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Abstract

Long-lived forest tree species experience a wide range of environmental conditions through-

out their lifespan. Evaluation of the underlying growth and development mechanisms of

these species is essential to predict tree growth under climate change. This study investi-

gated climate sensitivity to temperature, precipitation, dry periods, and the associated geno-

mic regions in Cryptomeria japonica, Japan’s most commercially important tree. We used

tree rings and common garden experiments with three clonal replicates planted in two con-

trasting environments in Kyushu (Kumamoto site) and Honshu (Chiba site), Japan. Tree

growth showed a significant negative correlation with the dry period (>4 days) in March of

the year of tree-ring formation at the Chiba site. In contrast, temperature and precipitation

had little influence on tree growth. Quantitative trait locus (QTL) analysis was performed to

investigate climate sensitivity to dry periods at the Chiba site, revealing 13 significant QTLs.

One QTL showed a substantially large contribution to the overall climate sensitivity,

accounting for 12.4% of the total phenotypic variation. The phenotypic variance explained

(PVE) by other QTLs ranged from 0.9% to 2.9%, and the total PVE by all QTLs was 35.6%.

These findings indicate that the tree population at the Chiba site could be vulnerable to

drought in early spring and that the QTL showing the greatest impact on climate sensitivity

may be closely related to genes associated with tolerance or adaptation to drought stress.

The QTLs identified in this study could be useful for molecular breeding, forest manage-

ment, and predicting the growth of C. japonica under a changing climate.

1. Introduction

Longed-lived forest tree species, with their limited dispersal ability, experience various envi-

ronmental changes throughout their lifespan. As extreme climatic events such as droughts and

heatwaves are expected to increase as a result of ongoing climate change [1], evaluating the

underlying genetic mechanisms that control growth and development of these species under

changing climatic conditions is essential to understand the local adaptation abilities of tree

species to predict tree growth, which is necessary for the effective forest management and

breeding programs [2,3].

PLOS ONE | https://doi.org/10.1371/journal.pone.0228278 January 28, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mori H, Yamashita K, Saiki S-T,

Matsumoto A, Ujino-Ihara T (2020) Climate

sensitivity of Cryptomeria japonica in two

contrasting environments: Perspectives from QTL

mapping. PLoS ONE 15(1): e0228278. https://doi.

org/10.1371/journal.pone.0228278

Editor: Filippos A. Aravanopoulos, Aristotle

University of Thessaloniki, GREECE

Received: October 3, 2019

Accepted: January 12, 2020

Published: January 28, 2020

Copyright: © 2020 Mori et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by the

Research Grant #201421 of the Forestry and Forest

Products Research Institute to AM. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-7496-5217
https://doi.org/10.1371/journal.pone.0228278
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228278&domain=pdf&date_stamp=2020-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228278&domain=pdf&date_stamp=2020-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228278&domain=pdf&date_stamp=2020-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228278&domain=pdf&date_stamp=2020-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228278&domain=pdf&date_stamp=2020-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228278&domain=pdf&date_stamp=2020-01-28
https://doi.org/10.1371/journal.pone.0228278
https://doi.org/10.1371/journal.pone.0228278
http://creativecommons.org/licenses/by/4.0/


The growth responses of tree species to climate changes have been evaluated by multiple

studies [4–6]. These studies often targeted tree species adapted to dry or extremely cold cli-

mates (e.g., Pinus, Larix), such as temperate and boreal forests, and successfully identified cli-

matic variables affecting tree growth. Although the number of studies conducted outside those

climatic regions is rapidly increasing [7–10], climate sensitivity of tree species adapted to

warm and humid climate remains relatively understudied, probably due to their weak growth

response to interannual climatic variation. However, the impacts of climate change (e.g.,

droughts and heatwaves) are expected to rapidly increase globally [1], and the negative impacts

of such events (e.g., seasonal drought; [2]) on tree species in humid climates are also likely to

increase. Evaluating the mechanisms underlying these species’ growth response to varying cli-

matic conditions changes is necessary to predict the impact of climate change in these forest

ecosystems.

Previously, empirical research of climatic factors was limited on tree growth and consisted

of dendrochronological studies, often using mature or old-growth trees to investigate the

impact of climate variation over a large time scale (>100 years; [11–13]). In contrast, short-

term climatic variation (e.g., decades) may also have a significant impact on tree growth, par-

ticularly during the initial growth phase (from seedlings to young trees; [14–17]). It is during

this initial stage of growth that trees exhibit the largest response to environmental conditions

[18]. Additionally, the initial growth of trees has been studied as an important trait in tree

breeding [19–21]. Evaluating climatic factors which affect initial tree growth is important not

only for the fundamental knowledge on growth response of tree species but also for forest

management and molecular breeding under changing climate.

