOS COMPUTATIONAL BIOLOGY Naringenin- and voltage-activation of the mitoBK channel—A machine learning approach

conformations must appear multiple times in the patch-clamp recording and there is a limited
number of interconnections between them. Therefore, the analysis of dwell-time sequences,
which give a temporal description for several acts of switching between channel’s conforma-
tions, allows one to describe the gating dynamics in a more unique way. From this perspective,
in this work we will perform the classification analysis for sets of dwell-time subseries obtained
at different U,,;s and [Nar]s.

We are convinced that each stimulus should affect the channel’s conformational space in a
different manner. Therefore, the relative effects of Nar- and voltage-activation on conforma-
tional dynamics will be evaluated by comparing the short excerpts (of 50 points) from the
dwell-time series obtained at different different [Nar] and U,,, combinations, where the investi-
gated channels will reach a possibly close level of overall activation. Here, mean open state
probability p,, is used as the criterion for similarity of channel’s activity level. If the data
obtained at different [Nar] and U,, are unambiguously discernible according to the ML meth-
ods, these stimuli should affect the conformational dynamics of the channel in a highly specific
way. In those terms, a sole dwell-time subseries allows us for identification at what U,,, and
Nar concentration they were obtained. Accordingly, the number, connectivity and/or stability
of the available channel conformations may be independently affected by [Nar] and U,,,. In
opposite case, i.e. when the input signals obtained at different conditions of U,,, and [Nar] are
indiscernible, it will suggest that there exists a set of predefined stable conformations which
are characteristic for channel’s activation level regardless of the type of activating stimulus. In
those terms, naringenin binding would allow the channel to mimic the conformational kinet-
ics that usually correspond to its highly voltage-activated state, and vice versa.

Considering the methodology used in the current work to perform the classification of the
input signals, we decided to apply the K-nearest neighbors algorithm (k-NN). The k-NN
method was commonly used in Time Series Classification (TSC), also in the case of biological
signals such as electrocardiography [38] or electroencephalography [39, 40]. According to our
previous studies [31] this simple technique can be successfully utilized in case of separation
problems dedicated to time series describing ion channel gating.

To get a better insight into the nature of the analyzed problem we also implemented the
shapelet-based ML technique. Shapelet is a subsequence of signal, on the basis of which the
similarities within the signal can be identified. Based on specific shapelet features the process
of time series classification can be evaluated with high accuracy. Since being presented in 2009
[41], the shapelet methodology has gained a wide range of applications also in the field of bio-
signals [42].

Results

The obtained patch-clamp recordings confirmed that naringenin acts as mitoBK channel acti-
vator (Table 1). To visualize the basic characteristics of the experimental data, representative

normalized signals recorded for different membrane potentials U,, and naringenin concentra-
tions [Nar] are presented in Fig 2. According to the Table 1, the opening-reinforcing effects of

Table 1. The mean open state probabilities obtained at different membrane potentials and naringenin concentra-
tions. The cells representing the groups of recordings for which the classification analysis by ML was performed are
coloured by the same shade of gray. The U, values are given in [mV].

U, control 1 uM Nar 3 uM Nar 10 uM Nar
60 0.59+0.04 0.60+0.03 0.65+0.02 0.71£0.02
40 0.56+0.03 0.58+0.02 0.63+0.02 0.66+0.02
20 0.53+0.05 0.53+0.02 0.58+0.05 0.60£0.02

https://doi.org/10.1371/journal.pcbi.1010315.t001
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Fig 2. The representative normalized patch-clamp signals (single channel current vs. time) recorded at different membrane potentials U,,, and

naringenin concentrations [Nar]. The presented traces correspond to the first group of recordings used for ML classification. As one can see, the

compared traces have a similar overall characteristics.

https://doi.org/10.1371/journal.pcbi.1010315.9002

naringenin administration are better pronounced in the case of highly voltage-activated

mitoBK channels.

