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Objective: We demonstrate and discuss the use of 
mobile electroencephalogram (EEG) for neuroergonom-
ics. Both technical state of the art as well as measures and 
cognitive concepts are systematically addressed.

Background: Modern work is increasingly char-
acterized by information processing. Therefore, the ex-
amination of mental states, mental load, or cognitive 
processing during work is becoming increasingly important 
for ergonomics.

Results: Mobile EEG allows to measure mental states 
and processes under real live conditions. It can be used for 
various research questions in cognitive neuroergonomics. 
Besides measures in the frequency domain that have a long 
tradition in the investigation of mental fatigue, task load, 
and task engagement, new approaches—like blink- evoked 
potentials—render event- related analyses of the EEG pos-
sible also during unrestricted behavior.

Conclusion: Mobile EEG has become a valuable tool 
for evaluating mental states and mental processes on a 
highly objective level during work. The main advantage of 
this technique is that working environments don’t have to 
be changed while systematically measuring brain functions 
at work. Moreover, the workflow is unaffected by such 
neuroergonomic approaches.

Keywords: mobile EEG, neuroergonomics, mental 
states, information processing

INTRODUCTION

The guiding principle of neuroergonomics 
is that understanding how the brain carries 
out the complex tasks of everyday life—

the research laboratory—can provide im-
-

search and practice. (Parasuraman, 2003)

Information processing is a central aspect of 
modern work life. In piloting, monitoring or any 
other task that requires the intake and process-
ing of (as well as adequate responses to) infor-

mental resources may lead to fatal accidents or 
mental strain that might end up in stress- related 
diseases. Thus, the evaluation or even the con-
tinuous monitoring of mental states and/or cog-
nitive processing may help to improve work 
safety and well- being (Parasuraman, 2011). The 
measurement of neurophysiological parameters 
in work environments can help to understand 
the neural basis of cognitive processing during 
common activities and actions (Hancock, 2019; 
McKeown, 2014; Mehta & Parasuraman, 2013; 
Rahman et al., 2019). Furthermore, neurophysi-
ological measures do not only unveil cognitive 
aspects (i.e., mental load) of modern work. 
They bear the potential to improve safety and 

raise motivation and productivity (Cinel et al., 
2019; Giraudet et al., 2015).

So far, the main approach of neuroergo-
nomic workplace analysis has been to (1) derive 

2023, Vol. 65(1) 86–106



NEUROERGONOMICS WITH MOBILE EEG 87

cognitive construct entities of interest (e.g., 
motivation or mental load) and (2) transfer these 
constructs to controlled settings in the labora-
tory where neurophysiological measurements 

-
cial environment (Arnau et al., 2019; Kramer 
et al., 1985). In other studies, work- related sit-
uations or tasks were partially reconstructed 
to investigate, for example, the impact of light 
upon fatigue (Baek & Min, 2015), adaptive 

Aricò et al., 2016; 
Freeman et al., 1999), or high mental demands 
that should evoke a stress response (Ahn et al., 
2019). These work- related studies varied in 
the realism of the settings, even incorporating 
real- life experimentation (Dehais et al., 2018; 
Dehais, Somon, et al., 2020; McKendrick 
et al., 2016; Shamay- Tsoory & Mendelsohn, 
2019). Over the years, the impact of the com-
plex interaction of countless (and so far even 

-
tion processing within real- life environments 
has been addressed in neuroscience- related 
studies (Gramann, Ferris, et al., 2014), espe-

(c.f. Borghini et al., 2014; Lohani et al., 2019; 
Perrier et al., 2016). Thereby, the application 
of neurophysiological methods in truly natural 
working environments—such as the cockpit of 
an airplane (Dehais et al., 2018; Gateau et al., 
2018)—intends to generate a valid description 
of mental processing during work. No situa-
tional characteristics should be changed for 

perception or social interactions that are inher-
ent to many working environments. Therefore, 
the measurement equipment used must be 
unobtrusive and should not interfere with any 
of the wearer’s actions.

What method is best suited to map these 
-

nitive processing and mental states reliably, 
which excludes any methods that uses periph-
eral parameters. An important tool to investi-
gate cognitive processes noninvasively and with 
high temporal resolution is the electroenceph-
alogram (EEG). This measurement technique 
records voltage changes over the scalp—gen-
erated by cortical and noncortical sources—
using small electrodes. Despite its sensitivity to 

movement and other workplace- related sources 
of interference (e.g., electromagnetic intrusions 
from electronics equipment, engines, and gen-

-
ments for a suitable system. Since evaluating 
the time course of mental states is one core 
objective of this approach, the measures used 
should remain sensitive over time in order to 

worker. Also, the equipment used should be 
able to record a participant’s mental activity 
in a measurement lasting for hours and should 
not become uncomfortable to wear in this time. 
Remote access to the data might enable its use 
for controlling or even adapting work situa-
tions. Besides measurement reliability, the mea-
surement validity of the mental aspects of work 
needs to be ensured as well.

The EEG’s selection as the measurement 
technique of choice is based on several objec-
tive reasons. First, it promises high mobility 
due to its sensors’ properties: electrodes are 
lightweight, small, and can be positioned to 
one’s liking without interfering with other 
sensors. Also, EEG systems are quite inexpen-
sive in comparison to other types of neurocog-
nitive measurement devices (e.g., functional 
Near InfraRed Spectroscopy [fNIRS]), espe-
cially nowadays with an increasing number 
of devices marketed to end- consumers. The 
last advantage lies within the EEG’s tempo-
ral resolution with up to more than 1 kHz, 
which boosts its practicability for many use- 
cases that need to be analyzed in the time 
domain (Makeig et al., 2009; for an overview 
of the many available devices, see Mehta & 
Parasuraman, 2013).

