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Abstract

Identification of catalytic residues can help unveil interesting attributes of enzyme function
for various therapeutic and industrial applications. Based on their biochemical roles, the
number of catalytic residues and sequence lengths of enzymes vary. This article describes
a prediction approach (PINGU) for such a scenario. It uses models trained using physico-
chemical properties and evolutionary information of 650 non-redundant enzymes (2136 cat-
alytic residues) in a support vector machines architecture. Independent testing on 200 non-
redundant enzymes (683 catalytic residues) in predefined prediction settings, i.e., with non-
catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach
was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To
learn more about the discriminatory power of PINGU in real scenarios, where the prediction
challenge is variable and susceptible to high false positives, the best model from indepen-
dent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to
identify most catalytic residues and non-catalytic residues properly with 80% or above accu-
racy, sensitivity and specificity. The effect of false positives on precision was addressed in
this study by application of predicted ligand-binding residue information as a post-process-
ing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient
with 16% enhanced precision could be achieved. On account of its encouraging perfor-
mance, PINGU is hoped to have eventual applications in boosting enzyme engineering and
novel drug discovery.

Introduction

Enzymes play a key role in catalyzing biochemical reactions important for life. Their function
is governed by a small number of amino acids known as catalytic residues. By means of their
structure and chemical properties, these residues directly take part in the catalysis process,
determining to a certain extent, the chemical properties of the enzyme. Thus, gaining knowl-
edge of the catalytic residues can not only help unravel enzyme functions, but in the long run,
boost enzyme engineering and drug design applications [1, 2].
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Accurate identification of enzyme catalytic residues using experimental and computational
approaches has been widely attempted in biology. The computational approaches because of
their time and resource utilization advantages have gained impetus through the years. These
approaches fall broadly under similarity transfer based and ab initio or de novo methods [2].
The similarity transfer based methods identify putative catalytic residues in uncharacterized
sequences based on their homology with sequences whose catalytic residues are known. Thus,
they rely on templates, alignment and pattern matching for catalytic residue mapping. The ab
initio methods, on the other hand, predict catalytic residues by exploiting several general prop-
erties of enzyme catalytic residues which distinguish them from non-catalytic residues. These
methods are useful especially when the catalytic residues of enzymes in question are different
from the characterized enzyme catalytic residues to a large extent. By applying sequence and
structure information, various computational approaches have been reported over years for
developing knowledge bases [3-8], analyzing important biological properties [1,9-14] and cat-
alytic residue prediction [2,15-24]. However, there is ample scope of making these approaches
more robust and handy for the users.

This article presents an approach for achieving catalytic residue predictions with improved
precision by using physicochemical properties and evolutionary information from enzyme
sequences in a support vector machine architecture and post-processing. First, non-redundant
datasets with updated information from Catalytic Site Atlas 2.0 [8] were constructed for train-
ing and independent testing during the predictor development. Following this, using the polar-
ity index, position specific scoring matrix and sequence conservation information, features
were created and used as inputs in three classifiers, viz., L1-regularized logistic regression,
radial basis function networks and support vector machines. The best classification model was
selected upon ten-fold cross-validation and feature selection. This model was used for indepen-
dent testing and insights into the prediction performance of the developed classification model
were obtained. Predefined incrementally challenging prediction settings were used for this pur-
pose, where more than one non-catalytic residue per catalytic residue, were used. Study find-
ings showed the prediction to have above 80% accuracy, sensitivity and specificity,
encouraging its investigation in a more challenging and variable situation. Consequently, the
discriminative power of the developed predictor (PINGU: PredIcting eNzyme catalytic resi-
dues using sequence information) was tested in real scenario on diverse enzymes. The quality
of predictions so obtained were analyzed and scope of improvement upon using a post-
processing filter such as predicted ligand binding residue information was explored and found
to have an advantage in improving the precision. Based on the findings, this approach is sug-
gested to have use in precisely predicting catalytic residues with minimal resources for their
eventual applications in industry or medicines.

