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Abstract: Primary ciliary dyskinesia (PCD), a disease caused by the malfunction of motile cilia, manifests
mainly with chronic recurrent respiratory infections. In men, PCD is also often associated with infertility
due to immotile sperm. Since causative mutations for PCD were identified in over 50 genes, the role
of these genes in sperm development should be investigated in order to understand the effect of PCD
mutations on male fertility. Previous studies showed that different dynein arm heavy chains are present
in respiratory cilia and sperm flagellum, which may partially explain the variable effects of mutations
on airways and fertility. Furthermore, recent studies showed that male reproductive tract motile cilia
may play an important part in sperm maturation and transport. In some PCD patients, extremely low
sperm counts were reported, which may be due to motile cilia dysfunction in the reproductive tract
rather than problems with sperm development. However, the exact roles of PCD genes in male fertility
require additional studies, as do the treatment options. In this review, we discuss the diagnostic and
treatment options for men with PCD based on the current knowledge.
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1. Introduction

Primary ciliary dyskinesia (PCD) is caused by mutations in the genes required for
motile axoneme formation and function. The axoneme is a microtubular structure consist-
ing of nine outer doublets and two central microtubules (Figure 1).

In motile cilia, the motor force for movement is generated by outer and inner dynein
arms (ODA and IDA, respectively), which are coordinated by the nexin-dynein regulatory
complex (N-DRC), radial spokes (RS), and the central pair (CP) microtubules. The N-DRC
complex also forms connections with other axonemal complexes within the ciliary unit and,
thus, likely plays a role of a main regulatory hub [2]. These structures are also present in
the sperm tail axoneme and are required for sperm motility and, therefore, for male fertility.
Recent studies have identified protein components of different axonemal structures and
preassembly factors [3–5], which can be considered as candidate genes for PCD and male
infertility. However, the structure of motile cilia and sperm tails are not identical. The most
obvious difference is the sperm tail length, which is 5–10 times longer than a cilium. A
sperm tail contains accessory structures in addition to the core axoneme (Figure 1) and
can be divided into three parts: the midpiece, principal piece, and end piece. Outer dense
fibers (ODFs) run along the midpiece and principal piece, supporting the long axoneme.
The principal piece contains the fibrous sheath and the midpiece contains mitochondria,
which produce energy for sperm motility [6]. The sperm tail axoneme is often disintegrated
when ODFs and the fibrous sheath are malformed [7–9]. The midpiece and principal
piece are separated by a diffusion barrier called the annulus (Figure 1). The sperm tail is
connected to the head through the head-tail coupling apparatus (HTCA), which is formed
by the modification of the centrosomes and the formation of supporting structures to
connect the tail to the implantation fossa of the nuclear membrane [10,11]. Furthermore,
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the axonemal protein complexes may differ in protein content between motile cilia types,
which was recently demonstrated by the identification of sperm tail specific dynein heavy
chains [12,13]. The different motility patterns of sperm tails and motile cilia likely originate
in part from the variable composition of axonemal structures [14,15]. More research is
required to establish the specific characteristics of the sperm axoneme.
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Figure 1. The conserved axonemal core structure is present in motile cilia and sperm flagella. The 
sperm tail can be divided into three parts: the midpiece, principal piece, and end piece. Outer dense 
fibers (ODFs) run along the mid and principal piece, and mitochondria (MS, mitochondrial sheath) 
surround the ODFs in the midpiece. In the principal piece, ODFs 3 and 8 are replaced by transfers 
ribs (TR) and form part of the fibrous sheath (FS). The annulus is a diffusion barrier between the 
midpiece and principal piece, and the sperm tail is connected to the head by the head-tail coupling 
apparatus (HTCA). The axoneme runs along the whole tail and appears ultrastructurally identical 
in the sperm flagellum and motile cilia, containing nine outer doublet microtubules (OD) and a 
central pair (CP). Radial spokes (RD) connect the ODs to the CP and nexin links connect the adjacent 
ODs. The head-tail coupling apparatus (HTCA) connects the sperm tail to the head and is formed 
by the centriole attachment to the nucleus. The annulus is a diffusion barrier between the midpiece 
and principal piece. The sperm illustration and TEM images are reproduced with the Creative Com-
mons CC by license [1]. 
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ure 1) and can be divided into three parts: the midpiece, principal piece, and end piece. 
Outer dense fibers (ODFs) run along the midpiece and principal piece, supporting the 
long axoneme. The principal piece contains the fibrous sheath and the midpiece contains 
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Figure 1. The conserved axonemal core structure is present in motile cilia and sperm flagella. The
sperm tail can be divided into three parts: the midpiece, principal piece, and end piece. Outer dense
fibers (ODFs) run along the mid and principal piece, and mitochondria (MS, mitochondrial sheath)
surround the ODFs in the midpiece. In the principal piece, ODFs 3 and 8 are replaced by transfers
ribs (TR) and form part of the fibrous sheath (FS). The annulus is a diffusion barrier between the
midpiece and principal piece, and the sperm tail is connected to the head by the head-tail coupling
apparatus (HTCA). The axoneme runs along the whole tail and appears ultrastructurally identical in
the sperm flagellum and motile cilia, containing nine outer doublet microtubules (OD) and a central
pair (CP). Radial spokes (RD) connect the ODs to the CP and nexin links connect the adjacent ODs.
The head-tail coupling apparatus (HTCA) connects the sperm tail to the head and is formed by the
centriole attachment to the nucleus. The annulus is a diffusion barrier between the midpiece and
principal piece. The sperm illustration and TEM images are reproduced with the Creative Commons
CC by license [1].