The present paper gives an overview of the 
development and current trends in the use of 
mobile systems for the acquisition of EEG 
parameters in situations that are close to real- 
life behavior. Requirements, limitations, and 
possible approaches to overcome limitations 
are addressed and current EEG measurement 
systems are presented. Common EEG mea-
sures in the frequency and time domains are 
discussed in detail. Finally, conceptual ques-
tions and future goals and challenges are 
addressed.
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Rationale, Prerequisites, and Restrictions

Cognitive neuroergonomics intends to 
investigate cognitive states and their impact on 
information processing in the workplace based 
on neurophysiological data. While it is also pos-
sible to infer on cognitive states by assessing 
peripheral psychophysiological measures (e.g., 
heart rate variability or electrodermal activity), 
cognitive states and mental processing can be 
addressed most accurately with the use of high 
temporal resolution measurements by means 
of EEG (c.f. Hogervorst et al., 2014; St. John 
et al., 2004). Modulations of information pro-
cessing, for example, due to cognitive load, can 

and with a high signal sensitivity. However, 
these measures have seldomly been applied in 
uncontrolled environments—for example, real- 

maneuvering (for a review, see Borghini et al., 
2014)—that provide reliable information about 
both the environment and the action of the par-
ticipant (Gramann et al., 2017). Thus, most 
neurophysiological research was conducted 
in sparsely lit chambers where the participant 
sat inertly in a chair and responded mostly 
with button presses. The tasks used were sim-

-
gle cognitive mechanisms. To circumvent this 

combined with experimental tasks (
et al., 2016) or behavioral restrictions (i.e., 
participants were seated on a sofa and asked to 
minimize body motion to avoid movement arti-
facts), in order to guarantee proper processing 
of incoming information and high- quality EEG 
measurements (Chang & Chen, 2005). These 

-
logically valid settings (Ladouce et al., 2016). 
In later studies, the simulation of workplaces 
came closer to real- world situations (Funke 
et al., 2017; Matthews et al., 2015, 
et al., 2016; Wascher, Heppner, et al., 2014; 
Wascher, Heppner, Kobald, et al., 2015), while 
maintaining experimental control, for exam-
ple, in virtual reality settings (Banaei et al., 
2017
applications (Wilson & Russell, 2007), driving 

(Getzmann et al., 2018), or piloting (Wilson & 
Hankins, 1994).

Neurocognitive studies in workplace simula-
tions that come close to real environments are 
still rare in spite of their relevance. Considering 
the psychological strain imposed by certain 
tasks and environments on the worker without 
relying on overt behavior (e.g., units produced 
per hour, deviations from the optimal route), 

-
cantly (Parasuraman, 2011). The use- cases are 
manifold, as a sociotechnical system could be 
extended by a passive brain–computer interface 
that regulates the distribution of demand adap-
tively between the operator and the machine 
depending on the individual’s attentional state. 
Another vision for future applications of neuro-
ergonomic measures could lead in the direction 

using a mobile device and a lightweight set of 
electrodes. Still, in order to be able to quantify 
cognitive constructs, one needs to understand 
how brain correlates are related to cognitive 
states.

Besides the experimental restrictions outlined 
above, one main restriction in the past were the 
problems inherent to the measurement of EEG 
during ongoing bodily motion. When work-
places are considered that do not only comprise 

management, both the restricted availability of 
truly mobile recording equipment and the detri-

Gale et al., 
2007) rendered reliable measurements of cog-
nitive processing almost impossible. However, 
recent technical advances, in particular the 

new possibilities and therefore enabled neuro-

without changing the naturality of the environ-
ment. This includes that workers are restricted 
neither by the measurement equipment in their 
work nor with respect to their ability to move or 
during social interactions.

State of the Art

Research interest in mobile EEG has 
increased enormously over the last decade. A 
systematic search in Web of Science (August 
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2019) revealed 305 studies employing mobile 
EEG (Search topics: “mobile EEG,” “porta-
ble EEG,” “wearable EEG,” “wireless EEG”) 
starting from 1998 (duplicates were discarded). 
However, it took until 2014 before a substan-
tial number of studies (>10) was published per 
year. About 18% of these studies reported the 
application of mobile EEG in clinical contexts, 
applying this method to patient monitoring 
or diagnostic procedures (Dash et al., 2012). 
Ten studies (3.3%) reported on sleep staging. 

substantial part of the publications dealt with 
hardware development and evaluation (17%). 
Another 17% of studies report the evaluation of 
methods, in particular regarding the removal of 
EEG artifacts that arise with mobile application 
(Blum et al., 2019; Snyder et al., 2015).