Phenotypic traits such as wood growth and properties are influenced by environmental and

genetic factors [22]. Therefore, investigating the underlying genetic mechanisms of tree

growth response to climate change is essential to gain a comprehensive understanding of cli-

mate sensitivity of tree species [23]. In this context, genetic analyses such as quantitative trait

locus (QTL) mapping and association mapping have been conducted on many forest species

to identify important genome regions (QTLs) and genes that influence complex traits, primar-

ily growth (stem growth and bud phenology), wood properties (wood density and chemistry)

[24], and climate sensitivity (i.e., growth response to climate change; [17]). Identification of

the important genome region or genes in terms of climate sensitivity of tree species would be

useful for predicting the performance of genotypes under climate change (genomic selection;

[25,26]).

Cryptomeria japonica (sugi) is a wind-pollinated, allogamous, evergreen conifer species

[27]. Sugi is the most widely planted and commercialized tree in Japan, with its straight trunk

and soft wood, and it has many diverse uses, such as in house construction, ship building, and

pulp production [28]. Vegetative propagation of C. japonica is easily conducted by cutting

shoots, thereby allowing the replication of clones in common garden experiments across mul-

tiple environments. A large number of genetic markers have been developed for C. japonica
[29,30], which allows the identification of QTLs strongly associated with genes. These charac-

teristics make C. japonica suitable for the evaluation of QTLs associated with climate

sensitivity.

Several studies have evaluated genomic regions that affect the growth and wood properties

of C. japonica [30–32]. Long-term growth patterns of C. japonica have been evaluated using

tree rings [33,34] and other methods (e.g., dendrometer; [35,36]). However, few studies have

assessed the genetic mechanisms of growth patterns linked with climatic variability in C.

japonica. In this study, we aimed to evaluate the growth patterns during temporal variations in

temperature, precipitation, and dry period using tree rings (climate sensitivity traits; Housset

et al. 2018); we also attempted to identify the genomic regions (QTLs) influencing climate
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sensitivity in C. japonica using common garden experiments in two contrasting environments

in Japan.

2. Materials and methods

2.1. Plant material, common garden experiment, linkage map

The plant material, common garden experiment, and linkage map previously described by

[32] were used in this study. The C. japonica population used in this study comprised 139

genotypes, which were obtained from crossing between two F1 progenies: YI96 (female parent)

and YI38 (male parent). YI96 and YI38 were obtained by crossing local varieties in the Kyushu

region of Japan, ‘Yabukuguri’ × ‘Iwao’ and ‘Yabukuguri’ × ‘Kumotooshi’, respectively [37,38].

Common garden experiments were established for the 139 genotypes with three clonal repli-

cates in two different environments in Japan: the Chiba site (35˚20052.5500N, 140˚1047.9200E)

and the Kumamoto site (32˚41058.3600N, 130˚45017.6400E). Trees at both sites were planted in

2005 and were harvested for phenotypic measurement in 2015 (Kumamoto) and 2016 (Chiba).

The Kumamoto site in the Kyushu region represents the original climatic condition of the

mapping progeny, which was derived from crossing local varieties of this region. We used two

linkage maps based on 858 genetic markers (YI96: heterozygous; YI38: homozygous) to con-

struct the YI96 linkage map and 916 genetic markers (YI38: heterozygous; YI96: homozygous)

to construct the YI38 linkage map. Genetic markers with large numbers of missing values

(>1%) were excluded. The average distance between adjacent markers in the YI96 and YI38

maps was 1.47 and 1.56 cM, respectively.

2.2. Tree-ring data

Wooden boards with a width of approximately 4 cm were placed 80 cm above the ground

from the tree trunk of all trees in the sampled populations. All wooden boards included both

pit and bark and were used to acquire scanned images using a conventional scanner. For each

tree, two rectangular sections containing both pit and bark were selected from both sides of

the scanned image. The selected sections were then used to measure tree-ring width. We aver-

aged the width between two pairs of tree rings for each tree, which were then converted into

basal area increment (BAI) chronologies. To control for the effects of age- and size-related

growth, BAI chronologies were detrended using a modified Hugershoff model [39]. An auto-

regressive model (ar1) was used to reduce the temporal autocorrelation in the BAI chronolo-

gies, and the residuals were extracted (hereafter, relative BAI; S1 Fig). For each clone, Tukey’s

biweight robust mean was calculated to obtain annual averages of the relative BAI. The above

analyses were performed using R version 3.6.0 [40] using R packages “measuRing” [41] and

“dplR” [42].