Materials and Methods
2.1. Datasets

For the construction of suitable training and independent test datasets, enzyme data for the
predictor development was collected from the datasets created by Dou et al. [20] and the Cata-
Iytic Site Atlas (CSA) 2.0 dataset (updated 14 November 2013)[8]. Using this data, information
of their experimentally determined structures available in the Protein Data Bank (PDB) [25]
was obtained from the website (http://www.rcsb.org/). A pool of sequence information based
on the ATOM record in these PDB structures was generated for the study. From this pool of
enzyme sequences, the sequence fragments with lengths less 60 amino acids were filtered out.
This will have ensured that the conclusions for various observations to be made in this study
would be generally applicable and based on adequate information. Additionally, to limit the
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possible scope of overestimation and for the inclusion of diversity, remaining enzyme
sequences were clustered. Clustering was performed using BLASTClust [26] into groups with
>30% intra-cluster pair-wise sequence identity over a 60% overlap on both sequences. A total
of 850 clusters were returned with 2819 catalytic residues and 312222 non-catalytic residues.
From this parent non-redundant dataset, 650 enzymes were randomly allocated into the train-
ing and 200 enzymes in the independent test dataset. The training dataset was named as
Dset650 and independent test dataset as Dtestset200 and employed in this study for predictor
development (Details S1 Dataset).

2.2. Features

After building the benchmark dataset, a set of informative features that was created and used to
develop the predictor in this study. It included representing the physicochemical property and
evolutionary information of amino acids using polarity index, position-specific scoring matrix
(PSSM) and sequence conservation score (EntWOP) as described in the following:

2.2.1. Polarity index. The diversity in physicochemical properties of the 20 naturally
occurring amino acids such as their polar nature can influence the specificity and diversity of
the protein structure and function. This is presented as features using an index known as Polar-
ity index [27]. It basically designates Factor I of the five factors obtained as a result of conduct-
ing multivariate statistical analyses of amino acids to solve the sequence metric problem.
Factor I is bipolar (large positive and negative factor coefficients). It reflects simultaneous co-
variation in portion of exposed residues versus buried residues, non-bonded energy versus free
energy, number of hydrogen bond donors, polarity versus non-polarity, and hydrophobicity
versus hydrophilicity. For the study, the polarity index with the following values for the 20 nat-
urally occurring amino acids was used: (A: -0.591, C: -1.343, D: 1.050, E: 1.357, F: -1.006, G:
-0.384, H: 0.336, I: -1.239, K: 1.831, L: -1.019, M: -0.663, N: 0.945, P: 0.189, Q: 0.931, R: 1.538,
S:-0.228, T: -0.032,V: -1.337, W: -0.595, Y: 0.260) [27].

2.2.2. PSSM and EntWOP. Evolutionary information of residues helps in developing a
deeper understanding of their conservation patterns and importance in protein functioning
[28, 29]. To include evolutionary information in this study, PSSM features were constructed
using PSI-BLAST [26], i.e., 20-dimensional Weighted Observed Percentages (WOP) vectors
were obtained for each residue. This vector for a given residue represents the log-likelihood of
the substitution of 20 amino acids at that sequence position. PSSM values (x) for each residue
is normalized by 1/(1+exp(-x)). Since the WOP vector for a given residue represents a fre-
quency distribution of 20 amino acids at that sequence position, EntWOP [16] was computed

using Shannon entropy: 221 —plog(p,), where p,=n,/ Zjil n,. EntWOP ranges between

0 (the most conserved; only one amino acid type has non-zero value at the corresponding posi-
tion in the WOP vector) and 2.996 (the least conserved; all 20 amino acids have the same non-
zero value in the WOP vector).

2.3. Feature Selection

F-score is a simple technique which measures the discrimination of two sets of real numbers
[30]. Given training vectors x, k = 1,. . .,m if the numbers of positive and negative instances are
n* and n”, respectively, then the F-score of the i feature is defined as:

(1)
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where %, X" %7 are the average of the i feature of the whole, positive, and negative data

sets, respectively; x\*) is the i"" feature of the k™ positive instance, and x_; is the i feature of
the k™ negative instance. The numerator indicates the discrimination between the positive and
negative sets, and the denominator indicates the one within each of the two sets. It is more
likely that with larger F-scores, the features are more discriminative. This score is used for fea-
ture selection in the study.