Considering the merit of this study, the preliminary task of its experimental part was to find
such values of membrane potential and naringenin concentration to find groups of recordings
which have matching p,, values. Maximal difference of mean p,,s was assumed to be 0.01. As
presented in Table 1, we have extracted three independent groups for further ML classification
and separation; i.e. first group, where p,,, ~ 0.58 constituted by recordings at (U,,=60[mV],
[Nar]=0), (U,,=40[mV], [Nar]=1yM) and (U,,=20[mV], [Nar]=3uM), second group, where
Pop ~ 0.60 constituted by recordings at (U,,=60[mV], [Nar]=1uM) and (U,,=20[mV], [Nar]
=10uM), and third group, where p,, ~ 0.66 comprised the recordings obtained at (U,,=60

[mV], [Nar]=3uM) and (U,,=40[mV], [Nar]=10u4M).

Table 2. The prediction accuracies obtained with the k-NN and shapelet learning method for dwell-time sequences

corresponding to different groups of recordings marked by various shades of gray in Table 1.

U, [Nar] Accuracy k-NN Accuracy shapelet
60 mV 1uM 62% 70%
20 mV 10 uM
60 mV 3uM 64% 71%
40 mV 10 uM
60 mV 0 uM 49% 56%
40 mV 1uM
20 mV 3 uM

https://doi.org/10.1371/journal.pcbi.1010315.t002
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For all obtained raw experimental data, the corresponding dwell-time sequences were con-
structed and further analyzed. The results of the signal classification by the use of k-NN and
shapelet learning methods are summarized in Table 2.

As one can see, the obtained accuracies indicate that the classification of data is non-ran-
dom which suggests that some specific features of the dwell-time sequences obtained at differ-
ent naringenin concentrations and voltages exist. (In case of randomness one should expect
the accuracy of 50% for two classes, and 33% for three classes.) In the majority of cases (over
60%), these features allow us to distinguish from each other the dwell-time subseries obtained
at different [Nar] and U,,,, regardless of the fact that the investigated signals exhibit comparable
Pops- Nevertheless, these individual features do not manifest themselves often enough to ensure
unambiguous discrimination of each dwell-time subseries corresponding to fixed [Nar] and
U,».. About 30% of analyzed data had not sufficiently different characteristics to distinguish
them from each other unequivocally. One can interpret that in terms of the existence of some
common predefined paths of conformational switching regardless of the type of activating
stimulus.

To further investigate the problem, we have also performed the ML classification for the
experimental data obtained at two different naringenin concentrations and fixed membrane
potential, and vice versa. The results are presented in Table 3. In the first case, the leading fac-
tor responsible for the increase of open state probability (Ap,, = 0.12) is administration of nar-
ingenin. Here, the compared groups of recordings were obtained at fixed membrane potential
U,, = 60 mV in absence of naringenin and when this modulator was introduced [Nar] = 10
#M. In the second case, one can observe a similar level of open state promotion (Ap,, = 0.11)
which was, in turn, related to the raising value of membrane potential (from 20 mV to 60 mV)
at fixed [Nar] = 10 uM. According to the results in Table 3, it is not clear what is the main fac-
tor (U,, or Nar) affecting efficiency of data classification. There are, however, differences
between the performance of separation algorithms for the data referring to the Nar- and volt-
age-activation. The k-NN results allow for reaching relatively high prediction accuracy for
channel activation by Nar coordination. It may suggest that naringenin-activation mostly
shapes the large-scale features of the channel gating. In turn, voltage-activation is supposed to
exert significant effects on local features of the mitoBK channel gating, according to the better
accuracy of the shapelet analysis.

To further inspect the problem of differences in accuracy of the shapelet classification of
signals recorded at different naringenin concentrations and membrane potentials, in Figs 3
and 4 we have presented those parts of the signal which were recognized as its most character-
istic parts (shapelets). The shapelets are drawn on the parts of the signal, for which the minimal
distance in the transformation space was found (Figs 3 and 4). As one can see in Fig 3, the sha-
pelets that discriminate best the extreme regimes of Nar concentrations refer to the dwell-time
sequences of relatively large internal variability. Whereas the shapelets corresponding to the
separation of data corresponding to different voltage-activation levels seem to describe the
entrance/exit path to/from long-lasting states via the relatively short-lasting ones (Fig 4).

Table 3. The prediction accuracies obtained with the k-NN and shapelet methods for the groups of experimental
data representing different types of channel activating stimuli (i.e. [Nar] and U,,).