2. Role of PCD Genes in Male Fertility

Male infertility is often associated with PCD, but the pathogenic mechanisms linking
PCD mutations to defective sperm function are less well understood. Thus far, mutations in
approximately 50 genes have been identified as the cause of PCD, and the number of genes
has rapidly increased during recent years [16,17]. Most of the PCD genes are expressed
in the testis, although extremely low expression is detected for the multiciliogenesis gene
MCIDAS, the ODA genes DNAH5 and DNAH11, and the RS gene RSPH4A (Figure 2).
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development was recently reviewed by Shoemark and Harman [19] and Sironen et al. [20], 
respectively. The effects of RS/CP gene mutations on male fertility are poorly known. CP 
components HYDIN [1] and SPEF2 [21] cause male infertility and PCD. In addition, mu-
tations in SPEF2 result in a sperm-specific defect: multiple morphological abnormalities 
of the sperm flagella (MMAF) [22,23]. Other CP components associated with MMAF are 
AK7, ARMC2, and CFAP69 [24–27]. For AK7 (adenylate kinase 7), an association with 
PCD has also been suggested [28,29]. Male infertility was likewise reported for mutations 
in the RS genes RSPH1, RSPH3, and RSPH9 [30–32], but, as suggested by low expression 
in the testis (Figure 2), RSPH4A does not seem to be required for fertile sperm production. 
This assumption is also supported by the fact that all reported PCD patients are fertile 
[31], although reported patient numbers are very low for all RS genes (number of patients 
1−3). A candidate compensating gene for RSPH4A in the testis is RSPH6A, which is pre-
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dynein arm preassembly genes are required for sperm motility and, therefore, mutations 
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Figure 2. PCD gene expression in the human testis. Variable expression of known PCD genes are detected in NGS data by
Fagerberg et al. [18]. RPKM reads per kilobase of transcript per million reads mapped.

PCD genes can be divided into different categories: multiciliogenesis, dynein arm
preassembly, ODA/IDA, RS/CP, and genes associated with nexin links and microtubular
organization. Current knowledge on the roles of these genes in motile cilia and sperm
development was recently reviewed by Shoemark and Harman [19] and Sironen et al. [20],
respectively. The effects of RS/CP gene mutations on male fertility are poorly known.
CP components HYDIN [1] and SPEF2 [21] cause male infertility and PCD. In addition,
mutations in SPEF2 result in a sperm-specific defect: multiple morphological abnormalities
of the sperm flagella (MMAF) [22,23]. Other CP components associated with MMAF
are AK7, ARMC2, and CFAP69 [24–27]. For AK7 (adenylate kinase 7), an association
with PCD has also been suggested [28,29]. Male infertility was likewise reported for
mutations in the RS genes RSPH1, RSPH3, and RSPH9 [30–32], but, as suggested by low
expression in the testis (Figure 2), RSPH4A does not seem to be required for fertile sperm
production. This assumption is also supported by the fact that all reported PCD patients
are fertile [31], although reported patient numbers are very low for all RS genes (number
of patients 1−3). A candidate compensating gene for RSPH4A in the testis is RSPH6A,
which is predominantly expressed in the testis [33]. Previous studies and expression data
suggest that dynein arm preassembly genes are required for sperm motility and, therefore,
mutations in these genes can be expected to cause male infertility (Figure 2, [34]), although
differences in assembly mechanisms exist. A lack of dynein arm preassembly factor TTC12
results in IDA and ODA loss in sperm flagellum, but only partial loss of IDA in motile
cilia [35]. This further supports the hypothesis of different dynein arm complexes in sperm
and motile cilia, which has been suggested by reported variable fertility in PCD patients
with mutations in genes coding for ODA [20,31,36,37].