2.3. Climate data

Climate data (i.e., temperature and precipitation) of the two study sites during the study period

were sourced from AMeDAS (Automated Meteorological Data Acquisition System of the

Japan Meteorological Agency; https://www.jma.go.jp/jma/en/Activities/amedas/amedas.html).

At the Chiba and Kumamoto sites, the mean annual temperature is 15.7˚C and 16.4˚C, respec-

tively, and the mean annual precipitation is 1614.6 mm and 2285.5 mm, respectively. Both

sites are characterized by contrasting climatic conditions in the growing season, particularly

precipitation patterns. For instance, Kumamoto receives on average 2.5-fold more rainfall

than Chiba during the growing season (May to August; [32]). We examined the effect of con-

tinuous dry (non-raining) days (hereafter, dry period) obtained from the precipitation data for
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each month (S2 Fig). The magnitude of drought stress on sampled populations can change

with the length of the dry period [i.e., short dry periods (<1 day) may have no effect on tree

growth]; thus, dry periods were accumulated for each month with varying thresholds, ranging

from 1 to 7 days. As setting a higher threshold of dry days produces a larger ratio of zero data

(i.e., raining days) per month, the largest threshold was set as 7 days to make the ratio of zero

data less than 50% (S3 Fig) to avoid inaccurate estimation of climate sensitivity (described

below). Climate data described above were linearly detrended prior to the analysis.

2.4. Climate sensitivity traits

Based on the methods of [17], climate sensitivity traits were obtained by calculating correlation

coefficients between climate data (i.e., temperature, precipitation, and dry period) and relative

BAI scores. Monthly temperature, precipitation, and dry period during the experimental years

were used for the climate sensitivity traits. Correlation coefficients were calculated for the

months starting from June of the year prior to tree-ring formation until September of the year

of tree-ring formation.

2.5. QTL analysis

For each study site, QTL analyses of climate sensitivity traits in the sampled population were

conducted using the Bayesian Lasso linear regression model:

y ¼ μI þ Xβþ e

where y is climate sensitivity traits, μ is the overall mean, I is the identity matrix, X is the geno-

type of each marker, β is the effect of the genetic marker on climate sensitivity traits, and e is

the error. Heterozygous and homozygous marker genotypes were converted to 0 and 1, respec-

tively. The Bayesian Lasso model computation was performed using the Empirical Bayesian

Lasso algorithm (EBlasso; [43]) with three-level hierarchical prior distribution (normal, expo-

nential, and gamma prior; [44]):

bi � Nð0; siÞ; ði ¼ 1; 2; . . . ; kÞ

s2

i � expðlÞ;

l � gammaða; bÞ

where k is the number of genetic markers and a and b are regularization parameters that

control the level of shrinkage of the marker effects (β) toward zero. The regularization

parameters were determined using five-fold cross validation. The EBlasso was conducted

using R package “EBglmnet” [44]. Genetic markers with non-zero effects and P< 0.01 were

considered as significant QTLs. The phenotypic variance explained (PVE) by i-th QTL was

estimated as PVEi ¼ b̂
2
i sxi

=sy, where b̂ is the estimated value of parameter β, σx is the vari-

ance of the marker genotype, and σy is the variance of climate sensitivity traits. PVE by all

QTLs was estimated as PVEall ¼ sŷ=sy, where sŷ is the variance of the estimated value of the

climate sensitivity traits, which is obtained from a multiple linear regression using significant

QTLs as explanatory variables [45]. The prediction accuracy of significant QTLs was tested

by correlating the observed and predicted values using five-fold cross validation. The results

of the QTL analysis were validated with composite interval mapping (CIM) using R package

“qtl” [46].
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3. Results

3.1. Climate sensitivity traits

Trees at the Chiba site exhibited a significant negative growth response to dry periods (with

threshold of 4 days) in March of the year of tree-ring formation (Figs 1 and 2). This significant

response to drought gradually decreased with larger thresholds (>5 days; Fig 1). On the other

hand, trees at the Kumamoto site did not exhibit a strong growth response to dry periods (Figs 1

and 2) despite the fact that the number of dry days in both sites was not significantly different

(S4 Fig). The maximum number of clones with significant correlations at the Kumamoto site

was 23, which was recorded in October of the year of tree-ring formation, whereas the maximum

number of clones with significant correlations at the Chiba site was 50, which was recorded in

March of the year of tree-ring formation as mentioned above (Fig 1). The growth response to

drought for the Chiba population at the site varied with the set threshold, whereas the corre-

sponding response at the Kumamoto site appeared to depend on the genotypes (Figs 1 and 2).