2.4. Classifier

Discrimination of catalytic residues from non-catalytic residues based on their encoded biolog-
ical properties was attempted using three classifiers in this study. The best model obtained was
suggested for use as a predictor. The three classifiers are described below:

2.4.1. Support vector machines (SVM). SVM is a supervised machine-learning tool based
on the structural risk minimization principle of statistics learning theory. It looks for an opti-
mal hyperplane which maximizes the distance between the hyperplane and the nearest samples
from each of the two classes. Mathematically, a training vector x; € R,,, and class values y; €
{-1,1},i=1,.. ,Nare used to solve the problems using the following equation:

Minimize(1/2)w" - w + CZ}Z1 ¢ (2)

Subject to y,(w'-x,+b)>1—¢ and £ >0 (3)

where w is the normal vector perpendicular to the hyperplane and ¢; are slake variables for per-
mitting misclassifications. Balancing the trade-off between the margin and the training error is
done using C (> 0), the penalty parameter [31]. The user can choose and optimize number of
parameters and kernels (e.g. linear, polynomial, radial basis function and sigmoidal) or any
user-defined kernel. In this study, radial basis function kernel was selected and models gener-
ated using SVMlight Version 6.02 package which is available at http://svmlight.joachims.org/.
2.4.2. L1-regularized logistic regression (LLR). LLR is a rapid classifier having innate fea-
ture ranking capacity making it advantageous for optimal selection of information from fea-
tures [20]. In this study, the L1-logreg classifier [32], an interior-point method for large-scale
solver for L1-regularized logistic regression problems, was used to develop the prediction
approach. The logistic model calculates the conditional probability of b € {-1, 1} given x € R,,,

P(blx) = exp(b(w'x +v)) /(1 + exp(b(w'x + v))) (4)

where x denotes a vector of feature variables and b denotes the associated binary outcome
(class). The model has parameters w € R, (the weight vector) and v € R (the intercept); wlx +
v = 0 defines the neutral hyper-plane in the data vector space.

The classifier locates the optimal model by maximizing the likelihood estimation from the
observed examples, i.e. minimizing the average logistic loss:

minimize (1/m)2::l log(1 + exp(—=b,(x/w+v))) + ;‘Z; |w,| (5)

where 4 > 0 is the regularization parameter, which is used to balance the average logistic loss
and the size of the weight vector. The software package of L1-logreg classifier available at
http://www.stanford.edu/~boyd/I1_logreg/, was used.

2.4.3. Radial Basis Function Network (RBF). RBF [33] is basically a class of single hidden
layer feed forward neural network. The input nodes pass the input to the hidden nodes directly
and the first layer connections are not weighted. In this study the QuickRBF package was used
to construct RBEN classifiers with all training data as centers.
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The general mathematical form of the output nodes in an RBF network is as follows:
k
g](x) = Zi:l Wji¢(||x = wll; o) (6)

gj(x) is the function corresponding to the ™" output node and is a linear combination of k radial
basis functions ¢() with center y; and bandwidth r; The value of r can be estimated with data-
driven methods. Also, wj; is the weight associated with the link between the j™ output node and
the i hidden node.

RBF networks exhibit the same properties as back-propagation networks such as generaliza-
tion ability and robustness, and additionally, have the additional advantage of fast learning and
ability to detect outliers during estimation. In this study, the RBF software package, quickRBF,
was used with a bandwidth = 5, available at http://www.csie.ntu.edu.tw/~yien/quickrbf/.

2.5. Performance assessment

The following six measures were calculated to assess the prediction performance, using counts
of true positives (TP; residues correctly predicted as catalytic), false positives (FP; residues
incorrectly predicted as catalytic), true negatives (TN; residues correctly predicted as non-cata-
lytic) and false negatives (FN; residues incorrectly predicted as non-catalytic).

Recall, or sensitivity, measures the proportion of the known catalytic residues that are cor-
rectly predicted as catalytic residues and is defined as TP/(TP+FN).

Precision measures the proportion of the residues predicted as catalytic that are known cata-
lytic residues and is defined as TP/(TP+FP).

Specificity measures the proportion of the known non-catalytic residues that are correctly
predicted as non-catalytic residues and is defined as TN/(TN+FP).

Accuracy is the proportion of the known residues that are correctly predicted in all predic-
tions and is defined as (TP+TN)/(TP+FN+TN+FP).

Matthew's Correlation Coefficient (MCC) indicates the degree of the correlation between
the actual and predicted classes of the residues. MCC values range between 1, where all the pre-
dictions are correct, and —1 where none are correct. MCC is defined as

((TP x TN) — (FP x FN))/\/((TP + FP) x (TP + EN) x (IN + FP) x (IN + EP)).

