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“Perioperative goal-directed therapy” (PGDT) aims at an optimization of basic and 
advanced global hemodynamic variables to maintain adequate oxygen delivery to the 
end-organs. PGDT protocols help to titrate fluids, vasopressors, or inotropes to hemo-
dynamic target values. There is considerable evidence that PGDT can improve patient 
outcome in high-risk patients if both fluids and inotropes are administered to target 
hemodynamic variables reflecting blood flow. Despite this evidence, PGDT strategies 
aiming at an optimization of blood flow seem to be not well implemented in routine 
clinical care. The analysis of the arterial blood pressure waveform using invasive uncal-
ibrated pulse contour analysis can be used to assess hemodynamic variables used in 
PGDT protocols. Pulse contour analysis allows the assessment of stroke volume (SV)/
cardiac output (CO) and pulse pressure variation (PPV)/stroke volume variation (SVV) 
and thus helps to titrate fluids and vasoactive agents based on principles of “functional 
hemodynamic monitoring.” Pulse contour analysis-based PGDT treatment algorithms 
can be classified according to the hemodynamic variables they use as targets: PPV/SVV, 
SV/CO, or a combination of these variables. From a physiologic point of view, algorithms 
using both dynamic cardiac preload and blood flow variables as hemodynamic targets 
might be most effective in improving patient outcome. Future research should focus 
on the improvement of hemodynamic treatment algorithms and on the identification of 
patient subgroups in which PGDT based on uncalibrated pulse contour analysis can 
improve patient outcome.

Keywords: hemodynamic monitoring, cardiac output, stroke volume, pulse pressure variation, stroke volume 
variation, pulse wave analysis

BAcKGrOUND

“Perioperative goal-directed therapy” (PGDT), i.e., the assessment and goal-directed optimization 
of hemodynamic variables, might improve the quality of perioperative care and patient outcome. 
PGDT aims at an optimization of basic and advanced global hemodynamic variables to maintain 
adequate oxygen delivery to the end-organs. PGDT protocols help to titrate fluids, vasopressors, or 
inotropes to hemodynamic target values that can be assessed with different hemodynamic monitor-
ing technologies.
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The analysis of the arterial pressure waveform using uncali-
brated pulse contour analysis can be used to estimate stroke 
volume (SV), cardiac output (CO), and dynamic variables of 
cardiac preload [pulse pressure variation (PPV), stroke volume 
variation (SVV)].

In this article, we will describe the physiological background 
and the clinical application of PGDT using invasive uncalibrated 
pulse contour analysis for the assessment of hemodynamic 
values.

PGDt: A GAP BetWeeN eviDeNce AND 
cLiNicAL PrActice

Numerous randomized-controlled trials and meta-analyses dem-
onstrate that there is an increasing body of evidence that PGDT 
can contribute to an improvement in patient outcome (1–9) and 
guidelines and consensus statements recommend PGDT in major 
surgery patients (10–12).

A meta-analysis including 29 studies demonstrated that 
preemptive PGDT strategies targeting cardiac index (CI) or oxy-
gen delivery improve patient outcome in terms of mortality and 
postoperative complications in moderate- and high-risk surgical 
patients (1).

In accordance, a meta-analysis including 32 randomized-con-
trolled trials showed that protocol-based optimization of tissue 
perfusion in terms of optimization of hemodynamics decreases 
postoperative mortality and organ dysfunction in high-risk surgi-
cal patients, particularly when CI, oxygen delivery, and oxygen 
consumption are used to guide therapy (2).

Another meta-analysis confirmed that PGDT improves post-
operative mortality and morbidity in high-risk surgical patients 
undergoing major non-cardiac surgery when fluids and inotropes 
are used to achieve CI or oxygen delivery target values (3).

A Cochrane meta-analysis including 31 randomized-controlled 
trials concluded that a perioperative increase in global blood flow 
to explicitly defined goals with fluids and/or inotropes reduces 
complications and length of hospital stay, but not mortality, in adult 
patients (4). An updated version of this Cochrane meta-analysis 
included in the paper reporting the OPTIMISE trial (13) provided 
further evidence that PGDT increasing global blood flow to explic-
itly defined goals reduces postoperative complications.

Despite the evidence that PGDT can improve postoperative 
outcome in high-risk patients undergoing major surgery, PGDT 
strategies aiming at an optimization of blood flow seem to be 
not well implemented in routine perioperative care. This is 
reflected by the fact that there is a wide variation in clinical 
practice and that in only about 10–20% of major non-cardiac 
surgery patients CO monitoring is used during perioperative 
care (14). Moreover, it has been shown that, in general, CO 
monitoring is used only by about one-third of anesthesiologists 
in Europe and the United States (15). Suggested explanations for 
the fact that advanced hemodynamic monitoring is rarely used 
in perioperative care include a lack of experience or knowledge 
regarding monitoring technologies and local factors such as a 
lack of available technical equipment or problems with reim-
bursement (14).

iNvAsive UNcALiBrAteD PULse 
cONtOUr ANALYsis: BAsic 
MeAsUreMeNt PriNciPLes

One technique that can be used to assess hemodynamic variables 
for PGDT is invasive uncalibrated pulse contour analysis. The 
analysis of the arterial blood pressure waveform (pulse contour 
analysis) allows not only the monitoring of arterial blood pressure 
but also the estimation of SV, CO, and PPV/SVV (Figure 1). An 
arterial catheter is placed in most high-risk patients undergoing 
major surgery for invasive (“direct”) continuous arterial blood 
pressure monitoring and for point of care blood gas analysis. 
Therefore, pulse contour analysis can be used for PGDT without 
the need for the placement of additional intravascular catheters.