The amount of neuroergonomic literature 
(i.e., studies with a clear focus on workplace- 
related issues) that incorporates mobile EEG 
remained relatively sparse with 28 published 
studies until late 2019. As expected, (mental) 
fatigue and drowsiness constituted a high frac-

aspects of aircraft piloting (Guo et al., 2018; 
Hankins & Wilson, 1998; Lin et al., 2014; 
Rohit et al., 2017, Wilson, 2002. Zhang et al., 
2017; Zhou et al., 2018), manual assembly pro-
cesses (Xiao et al., 2018), or in the context of 
a logistics workplace (Wascher, Heppner, et al., 
2014; Wascher, Heppner, Kobald, et al., 2015). 
These studies included user state examinations, 
the development of countermeasures to critical 
aspects of safety in the workplace (Zhou et al., 
2018), or a brain–computer interface (BCI)- 
based control of driving speed (Zhang et al., 
2016).

Mental workload is another core construct 
of cognitive ergonomics. Studies investigating 
mental workload applied well- established cog-
nitive paradigms in order to reliably manipulate 
the construct of task load while using mobile 
EEG, for example during walking movements, 
using machine- learning algorithms and phase- 
locked information (Wang et al., 2016; Yokota 
et al., 2017). As an approach toward studying 
even more natural situations, at least one study 
investigated acute stress in construction work-
ers with the help of features in the time and 

frequency domain (Jebelli et al., 2018), while 
another study looked more generally into the 
emotional state in construction workers as an 

-

techniques (Hwang et al., 2018).
Until now, only a few cognitive aspects of 

work have been investigated with the help of 
mobile EEG, despite its large potential for doing 
so. Liu et al. (2013) investigated to what degree 
alertness could be modulated by music. More 
directly geared at basic cognitive mechanisms, 
some studies have investigated the allocation of 
attention in the work process (Liu et al., 2013; 

; Wang et al., 2017). Beside 
these basic cognitive aspects of work, another 
group of studies addressed the question of user 
experience in cognitive neuroergonomics. They 
deal with economic decisions or more generally 
with consumer behavior (Khushaba et al., 2013; 
Muñoz et al., 2019; Roberts et al., 2018), user 
interaction (Sargent et al., 2020), or user satis-
faction (Keum et al., 2018). On a more macro-
scopic level, several studies dealt with spatial 
cognition and sensation in real- life situations 
in urban environments (Al- Barrak et al., 2017; 
Djebbara et al., 2019; Mavros et al., 2016) or 
while walking through an art museum (Cruz- 
Garza et al., 2017).

In conclusion, the above studies aimed to 
use brain activity measurement in natural envi-
ronments to investigate neural aspects of work- 
related behavior. The technical prerequisites to 
establish these methods on a larger scale in the 

However, further development is still needed.

Measurement Equipment

The possibility of recording EEG sig-
nals from a few single electrodes with por-

(e.g., Vitaport, TEMEC Technologies B.V., 
Netherlands; Biopac, BIOPAC Systems, Inc., 
USA). These single electrode systems still exist, 
but are either restricted with respect of the num-
ber of channels available for the EEG, lacking 
the possibilities of recording exactly timed trig-
ger signals or of not being as portable as recent 



90 February 2023 - Human Factors

EEG. They are predominantly used for the mea-
surement of peripheral electrophysiology in 
connection with some isolated EEG measures.

Problems of early systems were solved by 
introducing wireless transmission of EEG signals. 
This wireless EEG signal transmission allowed 
the collection of data from a regular electrode 
cap (up to 128 channels) in mobile settings. The 

were implemented in a regular laboratory setting 
and allowed for the integration of stimulus pre-
sentation and exact temporal triggering. Given 
the possibility to evenly cover the entire head 
surface with electrodes, motion artifacts (in par-

to clean the data (Gramann et al., 2010, Gramann, 
Jung, et al., 2014; Jungnickel & Gramann, 2016; 
Thompson et al., 2008).

Another major step in mobile EEG system 
development (Bateson et al., 2017) was the intro-

can be attached to the back of the head (Smarting, 
mBrainTrain, Serbia; LiveAmp, Brain Products 
GmbH, Germany; B- Alert X, Advanced Brain 
Monitoring, USA). Due to the fact that these 

parameters can be recorded to identify move-
ment patterns and motion- induced artifacts. These 

the data wirelessly to a mobile device (i.e., smart-
phone), while other systems provide the possibil-
ity to store the data on an SD card that is inserted 

two. Both ways to store data have their advan-
tages: whereas wireless transmission allows direct 
access to the data, for example, for BCI, on- board 
storage provides the participant with higher range 
of movement and eliminates problems concerning 
transmission errors.

With respect to neuroergonomics, these 
systems face two main problems: (1) EEG 
caps are obtrusive since the electrode caps 
cannot easily be hidden. (2) The use of cables 
induces electromagnetic noise by induction, 
which is an issue especially when the par-
ticipants’ activity requires full body motion. 
It has to be mentioned here that in contrast 
to walking experiments, in which the walk-
ing movements are more or less regular, 

movements during varying work tasks are 
neither rhythmic nor repetitive and cannot be 
corrected for as easily as for walking.