F-measure combines precision and recall into their harmonic mean, and is defined as 2 x
(Precision x Recall)/(Precision + Recall).

10-fold cross-validation (10CV): The performance of the models trained on Dset650 was
assessed using 10CV. The enzymes of training dataset were distributed into ten sets. One set of
enzymes was taken out of the ten sets and was used as test dataset, and the remaining sets were
used as training datasets. This process was repeated 10 times, and the final performance results
were averaged over all the test results. To find the best threshold that can optimally classify
each residue as catalytic or non-catalytic, predictions were made for each test data at a given
threshold and the averaged performance measures calculated over the 10 iterations. Best mod-
els were selected based on best F-measure which is the balance point of sensitivity and
specificity.

Results and Discussion

Non-redundant, updated and diverse set of enzymes were used for training and independent
testing using an optimally discriminative feature-classifier combination. The results obtained
were analyzed and applied in real scenario. Further scope of improvement was explored using
post-processing filtering.
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Fig 1. Number of catalytic residues per enzyme (chain) in the datasets used for training (Dset650) and
testing (Dtestset200).

doi:10.1371/journal.pone.0135122.g001

3.1. Diversity in enzymes

Representing the diversity in enzymes can help in generalizing the prediction approach. For
addressing the computational challenge of accurate catalytic residue prediction, variations
observed in enzymes such as in the number of catalytic residues per chain, type of constituting
amino acids, sequence length and non-catalytic residues to catalytic residues per chain (NnCS)
were analyzed. The number of catalytic residues occurring in an enzyme chain ranged from 1
to 23 in the Dset650 (total 2136) and 1 to 10 in the Dtestset200 (total 683), with most chains
containing less than 10 catalytic residues as can be seen in Fig 1. Further observations into the
amino acid composition of these residues in the datasets showed that there were representa-
tions of catalytic residues of different naturally occurring amino acid types. The amino acid dis-
tribution in groups of charged (HERKD), polar (QTSNCYW) and hydrophobic (GFLMAIPV)
was observed to be 61.6%, 28.6%, and 9.8% for Dataset650 and 62.1%, 26.21%, and 11.7% for
Dtestset200. The overall trend is shown in Fig 2, which is similar to amino acid distribution in
catalytic residues reported in previous study [1]. A view into the sequence lengths of enzymes
in the datasets shown in Fig 3 indicates that Dset650 comprises of enzymes with sequence
length as small as 67 amino acids (aa) to as large as 1520 aa. And, Dtestset200 comprises of

m Dset650 Dtestset200
18

16

__ 14

s 12

310

g

3.8

g o

i I I I
: I I

OI I - | Ol ! - ll
ACDEFGHI KLMNP RSTVWY

Fig 2. Type of amino acids constituting the catalytic residues of enzymes in Dset650 and Dtestset200.

doi:10.1371/journal.pone.0135122.g002
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Fig 3. Sequence lengths (humber of amino acids in a chain) of enzymes in Dset650 and Dtestset200.
doi:10.1371/journal.pone.0135122.g003

enzymes with sequence length as small as 62 aa to as large as 1023 aa. Therefore, the study was
inclusive of variety in enzyme sequence length as can be seen in Fig 3. These diverse sequence
lengths yielded vivid NnCS in datasets with Dset650 having NnCS ranging from over 14 to
1024 residues, with maximum number of enzymes having NnCS in between 80 and 100. In
Dtestset200, NnCS ranged from 16 to 848, with a maximum number of enzymes having NnCS
in between 80 and 100. This observation suggests the fact that enzyme data shows highly
skewed distribution of catalytic residues as also reported in earlier studies (Fig 4).

With this preliminary idea on the diversity in enzyme representation, their biological prop-
erties were encoded from sequences. These were then used as an input into various classifica-
tion models (described below) for obtaining the best possible catalytic residue prediction.