In contrast, growth response to monthly temperature and precipitation were relatively

weak for the mapping populations at both sites (S5 Fig). The maximum number of clones with

significant correlations was 23 and 25 for temperature and precipitation, respectively, which

were both found in July of the year prior to tree-ring formation at the Chiba site. Similar to the

climate sensitivity to drought, the tree population at the Kumamoto site showed varying

responses to temperature and precipitation, whereas the trees at the Chiba site showed positive

or negative responses to temperature and precipitation (S5 Fig).

Because a significant drought response was found at the Chiba site (Figs 1 and 2), we pro-

ceeded with QTL analyses on the climate sensitivity traits (with threshold of 4 days) in March

of the year of tree-ring formation at this site.

Fig 1. Climate sensitivity of growth to dry period at the two sites. Climate sensitivity in terms of significant correlation between growth and dry

period at Kumamoto (upper panels) and Chiba (lower panels) sites are shown with varying thresholds (from 1 to 7 days). Panel columns represent the

thresholds. Positive and negative correlations are shown with open and closed bars, respectively. Month with lower case represents the month of the

year prior to tree-ring formation (from June to December), whereas month with upper case represents the month of the year of tree-ring formation

(from January to September).

https://doi.org/10.1371/journal.pone.0228278.g001
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3.2. QTL analysis

QTL analysis on sensitivity to drought in March of the year of tree-ring formation for the

Chiba trees revealed 13 significant QTLs (Fig 3; Table 1). Of these, one QTL located in linkage

group 3 of the YI38 map had a significant effect compared with the remaining 12 QTLs (Figs 3

and 4; Table 1). The PVE of the strongest QTL was 12.4%, while that of other QTLs ranged

from 0.9% to 2.9%. The PVE by all QTLs combined was 35.9%. Climate sensitivity differed by

0.14 in average between the marker genotype of the strongest QTL (Fig 4). A significant posi-

tive correlation (r = 0.57, P< 0.001) was found between the observed and predicted values of

significant QTLs (S6 Fig). Identified QTLs were validated with CIM (S7 Fig); most were identi-

fied at similar positions in the linkage maps, and the logarithm of odds (LOD) score of the

QTL with the largest contribution was 11.9.

4. Discussion

4.1. Climate change sensitivity

The growth response at the Chiba site indicates that those trees have a high sensitivity to

drought stress during the early spring. This may be a result of the seasonal variation of gas

exchange in C. japonica: [47] reported that whole plant evaporation increased significantly

from March to April, possibly because this species requires a lot of water for gas exchange (i.e.,

photosynthesis) during early spring. High water demand during a dry period decreases the

plant’s water potential; the water deficit further causes dehydration and cavitation in leaf and

stem, resulting in cell turgor [48–50], which inhibits photosynthesis and metabolic activity

[51–53]. The response of C. japonica stem growth to water deficit was investigated previously

using irrigation experiments [54,55]. The negative growth response during dry periods in early

spring is also consistent with the seasonal growth patterns of C. japonica [35,36,56,57]; studies

Fig 2. Heatmaps of growth response to dry period with a threshold of 4 days. The climate sensitivity traits of mapping populations at the

Kumamoto (left panel) and Chiba (right panel) sites are shown as correlation coefficients between relative basal area increment and monthly

cumulative dry period with a threshold of 4 days. Open circles indicate significant correlations (P< 0.05). Month notation is the same as in Fig 1.

https://doi.org/10.1371/journal.pone.0228278.g002
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reported that the stem diameter growth of C. japonica occurred mostly between April and

June. [36] investigated the radial growth patterns of 16 C. japonica populations across Japan,

and reported that trees started to grow from April to May, peaking until around June, and

decreased to almost zero after June. This tendency was also reported in other studies

[35,56,57], indicating that our observations may reflect the seasonality of both growth patterns

and gas exchange traits related to water demand of C. japonica, suggesting that stem diameter

growth is probably influenced by water availability during early spring.