U, [Nar] Accuracy k-NN Accuracy shapelet
60 mV 10 uM 76% 62%
60 mV 0 uM
60 mV 10 uM 66% 82%
20 mV 10 uM

https://doi.org/10.1371/journal.pcbi.1010315.t003

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010315  July 20, 2022 7/20


https://doi.org/10.1371/journal.pcbi.1010315.t003
https://doi.org/10.1371/journal.pcbi.1010315

PLOS COMPUTATIONAL BIOLOGY Naringenin- and voltage-activation of the mitoBK channel—A machine learning approach

1.0 dwell time

= shapelet s;
0.5
0.0
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= shapelet s,
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Fig 3. Two exemplary samples of dwell time series of length N = 50 obtained from the analysis of patch-clamp
recordings corresponding to [Nar] = 0 uM (upper figure) and [Nar] = 10 uM (lower figure) and the same mebrane
potential U,, = 60 mV. Both sequences are presented alongside with the shapelets sy, s, found by the machine learning
algorithm of length 20 which best match the shape of signal.

https://doi.org/10.1371/journal.pchi.1010315.g003

In Figs 5 and 6 there are presented relative distances between the points representing exper-
imental data obtained at different [Nar] and U, in shapelet-transform space. In Fig 5 one can
observe relatively high overlapping of points corresponding to [Nar] = 0 and [Nar] = 10 M.
In that case 38% of points overlap and consequently may be misclassified. The points corre-
sponding to the different U,,;s (U,, = 20mV and U,,, = 60mV) are relatively well separated
(only 18% of points overlap). Thus, one can infer that at a relatively short observation scale (of
the N, order of magnitude) the U, predefines the channel gating dynamics and leads to occur-
rence of the voltage-characteristic sequences of dwell-times. Whereas the Nar coordination
has only an accessory effect on the short-scale signal’s characteristics.

Discussion

The current study allows us to conclude that naringenin activates the mitoBK channels in a
voltage-dependent manner (Table 1) and its coordination may frequently exert an observable
specific effect on channel gating. The results presented in Table 1 and in the work of Kicinska
et al. [5] indicate shifting of voltage activation curve (p,,(U,,)) toward more negative potentials
in presence of naringenin. Moreover, Nar also promotes channel opening in a voltage-depen-
dent manner. Greater increments of p,,s for raising [Nar] are observed at highly depolarized
membranes (Table 1). It may suggest that voltage sensor activation and naringenin binding
can influence each other. An interesting question to understanding mitoBK channel function
is how the protein domains involved in sensing stimuli (U,,, Nar etc.) and the channel pore
opening communicate.

To address the molecular picture of this phenomenon, we have briefly inspected whether
there exists a possibility that the Nar-binding affects the position and/or orientation of the
voltage sensing domain of mitoBK channel. In that aim, we had to use “auxiliary” patch-clamp
recordings obtained at negative voltages (-40 < -60 mV) for which the p,,s were near to zero
(Pop <0.04), which were obtained at different naringenin concentrations. Then, we estimated
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Fig 4. Two exemplary samples of dwell time series of length N = 50 obtained from the analysis of patch-clamp recordings
corresponding to U, = 20 mV (upper figure) and U,,, = 60 mV (lower figure) and the same naringenin concentration [Nar] = 10
uM. Both sequences are presented alongside with the shapelets s;, s, found by the machine learning algorithm of length 20 which best
match the shape of signal.
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the apparent gating charge according to the formula [43]:

L, (U,)

U (1)

4.(U,) =
where k is Boltzmann constant, T denotes temperature. For all analyzed data the obtained val-
ues of apparent gating charge were comparable and reached g,(-50 mV) = 1.9g, regardless of
naringenin concentration. This result was in agreement with typical values for BK, so also for
mitoBK, channels [44]). It suggests no effect of Nar-coordination on the observable g.