3.2. Developing classification models

Catalytic residues have salient physicochemical properties and evolutionary information that
discriminate them from non-catalytic residues. These properties were encoded from the
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Non-catalytic residues per catalytic residue per chain

Fig 4. Non-catalytic residues per catalytic residue in enzymes of Dset650 and Dtestset200.
doi:10.1371/journal.pone.0135122.g004
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Table 1. Ten-fold cross-validation results on training dataset Dset650.
Npcs ? Classifier® RC (%) PR (%) SP (%) AC (%) Mcc FM (%)
1 LLR 84.7 79.4 80.0 81.4 0.629 81.9
RBF 85.6 79.8 78.3 81.9 0.641 82.6
SVM 85.6 80.8 79.5 82.5 0.652 83.1
2 LLR 73.2 76.0 88.4 83.3 0.622 74.6
RBF 71.9 76.6 89.0 83.3 0.619 74.2
SVM 75.4 76.7 88.4 84.1 0.642 76.0
3 LLR 58.6 7.7 94.2 87.1 0.571 64.4
RBF 58.3 75.4 95.4 87.6 0.580 64.4
SVM 62.0 72.4 94.0 87.6 0.595 66.7
4 LLR 48.6 70.1 96.5 89.7 0.528 57.3
RBF 451 74.2 97.4 90.0 0.528 56.1
SVM 54.3 71.0 96.3 90.3 0.567 61.5

ANumber of non-catalytic residues per catalytic residue used while training.
PModels were developed using three classifiers (LLR: L1-regularized logistic regression; RBF: Radial basis function networks; SVM: Support vector
machines). Performance assessment parameters described in the main text, RC: Recall, PR: Precision, SP: Specificity, AC: Accuracy, MCC: Mathews

Correlation Coefficient, FM: F-measure.

doi:10.1371/journal.pone.0135122.t001

enzyme sequence as features of polarity index of amino acids; position specific scoring matrix
and entropy information were used for prediction using three classifiers SVM, LLR and RBF as
described in the Section 2.4. The so obtained prediction performance upon ten-fold cross vali-
dation of the classification models is shown in Table 1. Also shown, is the influence of using
imbalanced training on prediction. As can be seen from the table, the models trained with bal-
anced number of catalytic residues and non-catalytic residues show a MCC of 0.652 and F-
measure of 83.1% (SVM). This is better than the performance obtained using LLR and RBF.
The performance obtained using more than one number of non- catalytic residues per catalytic
residues (NnCS > 1) while learning showed a dip in sensitivity with greater NnCS values. Since
catalytic residues are very few among the many non-catalytic residues in the enzyme sequence,
it is essential to have as many of them predicted. Although many non-catalytic residues may be
falsely predicted along with them, a compromise at this stage in order to obtain better identifi-
cation of both the classes (i.e., the catalytic and non-catalytic residues) for obtaining a better
overall prediction performance would not be of much help to the end-user eventually. So, the
issue of false prediction whatsoever obtained in the prediction process, was addressed sepa-
rately. Thus, the best SVM models (training NnCS = 1 in a sliding window size = 15) were used
to discriminate between a catalytic-residue and non-catalytic residue in the independent test-
dataset.

But before independent testing, any possible scope of reducing the feature dimension by
including only the contributing features was explored. This was done by calculating the F-score
as described in Section 2.3. Results suggested that 200 features of the 330 were sufficient to
reach the optimal and best prediction performance in this study as shown in Fig 5. Of the 200
optimal features, 10 features were that of Polarity index, 175 of PSSM and 15 from EntWOP,
details shown in Table 2. Altogether they helped reach a peak performance, F-measure of
83.6% and MCC of 0.665. The model obtained upon feature selection was used for independent
testing as discussed in the next section.
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Fig 5. Selected number of features showing the best training performance on Dset650.

doi:10.1371/journal.pone.0135122.g005

3.3. Independent testing in predefined incrementally challenging

prediction settings

250
300
330

Prediction of one catalytic residue from one non-catalytic residue in enzymes of the indepen-

dent test dataset showed a Correlation Coefficient of 0.629 and an F-measure of 81.5%.

Encouraged by the discriminative performance, these models were posed with incrementally
challenging prediction scenarios. This was done by populating more numbers of non-catalytic
residues among the catalytic residues (NnCS) in the setting for identification. Results indicated

Table 2. Summary of the selected features for independent testing on Dtestset200.

Position in window?

