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Abstract

Motivation: The annotation of small open reading frames (smORFs) of <100 codons (<300 nucleotides) is challeng-
ing due to the large number of such sequences in the genome.

Results: In this study, we developed a computational pipeline, which we have named ORFLine, that stringently iden-
tifies smORFs and classifies them according to their position within transcripts. We identified a total of 5744 unique
smORFs in datasets from mouse B and T lymphocytes and systematically characterized them using ORFLine. We
further searched smORFs for the presence of a signal peptide, which predicted known secreted chemokines as well
as novel micropeptides. Four novel micropeptides show evidence of secretion and are therefore candidate media-
tors of immunoregulatory functions.

Availability and implementation: Freely available on the web at https://github.com/boboppie/ORFLine.

Contact: martin.turner@babraham.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Open reading frames (ORFs) of <100 codons, referred to here as
small ORFs (smORFs), are particularly numerous and have been
challenging to annotate and to functionally characterize [reviewed
in Makarewich and Olson (2017), Orr et al. (2020) and Yin et al.
(2019)]. smORFs have been classified according to their location
relative to the main ORF within the host transcript (Couso and
Patraquim, 2017). The translation products of smORFs, termed
micropeptides, have been shown to be involved in many aspects of
life (D’Lima et al., 2017; Huang et al., 2017; Jackson et al., 2018;
Kondo et al., 2007; Lee et al., 2015; Magny et al., 2013;
Matsumoto et al., 2017; Slavoff et al., 2014). Within the immune
system, the best characterized of these include host defence anti-mi-
crobial peptides, chemokines and cytokines that are known to play
essential roles in normal and pathological immune reactions. A large
collection of putative translatable smORFs have been identified by
computational methods based on the level of DNA and protein

sequence conservation across species, coding potential and context
of the initiation codon. Ribosome profiling (Ribo-Seq), an approach
based on deep sequencing of isolated ribosome-protected mRNA
fragments, has provided extensive evidence for the translation of
smORFs (Bazzini et al., 2014; Ingolia et al., 2009, 2014; Ji et al.,
2015). A variety of metrics and algorithms can use Ribo-Seq data to
annotate translated regions of the genome. Amongst them
ORFScore is a metric to quantify the bias of the trinucleotide period-
icity pattern of ribosome-protected mRNA fragments (RPFs) to-
wards the first reading frame in an ORF (Bazzini et al., 2014). The
periodicity pattern has been used by several algorithms and pipelines
including ORF-RATER (Fields et al., 2015), RibORF (Ji et al.,
2015), RiboTaper (Calviello et al., 2016), RP-BP (Malone et al.,
2017) and RiboCode (Xiao et al., 2018). Other metrics can be
used in conjunction with ORFScore to improve actively translated
ORF identification. For example, the ribosome release score (RRS)
detects the termination of translation at the stop codon and can
robustly distinguish protein-coding transcripts from ncRNAs
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(Guttman et al., 2013). Moreover, combined Ribo-seq and RNA-
seq analysis not only provides evidence for host transcripts of
smORFs but also enables context-based identification of smORFs,
such as during cell stress (Choudhary et al., 2020; Li et al., 2020;
Martinez et al., 2020).

Here, we describe a new analytical pipeline that we call
‘ORFLine’ that performs a comprehensive and systematic analysis
of RNA-Seq and ribosome profiling to identify actively translated
smORFs. Predicted smORFs are classified according to their host
transcript type and the position of the smORF relative to other
ORFs within the same transcript. We discovered 5744 actively
translated smORFs during B and T cell activation and report the
genetic conservation, translation efficiency (TE) and related bio-
logical processes of the predicted smORFs. We further identified
smORFs containing signal peptides, some of which have the poten-
tial to be secreted.

2 Results and discussion

2.1 Overview of ORFLine
ORFLine takes Ribo-Seq, RNA-Seq, reference genome, transcrip-
tome and gene annotation as input data and produces an output list
of predicted smORFs with genomic coordinates and classification
(Fig. 1A). The three main pipeline components to process the raw
Illumina sequences and perform smORF prediction are: (i) predic-
tion of putative smORFs; (ii) sequencing data QC and processing;
and (iii) identification of translated smORFs. Prediction of putative
smORFs and sequencing data processing are independent

components and can be executed in parallel. The identification of
translated smORFs utilizes the output of the previous two compo-
nents as input (Supplementary Table S1). ORFLine is applicable to
data from any species.