Furthermore, to inspect the possible intra-sensors’ interactions we would like to refer to the
popular Markovian models of the channel gating [34-37] (Fig 1). According to these
approaches, the experimental dwell-time distributions may be used to estimate the minimal
number of substates that represent the kinetics of the investigated channels. Each substate of
the channel constitutes an exponential component to the distribution of open or closed inter-
val durations. In the case of our analysis, 2 open and 3 closed substates modeled the channel
gating regardless of the naringenin concentration and membrane potential. It is in agreement
with the reduced model systems describing the BK (and mitoBK) channel kinetics at fixed
external conditions found in literature [35]. The number of component exponentials is only a
rough estimation of the number of substates in the Markovian model that may represent the
stable channel conformations. Nevertheless, this kind of analysis allows us to gain a certain
depiction of the channel gating characteristics. It suggests that the mitoBK channel may exist
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Fig 5. The shapelet-transform representation of the input data describing mitoBK activity obtained at naringenin concentration
of [Nar] = 0 uM (purple dots) and [Nar] = 10 4 M (yellow dots) and the same membrane potential U, = 60 mV. Graph represents
the distances d(x, s;) and d(x, s,) of all dwell time samples included in the dataset to two representative shapelets presented in Fig 3
calculated according to Eq 3.

https://doi.org/10.1371/journal.pchi.1010315.g005

in a discrete number of conformational states that are in thermodynamic equilibrium in the
absence of naringenin. The presence of that modulator ought to merely shift the equilibrium
between the available stable conformations, selectively fostering the ones for which it displays
the highest affinity. What is important, it seems that the number of available channel confor-
mations does not change with Nar coordination.

The type of naringenin impact on channel’s behaviour is common for other ligands that
regulate BK/mitoBK channel gating and activation through an allosteric mechanism, as e.g.
divalent cations (Ca*", Mg“) or heme [20-23, 44-46]. The voltage sensor activation promotes
channel opening also allosterically [21]. What can be hypothesized about the voltage-sensor-
naringenin binding site communication? There is a diametrically opposed molecular mecha-
nism of the voltage activation and the naringenin coordination to the mitoBK’s channel gating
ring. Nevertheless, there exists an observable cooperation-effect between voltage sensor activa-
tion and naringenin binding that may enhance the tendency of the channel gate to open. Thus,
it is suspected that the communication between the VSD and Nar-binding site has also an allo-
steric nature.

An analogous type of interaction is anticipated in case of Ca** and Nar-binding sites,
according to the results obtained in [5]. In that work the effects of Nar coordination on chan-
nel gating were Ca>*-dependent. Namely, naringenin activeted the channel to a highest degree
in a low [Ca®'] regime. Thus, our investigations together with the other comprehensive struc-
tural and functional studies emphasize that the BK and mitoBK channels carry a variety of
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Fig 6. The shapelet-transform representation of the input data describing mitoBK activity obtained at membrane voltages U, = 20
mV (purple dots) and U, = 60 mV (yellow dots). Graph represents the distances d(x, s;) and d(x, s,) of all dwell time samples included
in the dataset to two representative shapelets presented in Fig 4 calculated according to Eq 3.
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allosteric modulatory sites in addition to the main categories of regulatory and biologically
active sites. The mentioned regulatory sites mediate nested hierarchies of allosteric regulations
which earn interest as the potential targets for drug design [47].

Going back to the main focus of this work, here we compared the effects of voltage- and
Nar activation on channel gating by means of ML. For over 60% of dwell-time sequences, dif-
ferent combinations of naringenin concentrations and membrane potentials used in experi-
ments affect the channel gating in such an unique way that allow for proper recognition of the
channel’s conformational diffusion at given [Nar] and U,,, (see Table 2). Still, however, for a
significant part of input data are indiscernible for ML classifications algorithms. These results
suggest the existence of a repetitive part of the channel gating dynamics for which the single-
channel signals have similar characteristics regardless of the type of channel-activating stimuli
that is responsible for reaching a certain level of the open state probability.