Feature composition and frequency of occurrence

Polarity Index PSSM EntwOP Total
-7 0 5 1 6
-6 1 7 1 9
-5 1 13 1 15
-4 1 13 1 15
-3 1 14 1 16
-2 1 17 1 19
-1 1 14 1 16
0 1 20 1 22
+1 1 15 1 17
+2 0 16 1 17
+3 1 11 1 13
+4 0 8 1 9
+5 0 8 1 9
+6 0 7 1 8
+7 1 7 1 9
@position in window where i denotes the central residue, i+n/i-n (n ¢ [0, 1, 2, 3, 4, 5, 6]) indicate the residues shifted from i towards the C-/N terminus.
doi:10.1371/journal.pone.0135122.1002
PLOS ONE | DOI:10.1371/journal.pone.0135122 August 11,2015 9/15
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Table 3. PINGU prediction on Independent test-dataset Dtestset200.
Npcs? Performance assessment parametersb

RC (%) PR (%) SP (%) AC (%) McC FM (%)

81.9 81.2 81.0 81.5 0.629 81.5
6 81.9 40.1 79.6 79.9 0.473 53.8
12 81.9 26.3 80.9 81.0 0.392 39.8
18 81.9 20.1 81.9 81.9 0.347 32.3
24 81.9 15.9 81.9 81.9 0.309 26.6
30 81.9 13.4 82.1 82.1 0.285 23.0

#Number of non-catalytic residues per catalytic residue in the prediction scenario.
PPerformance assessment parameters described in the main text, RC: Recall, PR: Precision, SP: Specificity, AC: Accuracy, MCC: Mathews Correlation
Coefficient, FM: F-measure.

doi:10.1371/journal.pone.0135122.t003

that the developed models were able to identify most of the catalytic residues despite their
scanty occurrence in the entire sequence of amino acids. However, in addition to these true cat-
alytic residues, some non-catalytic residues were mistakenly identified as catalytic. This, could
also be noted in Table 3 as the decrease in precision from 81.2% (NnCS = 1) to 13.4%

(NnCS = 30). However, as described earlier, our interest in accurately identifying as many cata-
Iytic residues is achieved with an overall sensitivity (81.9%) throughout the increments in
NnCS. The specificity was also high (>80%) throughout, implying most non-catalytic residues
were also correctly identified. Balance assessment parameters of F-measure and MCC over the
varied NnCS are shown in Table 3. Based on the obtained promising results, the performance
of these models was explored in the real scenario (where all the catalytic residues and non-
catalytic residues of a chain were included) and is described next.

3.4. PINGU predictions in the real scenario

The best model obtained during the independent testing with (¢ = 50.0 and g = 0.08) was
named PINGU: PredIction of eNzyme catalytic residues usinG seqUence information. Its dis-
crimination power was tested on a pool of 60 enzymes with varied sequence lengths, number
of non-catalytic residues per catalytic residue and enzyme class information. Performance
assessment measures provided in Fig 6 show that PINGU on an average is 86.4% sensitive,
80.9% specific with a Correlation Coefficient of 0.203 and F-measure of 12.6%. The idea of hav-
ing most catalytic residues predicted is preserved (detailed performance results are shown in S1
Table). Upon analysis, it was observed that some of these residues occurred in the enzyme sub-
unit interface in homodimeric proteins with PDB ID 1BD0, 1DQR and 1Q6L (based on CSA
database [8] records). For residue prediction, one each of their chains was included in this
study and the residues that occurred on the subunit interface from the other chain were
mapped on it. Based on the prediction obtained for the said enzymes, of the residues occurring
on the subunit interface, the following were missed: IDQR_A position 388 (Histidine) and
1Q6L_B positions 68 (Alanine) and139 (Arginine), with numbering based on PDB [25]. Fur-
ther, whether the residues missed were solvent exposed (surface) or buried could provide an
interesting understanding of the trend in prediction by PINGU. This was also explored using
GETAREA web server available at http://curie.utmb.edu/getarea.html. It was found that nine
of the 60 protein chains (IAOP_A, 1BD3_A, 1BIB_A, IDJL_B, 1IDQR_A, 1F6D_A, 1G99_A,
1KEZ_B, 2TDT_A) have one of their catalytic residues exposed and five others (ICVR_A,
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1JHF_A, INSF_A, 1SES_B, 2A86_B) have two. PINGU was able to predict 15 out of 19 solvent
exposed catalytic residues from above-mentioned 14 protein chains. Details of the performance
of PINGU for these proteins are given in S1 Table. However, no specific bias or prediction
trend was observed with regard to residues present on the subunit interface or those occurring
on the surface of the enzymes. The false positives causing dip in predictor precision (Fig 7) is
addressed separately by application of predicted ligand-binding information. This is described
in the following.