A step toward less obtrusive measurements 
-

Bleichner & 
Debener, 2017) and by using in- ear electrodes 
(Bleichner et al., 2015
be hidden by a headband or a base cap. This 
way, the participant can act without attracting 
unwanted attention even in social situations. 
Still, this method comes with some shortcom-
ings. First, skin texture can vary substantially 
with age, often resulting in lower signal quality 
and impaired contact retention of the adhesives 
for elderly persons. However, the main prob-
lem with this type of electrodes is the restricted 
scalp surface area covered by the implemented 
electrodes. This makes cortical activity distant 
to the covered area hard to capture. The same 
holds true for integrated systems that were 
developed either for rapid research applica-
tion or end- consumer use (e.g., for meditation 
or gaming). These systems mainly consist of 
a head mount or headband with dry electrodes 

integrated systems reduce the risk of artifacts 
due to cable motions, both the restricted number 

Nevertheless, they may still provide reliable 
data (Barham et al., 2017). Dry electrodes do not 
make contact to the scalp surface using electro-
lyte gel like regularly used wet EEG electrodes. 
The montage is faster but they are potentially 
less comfortable compared to wet electrodes, 
and there is not much experience with respect 
to long- term testing (Di Flumeri et al., 2019).

method and devices can be quite daunting, but 
with a clear research question, the choice of the 
apparatus can be narrowed down. Table 1 lists 
most of the currently available mobile EEG sys-

is not an exhaustive collection of all systems 
available and new systems are being developed 
and brought to market continuously (Brouwer 
et al., 2015).

As can be deduced from the previous para-
graphs, there are many sources of artifacts that 
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can interfere with the cortical signal. These 
artifacts may be inherent to the individual—for 
example, eye or bodily movements, ECG sig-
nal, or sweat—or due to external sources—for 

movement. The artifacts inherent to the subject 
can hardly be prevented when recording in out- 
of- the- laboratory environments, but there are 
numerous ways to clean the signal. Using sta-
tistical procedures and threshold values during 

can be detected and excluded from the signal. 
With the help of more sophisticated statistical 
procedures like the independent component 
analysis (ICA), certain artifacts with prototyp-
ical features (topography, spectral, or temporal 

the signal without having to discard parts of the 
data. Contributions of such noisy components 
can be subtracted from the signal. External 
noise sources should be avoided generally. 

the cap to avoid current induction in the cables 
and disconnection from the scalp (Symeonidou 
et al., 2018) . Also, newly developed dual- 
electrode systems are able to reduce motion- 
induced noise in the recorded signal (Nordin 
et al., 2018).

Besides choosing appropriate sensors and 

experimental framework are also crucial for 
integrating neurophysiological and behavioral 
data in studies of information processing. To 
clarify the framework of a project, it must be 
clear which parameters are of interest. Before 

which mental states are under investigation and 
how those states relate to neurophysiology (for 
some useful guidance, see Brouwer et al., 2015). 
In case the exact timing of events is not crucial—
for example when longer- lasting mental states 
are considered—an approximate assignment 

data analyses. In order to implement any tempo-
rally more critical external stimulation, trigger 
signals have to be embedded into the experi-
mental scenario using lightweight electronic 
stimulus presentation devices like a Raspberry 
Pi (Kuziek et al., 2017) or Smartphones (e.g., 
“Presentation Mobile,” Neurobehavioral Sy
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Systems, Inc., USA). Integration of experimen-
tal information into a more complex laboratory 
setting with multiple measurement devices can 
be done by embedding the environment into 
the lab- streaming layer (LSL) framework that 
collects and synchronizes information from 
multiple sources (e.g., https:// github. com/ sccn/ 
labstreaminglayer).

AVAILABLE PHYSIOLOGICAL 
PARAMETERS

Measures in the Frequency Domain: 
Spectral Power

The analysis of spectral power of the EEG 
(for a review see Al- Fahoum & Al- Fraihat, 
2014), most times via Fast Fourier Transform 
(FFT), has proven to provide meaningful infor-
mation with respect to human cognition and 
mental states (Borghini et al., 2014; Wascher 
et al., 2014
distinct frequency bands, namely the Delta 
(~0–2 Hz), Theta (~3–7 Hz), Alpha (~8–12 Hz), 
Beta (~15–30 Hz), and Gamma (~30–100 Hz) 
bands.

The phenomenon of mental fatigue has been 
investigated extensively by means of EEG spec-
tral analysis. Most studies report a shift of spec-
tral power toward lower frequency bands, that 
is toward Delta, Theta, and Alpha, with increas-
ing time on task (e.g., Fan et al., 2015; Wascher 
et al., 2014). However, power increases in the 
Beta band have also been reported (e.g., Craig 
et al., 2012). A recent review by Tran et al. 
(2020) found Theta and Alpha power increases 
to be reported most consistently. Thus, Alpha 
power has been proposed as a biomarker for 
mental fatigue and the associated risk of human 
error (Lal & Craig, 2001). However, the nature 
of mental fatigue is still under debate. A deple-
tion of resources due to task demands (e.g., 
Helton & Warm, 2008) as well as cognitive 
underload (e.g., Pattyn et al., 2008; Smallwood 
& Schooler, 2006) were proposed as causal 

linked an increase of Alpha power to low versus 
high task demands (Gevins et al., 1997; Wascher 
et al., 2019), to reactive rather than proactive 
task engagement (Karthaus et al., 2018), to 
phases of mind wandering (Arnau et al., 2020; 

Compton et al., 2019), and to an internally ori-
ented focus of attention (c.f. Cooper et al., 2003; 
Hanslmayr et al., 2011).