2.1. Sperm Specific Dynein Heavy Chain Genes

Although the ultrastructures of motile cilia and sperm tail axoneme are similar, there
are differences in the protein content of the dynein arm components. Recent studies and
expression analysis (Figure 2) have shown that motile cilia dynein heavy chains DNAH5
and DNAH11 are not present in sperm, which suggests that mutations in these genes do not
cause male infertility [12,13,20]. However, cases of infertility have been reported for patients
with mutations in DNAH5 and DNAH11 [31,36,37]. Furthermore, mutations in DNAH1,
DNAH2, DNAH8, and DNAH17 have been shown to cause predominant male infertility,
although mild PCD symptoms may be present [13,38–49]. Interestingly, asthenospermia
without PCD symptoms was recently reported in two patients with DNAH9 mutations [50].
DNAH9 is a known PCD gene, which is required for distal ODA assembly in motile cilia and
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causes mild PCD symptoms [51,52]. The expression pattern of axonemal genes suggests cell
specific differences in protein complexes, which may explain the unique motility patterns
of motile cilia and sperm tails (Figure 2, [20]). However, these differences require additional
research to confirm the role of DNAH genes in male fertility.

2.2. Male Specific Motile Cilia

Male germ cells differentiate in the seminiferous tubules of the testes and are released
into the lumen of these tubules for transport to the epididymis. During this transit, sperm
are concentrated and matured before being stored in the cauda epididymis for subsequent
ejaculation. When sperm exit the testis, they first enter a series of thin ciliated tubules, the
efferent ductules (ED, Figure 3), which connect the rete testis to the epididymis.
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Figure 3. Sperm development and maturation. Male germ cells develop in seminiferous tubules of
the testis. After release into the lumen of the seminiferous tubules, sperm are transported through the
efferent ductules and epididymis and stored in the cauda epididymis. Efferent ductules contain motile
cilia, which were shown to be crucial for male fertility in mouse models [53]. Spc = spermatocyte,
Rs = round spermatid, Sc = Sertoli cell, Sp = spermatid.

The ED ciliated epithelial cells are thought to create a fluid turbulence that concentrates
sperm by promoting fluid absorption by neighboring non-ciliated cells [53,54]. Multicili-
ogenesis regulator knock-out (KO) mouse models have shown that ED cilia are required
for male fertility [53] since MCIDAS, CCNO and GEMC1 are not expressed in the testis
(cells are not multiciliated, Figure 2), but are in ED. Depletion of these genes in KO mice
resulted in lack of sperm in the epididymis (azoospermia) [53]. Fluid accumulation in
multiciliogenesis KOs caused back pressure to the seminiferous tubules and degeneration
of spermatogenesis [53]. The identified azoospermia phenotype in mice may be partially
caused by defects in sperm transport and degeneration of spermatogenesis. These results
suggest that genes may affect male fertility in PCD patients, although they are not required
for sperm development. The roles of ED cilia in PCD patients are not known, but, in
addition to sperm tail formation, it should be considered that the malfunction of ED cilia
may contribute to male infertility.
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3. Diagnosing Male Infertility in PCD Patients
3.1. Semen Quality Analysis

The overall prognosis of fertility in men with PCD has not been defined clearly;
however, a previous study indicated that 75% of couples affected by PCD in the male
partner were diagnosed as infertile [31]. Since there is a high chance of infertility in PCD
patients, this information should be included in patient counselling, particularly during
transition from pediatric care to adult clinics. Since there is not enough information about
the roles of different PCD genes in sperm production and maturation, sperm quality should
be analyzed prior to family planning. Semen analysis in fertility clinics, based on WHO
guidelines (WHO, 2010), provides the initial assessment of fertility. The analysis will
estimate the sperm concentration, motility, and morphology, which are used to classify the
sperm phenotype (Table 1). In PCD patients, low sperm counts, decreased motility, and/or
morphological abnormalities can be expected [20].

Table 1. Classification of sperm phenotypes.