tpr @ fpr
100

80
60
40

20N LTI T T

0
ACDEFGHIKLMNPQRSTVWY

Fig 7. Exploring preference of amino acids during PINGU predictions in real scenario. Abbreviations
tpr (Sensitivity): true positive rate; fpr (1—Specificity): false positive rate.

doi:10.1371/journal.pone.0135122.g007
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3.5. Post-processing filter

Biological functions are broadly inclusive of specific biochemical activities and therefore may
offer informative perspectives for relevant applications [2]. This idea is applied for investigat-
ing the scope of post-processing filtering [34] false PINGU predictions and enhancing its per-
formance further. As catalytic residues are also ligand-binding residues in a broader
perspective, predictions of a template-recognition based ligand binding site predictor, S-SITE
[35], was integrated with PINGU hoping to improve its precision. So, only those predictions of
PINGU that were also present in the set of predicted ligand binding residues obtained from
S-SITE, were taken into consideration as catalytic and the remaining was filtered out and
regarded as non-catalytic. Fig 6 shows the predictor performance before and after application
of this post-processing filter. On an average, without much compromise in sensitivity, specific-
ity or accuracy of the predictor, an overall improvement of 16% was observed in precision.
This reflected in the balanced performance assessment parameters also, where an achievement
of 20% rise in F-measure and 0.138 in MCC was marked (Details in S2 Table). The results of
this attempt suggest that application of post-processing filter such as the one used in this study
can be useful in obtaining accurate prediction of catalytic residues in real scenarios, with mini-
mal false positives, which has been a challenge in biology.

3.6. Case study

PINGU predictions were so far generalized for a pool of enzymes. An insight into its working
on an individual enzyme, 4-hydroxyproline betaine 2-epimerase [36], is provided here. The
enzyme reportedly takes part in multiple biochemical reactions resulting in different biologi-
cally relevant functions in the catabolic pathway depending upon osmotic stress. The residues
that directly take part in the catalytic activity, i.e., the catalytic residues, occur at position 163
(Lysine) and 265 (Lysine) in a sequence length of 367 residues. Prediction performance of
PINGU is shown in Fig 8. As can be noted, among 353 residues (residues analysed excluding
termini), the two catalytic residues were correctly predicted. Along with them, 52 non-catalytic
residues were also predicted as catalytic. So, on an average, for every catalytic residue experi-
mental validation for 26 other residues had to be done, if at all. To diminish the false positive
rate, predicted ligand binding residue information for this enzyme was used. Consequently, it
was observed that, of the 52 falsely predicted residues, 40 residues could be assigned as non-
catalytic and for every catalytic residue, only 6 other residues needed scanning or validation, if
at all, for experimental studies. These results suggest that PINGU with post-processing filtering
can boost enzyme applications further.

70
140
210

280

=

-
35

Fig 8. Prediction performance of PINGU on 4-hydroxyproline betaine 2-epimerase. The alphabets in upper case indicate PINGU predictions; alphabets
underlined are predicted ligand binding residues; and those highlighted are catalytic residues.

doi:10.1371/journal.pone.0135122.9008
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Conclusions

Accurate catalytic residues prediction has been a challenge because of their scanty occurrence
along the enzyme length. Computational approaches with several developments reported over
years could aid faster and accurate prediction of catalytic sites. But, unless the prediction is pre-
cise, experimental determination of the computationally identified putative catalytic residues
can get highly resource intensive. To optimize the precision of prediction, this study attempts
discrimination of catalytic residues with polarity index, PSSM and sequence conservation score
in a support vector machine architecture. Further, it suggests use of post-processing filter such
as ligand binding residue information for obtaining precise predictions which could be of help
to the end-users. The supporting information and software are available at http://dx.doi.org/
10.6084/m9.figshare.1492931. Overall, on account of its encouraging performance in predic-
tion scenarios, PINGU is hoped to have eventual applications in boosting enzyme engineering
and novel drug discovery process.
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