The construct of cognitive workload is also 
highly relevant for human performance (c.f. 
Dehais et al., 2020) as attentional resources are 
limited (Just & Carpenter, 1992; Kahnemann, 
1973). Executive functioning and working mem-
ory capacity constitute a bottleneck in human 
information processing (Cowan, 2001). For exec-
utive functioning, the prefrontal cortex (PFC) and 
the anterior cingulate cortex (ACC) act as a hub 
to orchestrate brain areas involved in a given task 
via inter- area communication (Botvinick, 2007; 
Helfrich & Knight, 2016; ). 
Theta band activity, in particular frontal midline 
theta, has been linked to the exertion of executive 
control (Cavanagh & Shackman, 2015, Cavanagh 
& Frank, 2014; Cavanagh et al., 2012). Theta 
activity assessed via FFT has been reported to be 
sensitive to task demands (Gevins et al., 1997; 
Zakrzewska & Brzezicka, 2014) as well as to 

Smit et al., 2005). Cognitive 

determines the amount of resources allocated to a 
task (c.f. Shenhav et al., 2017).

Measures in the Time Domain: Event-
Related Potentials

Event- related potentials (ERPs) in the EEG 
-

event. The basic principle of ERPs is that every act 
of information processing changes brain- electric 

down into temporally distinct cognitive processes 
(Luck, 2014). The main advantage of using the 
ERP technique compared to all other neurocog-
nitive approaches is the high temporal resolution, 
which is only limited by the sampling frequency. 

-
preted as indicators of particular stages in cogni-
tive processing.

-
mation processing, such as sensory and attentional 
processes (Kramer et al., 1995; Pratt et al., 2011; 
Ullsperger et al., 2001), aspects of subjective and 
objective stimulus signal intensity (Kramer et al., 



NEUROERGONOMICS WITH MOBILE EEG 95

1995), and of stimulus probability or relevance 
(P3) as well as general resource availability. In 
the applied context, the P3 component (approx. 
300–500 ms post- stimulus) is of high interest, as it 
is correlated with cognitive workload (Allison & 
Polich, 2008; Kok, 2001).

So far, research on event- related EEG activ-
ity is mainly restricted to laboratory settings, 
testing distinct cognitive factors such as work-
ing memory or skill acquisition that might be 
important for real- world applications. This has 
been done in highly restricted workplace sim-
ulations, for example by , 
but also in a realistic logistics workplace simu-
lation (Wascher, Heppner, et al., 2014). Wascher, 
Heppner, et al. (2014) showed distinct changes in 
ERP- component amplitudes while participants 

The main reason for the sparse use of these EEG 
measures in realistic environments is the fact that 
the signal of interest (namely the modulations of 
EEG activity) is embedded in stochastic noise and 
spontaneous oscillatory activity. Movement and 

extract reliable and meaningful ERP measures to 
evaluate underlying cognitive processes in natu-
ralistic environments.

To obtain a proper evoked signal, many time- 
distinctive repetitions of equivalent events are 
needed to perform averaging. In doing so, the 
aforementioned random, task- unrelated noise is 
removed through the averaging process, leaving 
only the task- related variability of the event- related 
signal. Unfortunately, natural environments and 
tasks lack such repeating events. Thus, there are 

to focus on laboratory experiments, especially 

cognitive processing. However, there are possibil-
ities to overcome these shortcomings that will be 
discussed later in this review.

more mobile than just some years ago, study 
designs were enabled that allowed participants 
to move in full- body motion, either in labora-
tory facilities (Gramann et al., 2010; Shaw et al., 
2018) or in real- life environments (Ladouce et al., 
2016, 2019; Reiser et al., 2019, 2020; Scanlon 
et al., 2019
motion on cognitive processes, these studies 

found that even locomotion impairs the availabil-
ity of cognitive resources.

evaluating cognitive processes in high temporal 
resolution, they may lack some informative con-
tent of the frequency domain. There are certain 
task- related processes that are indicated by modu-
lations of oscillatory activity in the Theta or Alpha 
frequency range explained earlier, that ERPs sim-
ply cannot reveal.

Measures in the Time-Frequency Space: 
Time-Frequency Analyses

Time- frequency analysis allows for analyz-
ing temporal and spectral properties of the EEG 
simultaneously. The most commonly used meth-
ods to perform time- frequency decomposition 
of the signal are (1) convolving the data with 

transform, and (3) the short- time FFT (Cohen, 
2014). The result of such a signal decomposition 

-
tory power from which event- related spectral per-
turbations (ERSPs) may be calculated. The ERSP 

time- frequency space. Several correlates of psy-
chological constructs and cognitive processes that 

Event- related frontal Theta activity has been 
described as indicating stimulus- or response- 
related cognitive control functioning (Cavanagh 
& Frank, 2014). It was consequently found to 

Nigbur et al., 2011), 
dynamic changes in mental workload in motor 

So 
et al., 2017 Onton et al., 
2005). Furthermore, frontal midline Theta was 
found to be modulated by task load, multitasking, 
and prolonged focused attention in several basic 
research and workplace simulation tasks (for an 
overview, see Borghini et al., 2014). In mobile 

-
vation were found for experimental conditions in 
which participants were in motion compared to 
standing, all while performing a cognitive task 
(Pizzamiglio et al., 2017; Reiser et al., 2019, 2020; 
Shaw et al., 2018). These results highlight the role 
of frontal midline Theta as a correlate of central 



96 February 2023 - Human Factors

executive mechanism during locomotion that con-
trols resource allocation in situations of cognitive- 
motor interference.