Fig 3. Effect and location of significant QTLs for drought sensitivity at the Chiba site. Panel columns represent linkage groups. Panel rows

represent two types of linkage maps based on the marker types (upper: YI96 map; lower: YI38 map). Short vertical lines at the bottom of each panel

represent marker positions.

https://doi.org/10.1371/journal.pone.0228278.g003

Table 1. List of significant QTLs identified for drought sensitivity at the Chiba site.

Marker name Linkage group Linkage map Position (cM) Beta PVEa (%)

m_1124 LG03 YI38 map 140.943 −0.171 12.4

m_1534 LG08 YI38 map 58.521 −0.083 2.9

m_1640 LG10 YI38 map 47.554 −0.080 2.7

m_0325 LG04 YI96 map 83.624 −0.076 2.5

m_1331 LG06 YI38 map 22.273 0.071 2.1

m_0149 LG02 YI96 map 105.401 −0.066 1.8

m_0708 LG10 YI96 map 0.000 −0.065 1.8

m_0788 LG10 YI96 map 104.723 0.061 1.6

m_1034 LG03 YI38 map 23.201 −0.060 1.5

m_1343 LG06 YI38 map 41.999 0.059 1.5

m_0031 LG01 YI96 map 33.557 0.054 1.2

m_0063 LG01 YI96 map 90.525 0.049 1.0

m_0817 LG11 YI96 map 18.205 0.046 0.9

a Phenotypic variance explained

https://doi.org/10.1371/journal.pone.0228278.t001
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On the other hand, the mapping populations at the Kumamoto site exhibited a significantly

lower growth response than populations at the Chiba site although there was no significant dif-

ference in dry period between the two sites. Furthermore, the mapping population at the

Chiba site tended to show either positive or negative growth in response to climatic factors,

whereas the growth response of the mapping population in Kumamoto site was both positive

and negative depending on the genotype. The differences observed at the two sites may be due

to their transfer from their original habitat to a different environment, which is known to neg-

atively impact tree growth (e.g., Abies sachalinensis, [58]; Pinus contorta, [59]). As mentioned

earlier, the tree populations in this study were derived from a local variety from the Kyushu

region, where the Kumamoto site is located. Indeed, decreased tree growth at the Chiba site

compared with that at the Kumamoto site was also previously reported [32]; the study found

that the mean stem diameter of trees at the Kumamoto site was larger than at the Chiba site

Fig 4. Difference in climate sensitivity between the marker genotype of the strongest QTL identified for drought sensitivity at

the Chiba site.

https://doi.org/10.1371/journal.pone.0228278.g004
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despite the Kumamoto trees being 1 year younger. This indicates that Kumamoto is more suit-

able for tree growth and is probably more robust to drought conditions than the Chiba site,

which may explain the contrasting growth patterns observed in our study. Another possible

explanation might be that there was a significant difference in precipitation between the two

sites during the growing season: the amount of rainfall from May to August was 2.5-fold higher

in Kumamoto than in Chiba. The Chiba population therefore experienced more drought stress

during the growing season than the Kumamoto population. This might have caused a delayed

effect of drought stress in early spring at the Chiba site [60,61], which partly explains the lack

of a significant growth response to drought at the Kumamoto site.

A relatively intense growth response to temperature and precipitation was found in July of

the year prior to tree-ring formation at the Chiba site; however, the sensitivity to temperature

and precipitation was relatively weak compared to sensitivity to drought conditions, as indi-

cated by the number of significant correlations (i.e., temperature: 23; precipitation: 25; and dry

period: 50). This indicates that climatic factors influencing the growth of C. japonica may be

difficult to identify using monthly temperature and precipitation data alone. The lack of sensi-

tivity to temperature can partially be explained by the wide distribution range of C. japonica,

which is widely adapted to various environments. Natural forests of this species range from the

Aomori prefecture (40˚420N, 140˚120E) to Yakushima Island (30˚150N, 130˚300E) [27,62]. As

the study sites were spread over a wide latitudinal range (within the species’ natural distribu-

tion range), the temporal variation in temperature observed may not sufficiently influence tree

growth. However, the observed lack of sensitivity to precipitation could be due to more

extreme climatic events, such as a large amount of rainfall during a short period (e.g.,

typhoons). Such climatic events can significantly increase monthly precipitation but have a

limited influence on water availability for tree growth. This indicates that water availability for

the growth of C. japonica cannot be fully explained by monthly precipitation alone and high-

lights the importance of using other indicators more likely to reflect water availability and its

influence on tree growth [63]. This may be particularly important for tree species adapted to

humid climates because such species’ climate sensitivity is often difficult to assess compared

with those adapted to drier habitat (e.g., Pinus, [5]; Larix, [4]).