There are a variety of different algorithms for pulse contour 
analysis that enable SV to be estimated from the arterial blood 
pressure waveform (16, 17). These algorithms analyze the shape 
and characteristics of the waveform considering that the wave-
form is determined by left-ventricular SV and arterial impedance 
(i.e., ventriculo-arterial coupling). Other factors influencing 
pulse pressure and the arterial blood pressure waveform are the 
cardiac contractility, the vascular compliance, and the peripheral 
vascular resistance. Some hemodynamic monitors combine pulse 
contour analysis with a second CO measurement technique (e.g., 
transpulmonary thermodilution or lithium dilution) to calibrate 
the continuous pulse contour-derived CO signal to an independ-
ent external CO value (18). This external calibration increases 
the accuracy and precision of pulse contour-derived CO meas-
urements, but also increases the invasiveness of the monitoring 
technology and is, therefore, recommended in patients with 
rapid changes in vasomotor tone that require frequent recalibra-
tion (19, 20). In the perioperative setting, however, uncalibrated 
pulse contour analysis only requiring an arterial catheter can be 
used. The term uncalibrated pulse contour analysis is misleading, 
because even uncalibrated systems perform an “autocalibra-
tion” of the CO signal (using data from large patient databases, 
biometric data, or characteristics of the arterial blood pressure 
waveform) (18).

Besides the estimation of SV, pulse contour analysis allows 
the assessment of dynamic cardiac preload variables (PPV, SVV) 
that—based on heart-lung interactions during mechanical venti-
lation—can be used to predict fluid responsiveness (21).

Although pulse contour analysis can be easily used in patients 
with an arterial catheter, the method has several limitations that 
are crucial to know to avoid erroneous measurements. First, pulse 
contour analysis depends on an optimal arterial pressure signal. 
Therefore, to assure impeccable arterial blood pressure waveform 
recording, one has to meticulously avoid clotting of the arterial 
catheter, over- or underdamping of the tubing system, or incor-
rect zeroing of the pressure transducer and monitoring system. 
In addition, the clinical usefulness of pulse contour analysis is 
limited in patients with high-grade cardiac arrhythmias and rapid 
changes or profound abnormalities in vasomotor tone (e.g., in 
septic patients or patients with cardiocirculatory alterations due 
to advanced liver disease) (22). The use of PPV and SVV is limited 
to patients with sinus rhythm, mechanical ventilation, and tidal 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


FiGUre 1 | Perioperative goal-directed therapy based on uncalibrated pulse 
contour analysis. Hemodynamic monitoring with uncalibrated pulse contour 
analysis allows the assessment of mean arterial pressure (MAP), stroke 
volume (SV), cardiac output (CO), stroke volume variation (SVV), and pulse 
pressure variation (PPV). These hemodynamic variables can be used as 
hemodynamic “goals” in treatment algorithms that trigger therapeutic 
interventions (hemodynamic management).
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volumes ≥8 mL/kg predicted body weight. Of note, the capabili-
ties of PPV to predict fluid responsiveness are limited for PPV 
values between 9 and 13% (gray zone for the prediction of fluid 
responsiveness) (23).

HOW tO Use iNvAsive UNcALiBrAteD 
PULse cONtOUr ANALYsis FOr PGDt: 
PHYsiOLOGic BAcKGrOUND

The cardiac function curve (i.e., Frank–Starling curve) describes 
the relation of ventricular preload or left-ventricular end-diastolic 
pressure and SV. A left ventricle functioning on the steep part of 
the cardiac function curve will increase SV after an increase in 
cardiac preload (e.g., due to fluid administration). This state of 
“preload reserve” is clinically referred to as “fluid responsiveness,” 
i.e., an increase in blood flow following fluid administration. 
Because ventricular function is a major determinant of the shape 
of the cardiac function curve, fluid administration must be per-
formed cautiously to avoid fluid overload and circulatory failure, 
especially in patients with poor ventricular function in whom the 
heart is already working on the flat part of the curve.