Comparing the execution effects of distance-based classification method (k-NN) and fre-
quency-based classification method (shapelet), the results shown in Tables 2 and 3 suggest that
the shapelet learning method exhibits better performance than k-NN in most cases. The possi-
ble explanation should refer to the fact that the shapelet analysis directly detects the similarity
between the representative subsequences (subshapes) within the signal. Colloquially speaking,
it goes into details of the signal’s structure complexity. During data classification, we analyzed
the dwell-time subseries of N = 50 elements. In turn, the shapelet length was set at N, = 10.
Thus, the shapelets refer to a relatively short sequence of events which are mostly distinctive
for a given group of data. In turn, the well-known drawback of the k-NN is that this method
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may perform poorly with noisy series as the ones we analyze in this work. Moreover, the k-NN
method refers to global signal characteristics, because it is calculated as Euclidean distance
between the compared subseries. The analyzed data can be considered as a record of switching
between the channel’s stable conformations that correspond to N = 50 subsequent open and
closed states. As mentioned before, in gating dynamics the number of channel’s conformations
and the number of possible interconnections between them are limited. In accordance with
our simple analysis of channel’s kinetics, voltage- and Nar-activation didn’t significantly influ-
ence the number of available channel’s conformations in the investigated regimes of U,,, and
[Nar]. Nevertheless, for each analyzed subseries the starting conformation, the energetic land-
scape for conformational space, and, finally, the exact path of conformational changes are
unknown. The analysis is even more complicated due to the fact that each conformation is
described by its own exponential dwell-time distribution. For this sake, the k-NN results are
highly biased with the aforementioned issues.

Referring to the results of the shapelet analysis presented in Table 3, Figs 5 and 6, they sug-
gest that on a relatively short observation scale the U,, is an activating factor that shapes the
internal structure of the signal in a more specific way. Increasing the value of U,, results in
occurrence of new voltage-characteristic sequences of channel’s dwell-times. Their occurrence
gives evidence on repetitivity of some characteristic series of popular channel conformations
of given average lifespans which are connected with each other at fixed U,,,. The effects of nar-
ingenin coordination seem to exert a minor effect on the gating dynamics on a short time
scale, due to the lower prediction accuracy of the shapelet classification for the dwell-time
series at [Nar] = 10 y M and in absence of this modulator (Table 3).

Conclusions

Artificial intelligence methods are still gaining popularity in the investigation of ion channels
activity. In this work we manifested the utility of the AI techniques in the analysis of patch-
clamp signals and evaluation of the relative effects of different stimuli on the channel gating. We
took the advantages of artificial intelligence (k-NN, shapelet learning) analysis to compare the
effects of membrane depolarization and the increase of Nar concentration on the temporal char-
acteristics of channel’s conformational dynamics. The obtained results suggest that both stimuli
affect the structural complexity of the analyzed signal. There exist stimulus-specific features of
the signal that allow distinguishing over 60% of analyzed dwell-time sequences obtained at dif-
terent U,,,s and [Nar]s. Our brief kinetic inspection allows us to hypothesize that membrane
depolarization and Nar-coordination does not lead to changes in the number of available chan-
nel conformations, but rather affects the energetic landscape of channel’s conformational space.
Thus, the statistics of the dwell-times of channel states can differ with U,,, and [Nar], as well as
the structure of the repetitive temporal patterns of switching between channel’s conformations.
On a short observation scale typical for the shapelet method, the dwell-time series of channel
states are predominantly shaped by the voltage sensor interactions with the channel gate and
there exist some U,,,-characteristic sequences of dwell-times. In this regard, only an additional
accessory effect is exerted by the Nar-binding site. Between the VSD and the Nar-coordination
site there exist long-range mutual interactions that are responsible for higher levels of Nar-acti-
vation at deeply depolarized membranes, which are anticipated to have an allosteric nature.

Materials and methods
Cell culture

In this study we used the commercially available stable human endothelial cell line EA.hy926,
that was originally derived from a human umbilical vein. The cell culture was carried out in
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Dulbecco’s modified Eagle’s medium (1000 mg/L D-glucose) supplemented with 10% fetal
bovine serum (FBS), 1% L-glutamine, 2% hypoxanthine- aminopterin- thymidine (HAT), 1%
penicillin/streptomycin in a humidified 5% CO, atmosphere, at 37 °C. The cells were reseeded
every third day. The presence of mitoBK channels in the inner mitochondrial membrane was
previously described in [48].