Defect Sperm Phenotype

Normozoospermia Normal ejaculate and semen parameters
Azoospermia No sperm in the ejaculate

Oligozoospermia Sperm concentration <15 million/mL
Asthenozoospermia Sperm motility <40%
Teratozoospermia Normal morphology <4%

Oligoasthenozoospermia Sperm concentration <15 million/mL
Sperm motility <40%

Oligoteratozoospermia Sperm concentration <15 million/mL
Normal morphology <4%

Asthenoteratozoospermia Sperm motility <40%
Normal morphology <4%

Oligoasthenoteratozoospermia Sperm concentration <15 million/mL
Sperm motility <40%

Normal morphology <4%

For sperm quality estimation, a sperm sample is produced after 72 h of ejaculation
avoidance. At the fertility clinic, medical history and information about any factors in-
fluencing fertility will be collected. Testicular size and hormonal levels are evaluated in
addition to sperm quality. Sperm quality estimates include sperm count, volume, head and
tail morphology, total and progressive motility, and pH. The correct pH, which is 7.2–7.8
according to the WHO, is important for sperm motility and capacitation [55]. Decreased
fertility can be expected if values are below normal (Table 2).

Table 2. Normal sperm quality parameters based on WHO guidelines.

WHO Reference Range

Total sperm count in ejaculate 39–928 million
Ejaculate volume 1.5–7.6 mL

Sperm concentration 15–259 million per mL
Total motility (progressive and

non-progressive) 40–81 percent

Progressive motility 32–75 percent
Sperm morphology 4–48 percent

In the case of reduced fertility, assisted reproductive technology (ART) can be consid-
ered based on sperm quality analysis. Although semen microscopic analysis is the first
stage of diagnosis, molecular testing is needed to more precisely evaluate the sperm quality,
especially prior to ART.
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3.2. Sperm Viability

Semen analysis provides a general view of the sperm quality, but in the case of
immotile sperm in PCD patients, it is also important to assess the sperm viability prior
to the use of ART. Fertilization rates using immotile sperm are significantly lower than
with motile sperm, underlining the importance of identification of good-quality sperm [56].
Use of immotile or malformed sperm for fertilization may increase the likelihood of
selecting nonviable sperm as has also been suggested by sperm viability and fertilization
studies in PCD patients [57,58]. The human sperm viability can be analyzed using various
methods: chemical sperm activation, light microscopy including eosin staining, hypo-
osmotic swelling test (HOST), Sybr-14/propidium iodide assay, sperm tail flexibility test
(STFT), and laser-assisted immotile sperm selection (LAISS). The methods assess the plasma
membrane integrity, which also plays an important role in sperm capacitation, acrosome
reaction, hypermotility, and sperm fusion with the oocyte.

HOST: sperm is placed in a hypo-osmotic medium, where viable sperm tails curve
or swell. These spermatozoa can be selected for fertilization and washed to regain their
normal shape. HOST was shown to increase fertilization rates from 30% to 44% in fresh
testicular sperm and from 26% to 43% in frozen testicular sperm [59]. The method has
also been successfully employed in PCD patients, with several successful pregnancies
resulting [57,60–62]. The limitations with HOST are the high false positive rate and that it
is not suitable for cryopreserved and processed ejaculated sperm.

Sperm activation: chemical sperm activation can be induced by pentoxifylline or
theophylline and responsive sperm selected for use in ART. The pentoxifylline treatment
was shown to be significantly more effective than HOST for identification of spermatozoa
in terms of fertilization (62% vs. 41%) and clinical pregnancy rates (32% vs. 16% [63]). PCD
sperm is often unresponsive to chemical activation, but pentoxifylline was successfully used
to activate ejaculated spermatozoa prior to fertilization, resulting in viable pregnancy [64].
However, the use of sperm activation is limited in PCD sperm and the safety of the chemical
compounds should be considered.

STFT: the sperm tail flexibility test is based on a simple principal that the viable sperm
tail can be bent by a mechanical force. STFT can be very reliable and similar fertilization
rates with testicular immotile or motile sperm (66% vs. 74% frozen and 73% vs. 64% fresh,
respectively), and comparable pregnancy and healthy baby rates were reported [65]. STFT
is safe for the developing embryo, as there are no additives, and it is simple and quick
to perform, although it requires highly experienced personnel. This method has been
successfully used in PCD patients [66].

LAISS: in laser-assisted immotile sperm selection, a single laser shot is directed to the
tip of the flagellum, which causes curling or coiling of the tail in viable sperm. Identification
of viable testicular spermatozoa was shown to be comparable to that of the HOS test, and
LAISS was also successfully used for selection of cryopreserved immotile sperm [67]. The
fertilization rate increased significantly from 20% in the randomly selected testicular sperm
group, to 45% in the laser selection group; accordingly, the take home baby rate increased
from 6% to 19%. The method is quick, easy, repeatable, and safe, but it requires expensive
instruments and experienced personnel [60]. LAISS has also been used successfully in PCD
patients [68,69]. One study resulted in a healthy baby by LAISS-selected sperm after three
unsuccessful treatment cycles, indicating the usefulness of the method in treating male
infertility in PCD [69].