Modulations in the Alpha band (~8–12 Hz) 
have been assigned to the orientation of atten-
tion and working memory processes. Changes in 
Alpha power in posterior (visual) brain areas were 
already observed at the very beginning of EEG 
research when it was found that Alpha power was 
suppressed in mental states of open versus closed 
eyes (compare Berger, 1929). This suggests that 
the oscillatory response of large (visual) neuronal 
populations were desynchronized. Importantly, 

-
ing of sensory signals, but can also be used in a 
top- down way. As proposed by Klimesch et al. 
(2007), the top- down synchronization of Alpha 
oscillations is important for the inhibitory control 
and timing of information processing. In contrast, 
a relative desynchronization of Alpha power can 
be seen as a release from the cortical inhibition and 
thus promotes goal- oriented processes (Haegens 
et al., 2011; Rösner et al., 2020; Wöstmann et al., 
2016).

Finally, central and centro- parietal Mu (~8–12 
Hz) and accompanying Beta (~15–30 Hz) oscil-
lations are related to motor planning and the 
body- centered shifting of attention (see Hari & 
Salmelin, 1997). When planning an action or 
awaiting a somato- sensation, a desynchroniza-
tion of Mu/Beta power can be observed in the 
sensorimotor cortical areas coding for the respec-
tive body part (Llanos et al., 2013; Neuper et al., 
2006; van Ede et al., 2011). Thus, while changes 
in the topography of Alpha oscillations over pari-
etal and parieto- occipital brain areas are linked 
to the orienting of attention in external space, 
modulations of Mu oscillations over central and 
centro- parietal regions might be linked to the 
body- centered focusing of attention. Measuring 
modulations of Mu and Beta oscillations with 
mobile EEG setups could thus prove a valuable 
approach for assessing the planning and execu-
tion of actions or the focusing of attention to cer-
tain body regions, since the respective oscillatory 

changing environmental conditions. For exam-
ple, the measurement of topographic distributions 
of Mu and Beta oscillations via mobile EEG has 
recently been shown to be a reliable indicator for 

motor asymmetries in a realistic environment 
(Packheiser et al., 2020).

there are reliable electrophysiological correlates 
-

nomics in time- frequency space, and that time- 
frequency decomposition constitutes a valuable 
tool in mobile EEG research. In the context of 
driving, for example, mental states could already 
be categorized with the help of Alpha- and Theta- 
band activity using small around- the- ear electrode 
arrays (Wascher et al., 2019). In future studies, 
these methods could also be deployed to improve 
interactive and collaborative human–robot or 
human–machine scenarios, for example, by using 
a brain–computer interface (e.g., Berka et al., 
2005, Blankertz et al., 2010; Dorneich et al., 2005, 
2007).

Measures Using Machine Learning and 
Artificial Intelligence

All of the introduced measures dealt with 
univariate approaches: a single electrode, or an 
averaged electrode batch, always concentrat-

-
tal midline theta, parietal P3). With advances in 
computational power, multivariate approaches 
were made possible so that information about 
whole scalp activations could be taken into con-
sideration to explain human cognition. Machine 
learning algorithms have been used to decode 
multi- dimensional spatial and/or temporal data 
series. For example, EEG microstates have been 
used to decipher cognitive states by integrating 
the information from all electrodes to generate 
prototypical quasi- steady patterns, giving way to 
the analysis of cortical interaction activity (Michel 
& Koenig, 2018). These prototypical states have 
been used to successfully categorize function-
ally useful attentional states of individuals (c.f. 
Bréchet et al., 2019; Milz et al., 2016).

Methodological Restrictions and Work-
Arounds: Event-Related Analysis in 
Realistic Settings

When addressing EEG measurements at 
workplaces, the core problem for the event- 
related analysis is the absence of precisely timed 
repetitive stimulation. In a workplace simulation, 
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probe stimuli might be added to the scenery as 
noticeable, reappearing events. When presenting 
task irrelevant probe tones, for example, event- 
related activity of the EEG indicates whether the 
tone was attended to or not (Allison & Polich, 
2008; Scheer et al., 2016). The same applies 
to the visual domain as EEG activity indicates 
the spatial distribution of attention. Attention to 

in modulated ERP responses to randomly pre-

scene. With the help of augmented reality via 
data glasses and the use of scene cameras (e.g., 
implemented into a mobile eye tracker), such 
an approach could also be applied to realistic 
settings. However, the processing of the probe 
stimulus may exacerbate the assessment of the 
work- related cognitive processes of interest.

An alternative approach to get precise tim-
ing in natural settings might be to use events 
that are inherent to the environment or to the 
behavior of the participant. Systematic external 
events with a high number of repetitions are 
hardly ever found in a natural environment and 
often lack a sudden onset needed for exact time- 
locked averaging. Visual events normally build 
up as smoothly arising changes in the scene, at 
least when the observer is moving. A solution to 
this problem that relies on the inherent behav-
ior of the acting person is the measurement of 
eye movement parameters. Eye movements are 
strongly connected to visual information pro-

true both for saccadic eye movements and for 
eye blinks.