4.2. Climate sensitivity QTLs

The QTL located in linkage group 3 in the YI38 map contributed significantly to the climate

sensitivity of C. japonica (PVE = 12.4%). The PVE magnitude of the QTL is considered to be

relatively high; in comparison, the generally reported effect of QTLs in other tree species is

often less than 5% (reviewed in [24]). The large contribution of this QTL to climate sensitivity

indicates that it plays a significant role in tree growth under drought conditions. Additionally,

this QTL could be closely related to genes associated with growth response to drought stress.

Key genes in drought tolerance and adaptation of plant model species (e.g., Arabidopsis thali-
ana, Populus) and other forest tree species (e.g., Pinus, Picea) have been reported in previous

research (reviewed in [64]), and further research with similar approaches on C. japonica is

essential to identify the same genes. Furthermore, identifying genes associated with drought

stress is of importance for future forest management as climate change is expected to increase

the frequency of extreme climatic events, such as drought and heatwaves [1].

Apart from the strongest QTL, there were a number of significant QTLs identified with a

relatively small contribution to overall climate sensitivity (<3%). This implies that drought

sensitivity in C. japonica is influenced by a number of genes, each with a different effect on the

overall climate sensitivity phenotype. This observation was consistent with the findings of pre-

vious QTL mapping studies on the growth traits of major tree species (e.g., Pinus taeda, [65];

Climate sensitivity of Cryptomeria japonica
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Eucalyptus globulus, [66]). These studies indicate that, similar to growth, climate sensitivity is

also influenced by many QTLs with relatively small effect sizes. It is important to note that the

contribution to climate sensitivity by all identified QTLs (35.9%) was almost three-fold larger

than the strongest QTL alone (12.4%), and the intermediate prediction accuracy was found

using identified QTLs (r = 0.57, P< 0.001). This indicates that the 13 QTLs identified in this

study might be useful in predicting the drought sensitivity of C. japonica. Likewise, using geno-

mic data to predict climate change sensitivity is important to inform future forest management

practices, particularly for long-lived forest tree species.

5. Conclusions

This study found that dry periods (longer than 4 days) strongly influenced the growth response

of C. japonica mapping population at the Chiba site. Moreover, we found one QTL with a large

contribution to overall climate sensitivity, possibly related to a key gene associated with growth

response to drought stress. In contrast, we did not find a significant growth response to drought

stress at the Kumamoto site, which was the original habitat of the mapping progenies. This indi-

cates that climate sensitivity of the study population is probably influenced by surrounding

environmental conditions, which highlights the need for further research on climate sensitivity

of C. japonica under various conditions. This includes research on life history stages, climate

(i.e., experiments covering wider geographical locations), and other environmental conditions

(e.g., soil conditions; [67]). The epigenetic effects on genotypes might also be important for the

growth response observed in the present study [68, 69]. Additionally, because our study was

conducted using local varieties from the Kyushu region, additional studies capturing wider

genetic variation (e.g., populations from natural forests) with different approaches—such as

genome-wide association study (GWAS)—are necessary to generalize the findings of this study.

It is also important to note that a further study using the mapping progenies derived from the

parents in different provenances (e.g. Honshu region), could provide significant insights into

the growth response of Cryptomeria japonica found in the present study. Furthermore, it is pos-

sible that the climate adaptation QTLs have been fixed in the Kyushu region, and were mono-

morphic in the mapping progenies. This could be tested by crossing C. japonica trees in and

outside the Kyushu region. Finally, it is important to note that, while heavy rainfall events (100

mm/day) are increasing, the number of rainfall days in Japan has decreased over the past 4

decades [70]. If this tendency continues in the future, the frequency of dry periods> 4 days

(which had significant influence on tree growth at the Chiba site) may also increase. Although

C. japonica is currently planted or naturally distributed in humid climates, the negative impact

of climate change on the growth of C. japonica via short-term droughts may become more

severe, which requires more research on the climate sensitivity of this species in the near future.
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8. Wils THG, Sass-Klaassen UGW, Eshetu Z, Bräuning A, Gebrekirstos A, Couralet C, et al. Dendrochro-

nology in the dry tropics: The Ethiopian case. Trees. 2010; 25: 345–354.

9. Pumijumnong N. Dendrochronology in Southeast Asia. Trees. 2012; 27: 343–358.
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