Based on the current knowledge, LAISS appears to be the most simple, safe, and
reliable method of choice for viable sperm selection. The HOS test and sperm activation
require the use of added chemicals, which may influence the embryo development. HOST
and STFT are limited in selecting frozen, thawed spermatozoa, while STFT requires highly
experienced personnel. When LAISS was compared to the tail flexibility test, superior
reliability was concluded [60].

A high sperm DNA fragmentation rate is also strongly associated with low viabil-
ity [70] and correlates with poor semen parameters (reduced count, motility, and mor-
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phology) [71,72]. In oligoasthenospermic men, it was found that 35–70% of immotile
spermatozoa had poor DNA integrity in their nuclei [73]. More than 30% fragmentation
rate indicates difficulty in achieving a healthy pregnancy and a higher likelihood of failed
fertility treatment and miscarriage once pregnancy is achieved. Studies of DNA fragmen-
tation in a case of repeated failed intra-cytoplasmic sperm injection (ICSI) cycles in PCD
patients showed a high DNA damage rate (85%) as a possible cause of the ICSI failure [74].
The high presence of somatic cells in the ejaculate producing reactive oxygen species, may
have also contributed to single-strand DNA breaks in sperm [74]. Thus, analysis of DNA
fragmentation levels in PCD patients should be considered prior to ICSI to avoid unsuccess-
ful treatment cycles and to allow for treatment accordingly with, for example, antioxidant
treatment. The sperm chromatin structure assay, used to detect the DNA fragmentation
index (DFI), is a routine test to estimate sperm DNA damage. Recently, a simultaneous
detection of sperm membrane integrity and DNA fragmentation assay was tested using
flow cytometry and co-staining, consisting of acridine orange (AO) and LIVE/DEAD™
fixable blue dead cell stain [75], to estimate sperm quality prior to selection for ART. In the
case of high DNA fragmentation, testicular sperm can be selected for ICSI.

4. Treating Male Infertility in PCD

Diagnostic semen analysis gives insights to the likely chance of a couple conceiving
naturally or by ART. In the case of subfertility or the minor decrease in normal sperm
parameters, the environmental factors should also be considered in counselling patients.
Observational studies have suggested that smoking, drug use, obesity, alcohol, stress, and
medication are associated with poor sperm quality in men [76]. Thus, the risk factors for
poor sperm quality should be eliminated prior to any other treatment considerations.

In PCD, sperm motility is often dramatically decreased and therefore ART is often
required for fertilization. In vitro fertilization (IVF) or ICSI can be offered to the couple
when sperm count or motility is low, but viable sperm is present in the ejaculate. ICSI is
the method of choice for immotile sperm. However, poor quality samples have a reduced
success rate in ICSI and therefore sperm should be carefully selected [77,78]. An increased
number of sperm with poor morphology does not seem to reduce IVF or ICSI success [79],
but when only abnormal sperm are present, ICSI success is decreased [80]. Normally,
sperm motility is a good predictive estimate for IVF/ICSI success [78]; unfortunately, many
PCD patients have totally immotile sperm. Therefore, evaluation of sperm viability is
crucial for sperm selection in PCD patients. This is also important for selection against
sperm DNA fragmentation and chromosomal errors, since poor quality sperm can lead to
low pregnancy rates and aneuploid embryos [81].

In the case of azoospermia (a complete lack of sperm in the ejaculate), testicular sperm
can be retrieved for the female partner to be used during ICSI. In men with PCD, azoosper-
mia is rare [82–84], but low sperm counts (oligospermia) are often reported [57,69,74,85,86].
Sperm can be retrieved by testicular sperm aspiration (TESA), which involves aspiration of
testicular tissue using needles or by surgical procedures, conventional testicular sperm ex-
traction (cTESE), and microdissection testicular sperm extraction (mTESE). In mTESE, light
microscopy is used to identify engorged seminiferous tubules, which are then dissected and
inspected intraoperatively for any sperm [87]. This method is superior for the identification
of viable sperm when compared to TESA and cTESE. Successful sperm retrieval has been
reported in 17–45% of cTESE cases and in 45–63% of mTESE cases [88,89]. The use of
testicular sperm can also be an option when the sperm viability is low in ejaculated sperm.