Saccades (see Viviani, 1990) are brief, fast 
movements of the eyes that change the point 

potentials (FRPs) have repeatedly been reported 
in studies that investigate visual search (Hiebel 
et al., 2018; Kamienkowski et al., 2012, 2018; 
Kaunitz et al., 2014). Kaunitz et al. (2014) 
demonstrated that sensory and cognitive FRP 
components were similar to stimulus- driven 

-

in FRPs in a similar manner as in ERPs (Ries 
et al., 2016)

Modulations in FRPs may predict whether 

could be shown for pictorial content (Nikolaev 
et al., 2011) as well as the meaning of words 
during reading (Frey et al., 2018; Sato & 
Mizuhara, 2018). Furthermore, the decoding 
of emotional expressions has been studied in 
regular lab settings (Guérin- Dugué et al., 2018; 
Simola et al., 2015) and with mobile EEG in 
natural settings (Soto et al., 2018).

However, there is a substantial problem of 
saccade- related EEG analyses outside of the 
laboratory, namely motion. Humans are not able 
to move their eyes voluntarily in a slow, contin-
uous, and steady motion. Saccades are discrete 
events that occur when information process-

and new content is attended to. When motion 
is involved, our eyes follow moving objects 
smoothly, even for longer time intervals, when 
aspects of this object are relevant to the task 
(Robinson, 1965). Thus, when motion is part of 
participants’ behavior or the scene, reorienting 
of attention is not necessarily a discrete shift of 
gaze. Consequently, saccades are losing their 
temporal information with respect to attention 
allocation.

Blinking appears to be more interesting for 
real- life evaluations for several reasons. Beside 
saccades, blinking and eye closure play a large 
role in mental state detection. In fatigue detec-
tion for example, average blink duration has 
been shown to correlate with operator state 
(Funke et al., 2017; Papadelis et al., 2007; Rohit 
et al., 2017).

Besides being a measure on its own, eye 
blinks can also be useful to create events inher-
ent to the experimental situation without further 
stimulation. It is generally accepted that blinks 
may occur either voluntarily, due to startling 
signals (in order to protect the eye), or occur 
stochastically distributed in order to maintain 

is to be questioned. First of all, blink frequency 
strongly varies with the neurotransmitter dopa-
mine (Karson, 1983) and thus also with moti-
vational characteristics (Colzato et al., 2008). 
Second, blinks occur predominantly at the 
end of an information stream, for example, at 
the end of scenes when watching movies, or at 
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the end of a sentence when reading (Fogarty & 
Stern, 1989; Nakano et al., 2009). In laboratory 
settings, blinks have been observed after a deci-
sion was made or at the end of an experimental 

(Wascher et al., 2015). Even when auditory 
information is processed, the same timing of 
eye blinks occurs (Kobald et al., 2019). Thus, 
eye blinks may be reliable markers of informa-
tion segmentation.

This assumption can be supported by event- 
related activity of the brain. Following the eye 
blink, an N1- like component can be observed, 
but this only happened when blinking in an 
illuminated surrounding—in darkness no ERP 
occurred (Heuser- Link et al., 1992). The same 
can be observed for the cognitive P3 compo-
nent of the ERP (Berg & Davies, 1988). MEG 
studies showed that eye blinks activate the pre-
cuneus regions, indicating increased environ-
mental monitoring and awareness (Liu et al., 
2017). Additionally, blink- evoked modulations 
have been reported in the context of ERSPs 
( , 2013). In a more applied 
setting, namely the simulation of a logistics 
workplace, Wascher, Heppner, et al. (2014) 
have shown that both blink- evoked ERSPs and 
ERPs provide valuable information about cog-
nitive load measured with mobile EEG.

HANDS-ON NEUROERGONOMICS

As can be deduced from the previous sec-
tions, (mobile) EEG is a viable and cost- 

processes underlying many aspects of working 
life. When no overt behavior is available to 
make assumptions about an individual’s cog-
nitive state, EEG has the potential to elucidate 
processes unknown to the distant observer. 
Attention- and fatigue- related EEG investiga-
tions have proven the measurement’s useful-
ness in many areas of life, such as driving (e.g., 
Borghini et al., 2014; Getzmann et al., 2018; 
Lin et al., 2014) or operating a machine (Aricò 
et al., 2016). By decoding cognitive states of 
individuals, adaptive technological procedures 
can be regulated either to boost the individual’s 
attentional focus toward the task or to intercept 
decreasing wakefulness by enhancing aid by the 

system. The EEG can also be used to determine 
aspects of higher- order constructs, such as situ-
ational awareness, to be used in the previously 
mentioned interventions.

Besides the pure attentional state, there are 
plenty of psychological constructs relevant for 
the positive outcome in sociotechnical systems, 

overview, see Frey et al. (2014)) that can also 
-

sures (Zander & Jatzev, 2009). This is crucial 
for situations that could entail hazardous results 
in case a system user is not able to respond to 
situational requirements due to maladjusted 

driving (Thirunavukkarasu et al., 2016). It is 
also possible to improve usability evaluations 

interaction with everyday utensils (Sargent 
et al., 2020).

With the increasing mobility of EEG devices, 
these use- cases can be extended from seated 
conditions, such as driving or static machine 
interaction, to naturalistic scenarios. Several 

-
ments, for example, workload and cognitive 
processing while riding a bike (McLean et al., 
2017; Scanlon et al., 2019
recreational states while walking through three 

Aspinall et al., 2015). By 
using a mobile phone running a software to syn-
chronize data- streams of motion- tracking, EEG, 
and eye- tracking (e.g., Lab Streaming Kothe, 
2014), it would be possible to get insights into 
everyday interaction in socio- technical systems 
without social, environmental, or behavioral 
constraints, of course while minding the pit-
falls of the involved techniques (Brouwer et al., 
2015).