Mitochondria and mitoplast preparation

Mitochondria and subsequent mitoplast were prepared by differential centrifugation and
hypotonic swelling as previously described in [48, 49]. In brief, after isolation of mitochondria
from the endothelial cells, they were incubated in a hypotonic solution containing 5 mM
HEPES, 100 uM CaCl,, pH 7.2 for approximately 1 min. After that a hypertonic solution (750
mM KCI, 30 mM HEPES, and 100 uM CaCl,, pH 7.2) was subsequently added up to full resto-
ration of the isotonicity of the medium (n = 90). A fresh mitoplast was used for each/repeating
patch-clamp experiment.

Electrophysiology

Patch-clamp experiments were performed in single-channel mitoplast-attached mode at room
temperature, as described in [48, 49]. The pipette of borosilicate glass had a resistance of 10-20
QM (Harvard Apparatus GC150-10, Holliston, Massachusetts, USA). The patch-clamp pipette
solution was isotonic and contained 150 mM KCI, 10 mM HEPES, and 100 yuM CaCl, at pH
7.2. Naringenin was added as dilution in the isotonic solution via perfusion system as previ-
ously described in [5].

The current was recorded using a patch-clamp amplifier Axopatch 200B. The currents were
low-pass filtered at a corner frequency of 1 kHz. We used experimental time series of 20 sec-
onds recorded at sampling frequency 10 kHz. At each value of membrane potential and narin-
genin concentration, we recorded time series of single mitoBK channel currents using 3-7
independent mitoplast patches.

Kinetic analysis

For each patch-clamp recording the threshold current value I'ry is found using the algorithm
described in [31]. The Iy separates the currents corresponding to open (conducting) and
closed (non-conducting) channel states. Based on the relation between each recorded single-
channel current value and I'rx, the open state probability (p,,) is determined. After that the
dwell-time series of successive open and closed states is constructed as well as the correspond-
ing dwell-time distributions for each recording. The dwell-time series is a series of durations
of the subsequent open/closed channel states.

According to the popular picture of BK activity (so also appropriate for their mitoBK coun-
terparts) as a Markovian process [34-37], basing on the experimental dwell-time distributions
one may estimate the minimal number of states in Markovian model (Fig 1) that represents
the kinetics of the investigated channels. Assuming that each substate within open/ closed
manifold of channel states (e.g. states O; — O,, in Fig 1) constitutes an exponential component
to the distribution of open/closed state sojourns (f(t)), it takes the form:

f(o) = i:"exp<— f) (2)

i=1 i i

where N is a number of substates within a manifold of a given macrostate (open or closed), a;
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describes the fraction of the total area of the dwell-time distribution contributed by the i-th
exponential, 7; is the time constant of the i-th exponential.

The estimated number of substates (N) is in fact the minimal value, due to the fact that
some substates may not be detected because they have so close values of time constants to the
other ones that they overlap within the distribution. Nevertheless, calculation of the number of
summed exponentials and the corresponding parameters (areas a; and time scales 7;) allows us
to gain a certain depiction of the gating kinetics of the channel under investigation.

ML

Our investigation of different patch—clamp recordings involves the usage of machine learning
(ML) algorithms. Such methods turned out to be effective in the ion channel analysis. They are
able to identify ion channels and their types [33, 33], predict the ion channel conductance
based on cardiac action potential shapes [50], detect the single-molecule events [30] or classify
the ion channel currents corresponding to different cell lines [31].

In this study, we aim to verify the performance of ML methods used for the classification of
mitoBK channels obtained at various membrane potentials U,, and naringenin concentrations
[Nar].

Our first attempt of the data analysis consists of application of the standard k-NN (k-near-
est neighbors) technique with an euclidean distance metric (where k = 5). The choice of this
algorithm is motivated by its well-documented time-series classification efficiency [51-54].
Moreover, this method achieves excellent results in recognizing the mitoBK channels corre-
sponding to different cell lines basing on results obtained from the patch—clamp experiment
[31]. The k-NN classifier is also fast, easy to implement and does not need extensive parameter
tuning [55].

The general scheme illustrating classification process within the k-NN algorithm for one
data point consists of the following steps:

1. Selection of the number of neighbors k (which should be properly tuned as it gives balance
between over— and under- fitting)

2. Calculation of the euclidean distance between the new data point intended for classification
and the training samples

3. Choice of the k-nearest training points and assignment to the appropriate category by the
majority voting.

Although k-NN is fast and its application yields in many cases excellent accuracies it does
not give much insight into data. In the context of our study, it does not allow us to investigate
whether the analyzed ion channels’ activators exert a specific effects on the structure of dwell-
time sequences. In order to address this problem, we decided to apply the series shapelet
method [56] which has already been proved to be effective in the domain of medical and health
informatics [57-59].