The treatment pathway should be decided for each patient based on the outcome of
the semen analysis (Figure 4).
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In the case that good quality viable sperm can be detected in the ejaculate, the selected
viable sperm can be successfully used for ICSI. However, low sperm quality or count in
ejaculated sperm decreases the fertilization success, and testicular sperm retrieval could be
recommended (Figure 4). In all cases, patients should be informed about the possibility to pass
on the PCD mutations to the next generation and the risks involved in any treatment techniques.

5. Success of ART in PCD Patients

The success rate of ICSI varies greatly in couples affected by PCD in the male partner.
One important factor seems to be sperm viability, which can be affected by the transition
time through the epididymis. As described before, motile cilia may play an important role
in sperm transit through the efferent ductules to the epididymis. If this process is affected,
sperm viability can decrease. Increased transport time may result in fragile sperm DNA,
and hampered pronucleus formation in aged spermatozoa [58]. Furthermore, the type of
ultrastructural defects may influence the rate of ICSI success as has been suggested by the
association of central pair defects with lower clinical pregnancy rate [91,92]. Mutations
affecting the centriolar function can prevent normal pro-nuclear development after fertiliza-
tion, since the sperm centrosome is required for this process [10,93]. Thus, the ICSI success
may depend on the mutated gene and its role in motile cilia and/or sperm flagellum.

Previous studies showed that patients with high sperm viability achieved reasonable
fertilization rates, but patients with low sperm viability benefitted from testicular sperm
retrieval [58]. Testicular sperm are generally very viable; sperm viability analysis showed
that the viability difference between ejaculated and testicular sperm can be <5% and 95%,
respectively [83,94]. These studies indicated that, in addition to severe oligospermia or
azoospermia patients, who do not have enough sperm for ICSI, PCD patients with low
sperm viability should consider testicular sperm extraction to improve treatment outcomes.

An early study evaluated the use of immotile ejaculated and testicular sperm in
ICSI treatment [95]. This study showed no difference between HOS or laser selection for
viable sperm, and the laser test was used for viable sperm selection for ICSI. The viability
test improved fertilization success from 49 to 64% in ejaculated sperm and from 20 to
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45% in testicular sperm. Live birth rates were 17 to 28% and 6 to 19% in ejaculated and
testicular sperm, respectively. In PCD patients, fertilization and pregnancy rates ranging
from 55 to 65% and from 35 to 45% in ejaculated and testicular sperm, respectively, were
reported [90]. The overall live birth rate was estimated at 39%. Slightly better results with
ejaculated sperm were reported more recently: a fertilization rate of 69% and a clinical
pregnancy rate of 67% [66]. Similar estimates were reported for MMAF patients: 63–68%,
54–57%, and 43% for fertilization, pregnancy, and live birth rates, respectively [66,96].
Successful clinical pregnancies by various methods have been reported for couples with
male partner PCD [57,61,62,83–86,97–101] and for some known PCD genes [50,66,102–104],
as summarized in Table 3.

Table 3. Reported ICSI treatments and outcomes in PCD patients.

Gene ICSI Result Sperm Origin Reported Sperm
Phenotype Viability % Sperm Count Reference

- live birth ejaculated sperm immotile 90 normal [97]

- live birth ejaculated sperm,
swim-up 25% motility nd normal [98]

- live birth testicular sperm azoospermia nd 0 [83]
- live birth testicular sperm immotile <5% low (4.8) [83]

- live birth testicular sperm immotile, severe
oligospermia nd extremely low [57]

- pregnancy testicular sperm immotile >65 normal [57]
- live birth testicular sperm immotile, malformed nd normal [94]

- live birth viable ejaculated
sperm

immotile, dynein arm
defect 40 normal [61]

- live birth ejaculated sperm,
swim-up

0.3% motile, lack of
dynein arms 30 normal [99]

- no pregnancy viable ejaculated
and testicular

0.3% motile, 76.4% DNA
fragmentation 30 low (1.2) [74]

- live birth viable ejaculated
sperm

immotile, dynein arm
defect 54 low (0.9) [85]

- live birth testicular sperm azoospermia nd 0 [84]

- live birth viable ejaculated
sperm immotile nd normal [62]

- live birth testicular sperm immotile, malformed 20 low (10.1) [100]

- live birth viable ejaculated
sperm,

immotile, abnormal
morphology 32 low (1.8) [86]

- live birth viable ejaculated
sperm immotile 60–74 normal [101]

- no pregnancy viable ejaculated
sperm immotile 35–65 normal [101]

ZMYND10 healthy baby viable ejaculated
sperm

immotile, oligoas-
thenoteratozoospermia,

lack of dynein arms
54 low (2–9) [69]