DISCUSSION

The aim of cognitive neuroergonomics is to 
improve safety and well- being in workplaces or 
everyday environments with the help of neu-
rophysiological measures that allow an under-
standing of the mental mechanisms of workers 

Mehta & 
Parasuraman, 2013; Parasuraman, 2011). Based 
on this knowledge, working and everyday 
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Berka et al., 2004; 
Dorneich et al., 2005, 2007; Wilson & Russell, 
2007). To this end, the following issues need to 
be addressed—in convergence and addition to 
those points made by Brouwer et al. (2015):

1. Concepts and measures of cognitive neuroergo-
nomics should allow to track mental states in or-

2. The continuous tracking of worker states should 
-

mental strain.
3. Cognitive neuroergonomics aims at the evaluation 

of information processing in regular and ambula-
tory working situations under consideration of the 
aspects mentioned in (1) and (2).

4. Based on this approach, countermeasures can be 
developed that protect the worker from adverse 
health issues and ensure work quality in safety- 
critical workplaces (e.g., Huang et al., 2012).

since mobile EEG measurement became feasi-
ble and the extracted parameters demonstrated 
high reliability despite the challenges that come 
with mobile EEG recordings. Technically, the 
online evaluation of the data is now possible 
in conjunction with closed loop systems that 
feed mental state- related parameters back to 
the worker. However, the database of mobile 
EEG evaluations in free body motion is sparse. 

be considered, because these data are recorded 
in rather static environments under highly con-
trolled environmental conditions. Also, regular 
gait studies have limited explanatory power 
since treadmill walking is a rather rhythmic 
movement that represents a well- learned and 
automated motion and is assumed to not con-
sume many cognitive resources. Unpredictable 
movement behavior, as is inherent to many 
workplaces or walking in nature, may interact 

respect to the measure, provoke a yet unknown 
pattern of artifacts.

So far, most neuroergonomics studies 
addressed a description of the subject’s state. 
In particular, measures in the frequency domain 
provide reliable access to cognitive constructs 
such as mental fatigue, attention allocation, or 
mental load. These measures form the basis of 

neuroergonomics research since they are rel-
atively robust against singular artifacts, that 
are unavoidable when participants are moving 
freely. Results from previous simulator and 
laboratory studies show a high similarity to the 
results in natural settings and therefore allow 

In addition to the rather objective access to 
user states in almost any environment by using 
response times or measures of primary task 
performance, mobile EEG allows to establish 
neuronal models in order to gain an understand-
ing of the implementation of worker states into 
neural interactions in a broader sense. Based on 
these neuronal models, well- founded counter-
measures to avoid undesired worker states can 
be developed.

Neurophysiological measures of cognitive 
processing, that is, the entire cascade of infor-
mation processing from signal input to action 
execution become accessible with mobile 
EEG. However, work- related environments 
that require unrestricted movement need the 
design and evaluation of new study approaches 

to enhance mobile EEG measurements. In this 
way, all parameters that have previously been 
established in the laboratory or in restricted 
simulation environments may be accessible. 
The application of mobile EEG methods in real 
workplaces, however, still faces some unre-
solved problems. It would be recommended 
that the equipment used for recording the EEG 
should be unobtrusive and (almost) invisible 
to others to not hinder the worker to behave 
normally. This can be achieved with headband- 
based systems or with the use of adhesive elec-
trodes (e.g., cEEGrids, University of Oldenburg, 
Germany). However, these systems cover only 
a small area of the skull and therefore do not 
allow for a clear separation of cortical sources 

Thus, a validation of such constrained measures 
with data that is collected with extended multi- 
channel systems in a realistic simulation appears 
necessary. In general, all the psychological con-
structs outlined above need to be evaluated sys-
tematically in real- life environments in order 
to understand how the human brain processes 
information in working situations. For the 
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validation, other physiological measures with 
a longer history of mobile measurements of 
mental states need to be considered (e.g., HRV, 
EDA, or salivary cortisol; Dirican & Göktürk, 
2011; Fairclough & Venables, 2006).

CONCLUSION
Building on decades of knowledge about 

cognitive functioning obtained using EEG in 
laboratory conditions, the application in real- 
world paradigms in order to bridge the gap 
between behavior and mind is very compel-
ling as recording technologies become smaller 
and smaller. Studies in workplace and real- life 
simulations have already shown that the EEG 
is suitable to quantify mental workload with 
very high accuracy—maybe higher than the 
accuracy of other physiological measures, for 
example, the electrocardiogram or eye move-
ments (Ahn et al., 2016; Hankins & Wilson, 
1998; Hogervorst et al., 2014; Wilson, 2002). 
With recent technical developments allow-
ing increasingly smaller recording devices, 

mobile EEG can be downsized to the point of 
being almost unobtrusive in regular working 
environments. Thus, it provides the potential 
to track mental aspects of diverse workplaces. 
Neurophysiological correlates of cognitive pro-
cesses during work can be assessed in a depth 
comparable to laboratory studies. And while 
there still may be some shortcomings of mobile 
EEG compared to its laboratory counterpart, 
such as the potential for noisier data and the 
lack of temporally precise stimulation, all of 
these can be overcome and will surely be over-
come in near future. And last but not least, some 
interesting approaches to the mobile measure-
ment of EEG have been outlined in this over-
view, which provide completely new insights 
into cognition at the workplace.
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