Based on these basic physiologic principles, pulse contour 
analysis provides crucial hemodynamic variables reflecting fluid 
responsiveness (PPV, SSV) and blood flow (SV, CO) that can be 
used in PGDT protocols to titrate fluids and vasoactive agents 
based on principles of “functional hemodynamic monitoring” 
(24). Functional hemodynamic monitoring using pulse contour 
analysis can be used to predict fluid responsiveness using the 
dynamic cardiac preload variables PPV or SVV and to assess the 

dynamic response to fluid administration using real-time CO 
monitoring. The diagnostic passive leg raising test, that was pro-
posed to assess fluid responsiveness in critically ill patients (25), 
cannot be routinely performed intraoperatively and is usually 
not part of PGDT protocols. In addition to fluid therapy, pulse 
contour analysis enables vasopressors and inotropes to be titrated 
according to arterial blood pressure and SV/CO, respectively.

HOW tO Use iNvAsive UNcALiBrAteD 
PULse cONtOUr ANALYsis FOr PGDt: 
cLiNicAL APPLicAtiON

Invasive uncalibrated pulse contour analysis is frequently used 
for the assessment of hemodynamic variables within PGDT 
protocols (8, 9, 13, 26, 27). Numerous different algorithms for 
pulse contour analysis-based PGDT have been proposed.

These treatment algorithms can be classified according to the 
hemodynamic variables they use as targets: some algorithms are 
solely based on either dynamic cardiac preload variables (PPV, 
SVV) or blood flow variables (SV, CO/CI); other algorithms com-
bine these dynamic cardiac preload and blood flow variables (9).

The OPTIMISE trial is an example for a study using pulse 
contour analysis solely to optimize blood flow (13). In this largest 
available multicenter randomized-controlled trial, uncalibrated 
pulse contour analysis was used to maximize SV with repetitive 
colloidal fluid boluses (250 mL over 5 min) (13). Maximal SV was 
defined “as the absence of a sustained rise in SV of at least 10% 
sustained for 20 min or more in response to a fluid challenge” 
(13). After the first fluid bolus, patients in the treatment group 
also received inotropic support (dopexamine in a fixed dose) to 
achieve the maximal value of SV (13). In the OPTIMISE trial, 
PPV or SVV were not part of the treatment algorithm. In the 
study group, the composite endpoint of predefined moderate 
or severe postoperative complications and mortality at day 30 
after surgery occurred less frequently in the intervention group 
(36.6%) compared with the control group (43.4%), but this find-
ing did not reach statistical significance (13).

Compared with the approach of maximizing SV by using the 
full cardiac preload reserve, PGDT algorithms targeting both 
dynamic cardiac preload parameters and SV/CO may help to 
better tailor the hemodynamic management to the individual 
patient (28, 29).

In the ongoing follow-up study of the OPTIMISE trial 
(OPTIMISE II1), SVV is included in the hemodynamic manage-
ment protocol in addition to the SV target (fluid challenge not 
recommended if SVV is <5%).

In a multicenter randomized-controlled trial in major 
abdominal surgery patients, uncalibrated pulse contour analysis 
was used to define an optimal CI value after the induction of 
general anesthesia and before surgical incision (26). The post-
induction preload optimized CI value was defined as the CI 
value that was observed when the PPV was less than 10% (either 
spontaneously or after fluid administration) and was used to 

1 http://optimiseii.org.
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trigger inotropic therapy with dobutamine during the intraop-
erative period (26). The use of this algorithm combining targets 
for PPV, CI, and mean arterial pressure resulted in a clinically 
relevant and statistically significant reduction in postoperative 
complications compared with the control group treated without 
PGDT (26).

A recently started study on individualized PGDT in major 
abdominal surgery patients (iPEGASUS2) uses a similar treat-
ment algorithm, but a higher threshold for PPV (12%). The use 
of a higher PPV cutoff value [closer to the upper range of the 
“gray zone” (23)] represents a more restrictive approach to fluid 
administration.

cONcLUsiON

Perioperative goal-directed therapy protocols help to titrate 
fluids, vasopressors, or inotropes to predefined target values of 
hemodynamic variables in order to optimize global hemodynam-
ics and eventually maintain or restore adequate oxygen delivery 
to the end-organs.

There is considerable evidence that PGDT can improve 
patient outcome in high-risk patients if both fluids and inotropes 
are administered to target hemodynamic variables reflecting 
blood flow.

2 www.clinicaltrials.gov, identifier NCT03021525.

Despite this evidence, PGDT strategies aiming at an optimiza-
tion of blood flow seem to be not well implemented in routine 
clinical care.

The analysis of the arterial blood pressure waveform using 
invasive uncalibrated pulse contour analysis can be used to assess 
hemodynamic variables used in PGDT protocols. Pulse contour 
analysis allows the assessment of SV/CO and PPV/SVV and thus 
helps to titrate fluids and vasoactive agents based on principles of 
“functional hemodynamic monitoring.”

Pulse contour analysis-based PGDT treatment algorithms 
can be classified according to the hemodynamic variables they 
use as targets: PPV/SVV, SV/CO, or a combination of these 
variables. From a physiologic point of view, algorithms using 
both dynamic cardiac preload and blood flow variables as hemo-
dynamic targets might be most effective in improving patient 
outcome.

Future research should focus on the improvement of hemody-
namic treatment algorithms and on the identification of patient 
subgroups in which PGDT based on uncalibrated pulse contour 
analysis can improve patient outcome.
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