The shapelets S are defined as subsequences of the time series 7 that are maximally repre-
sentative of a class. In general, to find such characteristic patterns in the time-series we would
have to consider all subseries of length I (I can be chosen arbitrarily) as potential candidates for
a shapelet S,. For a given candidate one calculates its distance to the whole series 7;, which is
defined as [56]:

=L

1
M;) = min TZ(ZJH—I - Sk‘l)Q' (3)
i1
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The metric M; defined in Eq 3 is simply interpreted as the euclidean distance of a shapelet S,
to its most similar segment in 7.

To significantly accelerate our computations, instead of searching for the optimal shapelets
among all candidates, we use the method proposed in [60]. This technique can be summarized
in two steps:

1. Start with the random shapelet
2. Learning the optimal shapelet by minimizing the classification loss function.

This method works as follow. Let us assume, for the sake of simplicity, only two classes of
the time series. Then, the corresponding labels can be either 0 for time subsequences belonging
to the first class or 1 for the samples attributed to the second class. The label for time sample i
is denoted asy;.

The prediction y, for sample i is calculated with the logistic regression model as:

J
Vi=b+ ZMi.ka7 (4)

j=t

where b;, Wy (called bias and weight) are free parameters of the model learnt in the process of
training and coefficients M; j are defined in Eq 4.

The parameters b;, Wy, and indirectly shapelets Sy are found through the minimization of
the loss function:

L(y,y) = —ylna(y) — (L —y)In(1 - a(y)) (5)

using the stochastic gradient descent algorithm (SGD). Further details of the implemented
algorithm can be found in [60].

Within the below-described approach, the number of shapelets n and their lengths / are
chosen arbitraily. We found that the optimal choice for our dataset is n = 10 and / = 20. Fur-
thermore, in order to minimize the loss function given in Eq 5 we decided to use Adam opti-
mizer with the learning rate Ir = 0.01 along with the L2 weight regularizer of value
0.001.

Before feeding the data into the ML algorithm (either k-NN or learning-shapelet method)
we preprocess it according to the procedure summarized in Fig 7. At the beginning each
dwell-time series (typically of length 700) is divided into the smaller, non-overlapping subse-
ries consisting of 50 points each. Afterwards, all subseries belonging to the same class are nor-
malized into the range [0, 1]. In the final step, such prepared samples are combined to create
the ultimate dataset.

In both cases, the performance of the ML algorithm is verified using the k-fold cross-valida-
tion technique, which allows us to avoid the over-fitting problem. Within this method, the ana-
lyzed dwell-time series are divided into the testing and training datasets in the random
manner. We split the data around 20%vs.80% between testing and training sets. This proce-
dure is repeated 10 times. In each iteration, the accuracy (Acc) of an algorithm is evaluated as
the ratio of the number of correctly predicted dwell-time series to all samples in a dataset. In
the case of binary classification we use the below-presented formula:

TP+ TN

A =
T IPYFP+ TN+ EN

-100%, (6)

where TP and TN denote the number of correctly identified samples in the first class (TP) and
in the second class (TN), whereas FP and FN stand for the misclassified subseries belonging to
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the first and second class, respectively. Note that, the extension of this formula to the three
groups classification problem is trivial.

The overall performance score is an average of the accuracy scores as calculated across 10
test folds.

Additionally, apart from classification, we use the learning—shapelet technique in order to
reduce the dimensionality of our samples and visualize them in the 2-dimensional space. For
this purpose, we calculate the distances d; and d, of each dwell-time subseries (according to
Eq 3) to two chosen shapelets s; and s, and treat these distances as the new coordinates in the
distance-transformed space. Note that, this procedure is applied only for the visualization pur-
poses and does not have any impact on the results presented in Tables 3 and 2.

All calculations concerning learning shapelet and k-NN methods were conducted with the
use of the tslearn and scikit-1learn Python libraries [61, 62].
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