CFAP74 healthy baby ejaculated sperm low motility (2%),
malformed nd normal [103]

DNAAF6 healthy baby viable ejaculated
sperm immotile nd low (5.2–11.2) [104]

DNAAF7 healthy baby viable ejaculated
sperm low motility (8.6%) nd low (3.5–8.7) [104]

SPAG6 healthy baby viable ejaculated
sperm immotile, malformed nd normal [66]

RSPH3 healthy baby viable ejaculated
sperm immotile, malformed nd normal [66]

DNAH9 clinical
pregnancy

motile ejaculated
sperm

very low motility
(0.3–0.8% motile) 75–82 normal [50]

LRRC6 clinical
pregnancy testicular sperm immotile, axoneme

defects 75 normal [102]

Live birth = no data about the health of the baby reported.
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Isolated studies with low numbers of patients have suggested improved methods,
such as ionophore application immediately after ICSI, in addition to viability and DNA
fragmentation tests [86]. Although recent developments in ART have dramatically im-
proved the prognosis of ICSI in male PCD patients, additional research is required to
understand the beneficial treatment options and improve the pipeline for PCD patient
fertility treatment.

6. Future Perspectives

PCD is a complex disease caused by mutations in a large number of genes. The genetic
background is not known in all cases, but ongoing research is characterizing novel genes
in PCD patients. As the effects of causative PCD mutations on male fertility have not been
systematically investigated, the first objective in future studies should be the comprehensive
analysis of the roles of PCD genes in spermatogenesis and sperm maturation and transport.
PCD mutations can influence the sperm tail formation by altering the axoneme structure
and function, as was shown for genes coding for dynein arm preassembly factors and
various structural proteins. These mutations often result in immotile and even malformed
sperm tails, which complicates the selection of viable sperm for ICSI. A simple and reliable
test to select sperm for ICSI is yet to come, and development of a standard pipeline for
fertility treatment of PCD patients should be a high priority.

In addition to sperm tail formation, PCD genes may affect male fertility through
efferent duct motile cilia. The importance of motile ED cilia was recently recognized, but
the role of this cilia type is not understood in PCD patients. Interestingly, fertility and
infertility was reported for genes not expressed during spermatogenesis in PCD patients.
Furthermore, azoospermia was detected in few PCD patients, indicating a problem in
sperm transport. It can be speculated that the variable sperm count in PCD patients is
due to the malfunction of male-specific motile cilia. The role of ED cilia, and causes of
variable fertility status, need to be studied in detail and may enable the development of
novel treatment options for patients. Since defects in cilia motility may influence sperm
transport and maturation, leading to quality issues, these processes should be understood
to improve male factor fertility.
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69. Ozkavukcu, S.; Celik-Ozenci, C.; Konuk, E.; Atabekoğlu, C.S. Live birth after Laser Assisted Viability Assessment (LAVA) to
detect pentoxifylline resistant ejaculated immotile spermatozoa during ICSI in a couple with male Kartagener’s syndrome. Reprod.
Biol. Endocrinol. 2018, 16, 10. [CrossRef]

70. Samplaski, M.K.; Dimitromanolakis, A.; Lo, K.C.; Grober, E.D.; Mullen, B.; Garbens, A.; Jarvi, K.A. The relationship between
sperm viability and DNA fragmentation rates. Reprod. Biol. Endocrinol. 2015, 13, 42. [CrossRef]

71. Aydos, O.S.; Yukselten, Y.; Kaplan, F.; Sunguroglu, A.; Aydos, K. Analysis of the correlation between sperm DNA integrity and
conventional semen parameters in infertile men. Turk. J. Urol. 2015, 41, 191–197. [CrossRef]

72. Belloc, S.; Benkhalifa, M.; Cohen-Bacrie, M.; Dalleac, A.; Amar, E.; Zini, A. Sperm deoxyribonucleic acid damage in normo-
zoospermic men is related to age and sperm progressive motility. Fertil. Steril. 2014, 101, 1588–1593. [CrossRef]

73. Derijck, A.A.; van der Heijden, G.W.; Ramos, L.; Giele, M.; Kremer, J.; Ade Boer, P. Motile human normozoospermic and
oligozoospermic semen samples show a difference in double-strand DNA break incidence. Hum. Reprod. 2007, 22, 2368–2376.
[CrossRef]

74. Nuñez, R.; López-Fernández, C.; Arroyo, F.; Caballero, P.; Gosalvez, J. Characterization of sperm DNA damage in Kartagener’s
syndrome with recurrent fertilization failure: Case revisited. Sex. Reprod. Healthc. 2010, 1, 73–75. [CrossRef]

75. Da Costa, R.; Redmann, K.; Schlatt, S. Simultaneous detection of sperm membrane integrity and DNA fragmentation by flow
cytometry: A novel and rapid tool for sperm analysis. Andrology 2021, 9, 1254–1263. [CrossRef] [PubMed]

http://doi.org/10.1242/dev.162628
http://doi.org/10.1073/pnas.1817018116
http://doi.org/10.1371/journal.pone.0132974
http://doi.org/10.1023/A:1020501305235
http://doi.org/10.1093/humrep/deg240
http://doi.org/10.1016/j.fertnstert.2010.07.1045
http://doi.org/10.1093/humrep/dei249
http://doi.org/10.1111/andr.286
http://doi.org/10.1007/s10815-008-9254-x
http://doi.org/10.1111/j.1439-0272.2011.01224.x
http://doi.org/10.1016/j.fertnstert.2010.10.007
http://doi.org/10.1007/s00404-008-0671-y
http://doi.org/10.1093/humrep/deh083
http://doi.org/10.1007/s10815-020-01721-w
http://doi.org/10.5653/cerm.2017.44.1.52
http://doi.org/10.1016/j.fertnstert.2007.06.012
http://doi.org/10.1186/s12958-018-0321-6
http://doi.org/10.1186/s12958-015-0035-y
http://doi.org/10.5152/tud.2015.98475
http://doi.org/10.1016/j.fertnstert.2014.02.006
http://doi.org/10.1093/humrep/dem166
http://doi.org/10.1016/j.srhc.2009.12.001
http://doi.org/10.1111/andr.13017
http://www.ncbi.nlm.nih.gov/pubmed/33830681


Diagnostics 2021, 11, 1550 14 of 15

76. Campagne, D.M. Can Male Fertility Be Improved Prior to Assisted Reproduction through The Control of Uncommonly Considered
Factors? Int. J. Fertil. Steril. 2013, 6, 214–223. [PubMed]

77. Loutradi, K.E.; Tarlatzis, B.C.; Goulis, D.G.; Zepiridis, L.; Pagou, T.; Chatziioannou, E.; Grimbizis, G.F.; Papadimas IBontis, I. The
effects of sperm quality on embryo development after intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2006, 23, 69–74.
[CrossRef] [PubMed]

78. Borges, E.; Setti, A.S.; Braga, D.P.A.F.; Figueira, R.C.S.; Iaconelli, A. Total motile sperm count has a superior predictive value over
the WHO 2010 cut-off values for the outcomes of intracytoplasmic sperm injection cycles. Andrology 2016, 4, 880–886. [CrossRef]

79. Hotaling, J.M.; Smith, J.F.; Rosen, M.; Muller, C.H.; Walsh, T.J. The relationship between isolated teratozoospermia and clinical
pregnancy after in vitro fertilization with or without intracytoplasmic sperm injection: A systematic review and meta-analysis.
Fertil. Steril. 2011, 95, 1141–1145. [CrossRef] [PubMed]

80. De Vos, A.; van De Velde, H.; Joris, H.; Verheyen, G.; Devroey, P.; van Steirteghem, A. Influence of individual sperm mor-phology
on fertilization, embryo morphology, and pregnancy outcome of intracytoplasmic sperm injection. Fertil. Steril. 2003, 79, 42–48.
[CrossRef]

81. Magli, M.C.; Gianaroli, L.; Ferraretti, A.P.; Gordts, S.; Fredericks, V.; Crippa, A. Paternal contribution to aneuploidy in pre-
implantation embryos. Reprod. Biomed. Online 2009, 18, 536–542. [CrossRef]

82. Munro, N.C.; Currie, D.C.; Lindsay, K.S.; Ryder, T.A.; Rutman, A.; Dewar, A.; Greenstone, M.A.; Hendry, W.F.; Cole, P.J. Fertility
in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax 1994, 49, 684–687. [CrossRef] [PubMed]

83. Cayan, S.; Conaghan, J.; Schriock, E.D.; Ryan, I.P.; Black, L.D.; Turek, P.J. Birth after intracytoplasmic sperm injection with use of
testicular sperm from men with Kartagener/immotile cilia syndrome. Fertil. Steril. 2001, 76, 612–614. [CrossRef]

84. Vicdan, K.; Akarsu, C.; Vicdan, A.; Sozen, E.; Buluc, B.; Biberoĝlu, K.; Ozogul, C. Birth of a healthy boy using fresh testicular
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