The output of ORFLine is a list of smORFs that have passed the
filters in the identification of translated smORFs. They are identified
as smORFs with ribosome-protected mRNA fragments (RPF) signal.
The output file (Supplementary Table S2) contains the genomic loca-
tion and splicing information (including number of exons and exon
lengths) of a smORF are clearly annotated and can be loaded and
visualized in a genome browser. The quantitative information about
a smORF is also calculated including TE, RNA expression and ribo-
some-protected RNA expression (FPKM value). The nucleotide
sequences are retrieved and translated into amino acid sequences
and presented in column 25 of Supplementary Table S2.

2.2 smORFs identified by ORFLine
We analysed several datasets to identify smORFs in mouse lympho-
cytes, including a published dataset from our lab of lipopolysacchar-
ide (LPS)-activated B cells (Diaz-Munoz et al., 2015); a new dataset
of B cells activated with LPS plus interleukins IL-4 and IL-5 for 48
h; naı̈ve CD4þ T cells stimulated with antibodies to CD3 and
CD28, which mimics activation by antigen; and a published time-
course of Th1 T cells re-stimulated with anti-CD3þanti-CD28
(Davari et al., 2017) (see Supplementary Table S3). ORFLine pre-
dicted a total of 5744 unique smORFs in all samples analysed (union
of 2607 smORFs predicted in B cells and 4935 smORFs predicted in
T cells) (Supplementary Table S4).

Fig. 1. Identification of different classes of actively translated smORFs in this study. (A) Computational pipeline (in dashed line square) to identify translated smORFs.

Sequencing data for RNA-Seq and ribosome profiling are processed and the reads mapped to the mouse reference genome GRCm38/mm10. In parallel, putative smORFs were

predicted by scanning the mouse transcriptome. Several experimental metrics for each putative smORF were quantified and the smORFs exceeding a threshold for each metric

were kept for downstream analysis. (B) Predicted smORFs were classified into seven groups according to their relative location in the host transcript. The number of smORFs

in each class is shown in parentheses.nuORF, non-overlapping upstream open reading frame; ouORF, overlapping upstream ORF; ndORF, non-overlapping downstream

ORF; odORF, overlapping downstream ORF; ncORF, non-coding ORF. (C) Pie chart showing the proportion of smORFs of different classes
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ORFLine classified smORFs according to their relative position
with the annotation, if any, of the host transcript (Fig. 1B). About
80% (4615) of the 5744 predicted smORFs are uORFs, whereas
downstream ORFs (dORFs) is the rarest class (260; Fig. 1C). A total
of 501 smORFs in putative non-coding RNAs (long non-coding
RNAs and pseudogenes) were predicted, which are termed ncORF.
We also detected 338 canonical smORFs, which matched exactly to
annotate CDSs, and an additional 30 extended canonical smORFs,
which start upstream of an annotated CDS but have the same stop
codon. Of the canonical smORFs, we found direct biochemical and
functional evidence for their protein products for only ~40% (135)
in the UniProt protein database (Bateman, 2021) ; these smORFs in-
clude diverse entities, such as chemokines and subunits of mitochon-
drial complexes. The other smORF classes and the remainder of
canonical smORFs (5609) have either not been functionally charac-
terized or have not been annotated at all.

2.3 Comparison between ORFLine and RiboCode
We also analysed the same datasets with the recently published
ORF-detection pipeline RiboCode (Xiao et al., 2018), which
assesses the triplet periodicity of RPFs in an ORF with modified
Wilcoxon signed-rank test and has been incorporated into a recently
published integrated tool (RiboToolkit) to analyse ribosome-profil-
ing data (Liu et al., 2020).

RiboCode is claimed to outperform RiboTaper, Rp-Bp and
ORF-RATER (Calviello et al., 2016; Fields et al., 2015; Malone
et al., 2017). Using its default settings RiboCode predicted a total of
15 920 unique smORFs, we removed 3667 smORFs nested in longer
smORFs, 48 from non-expressed transcripts and 3337 internal or
frameshift smORFs. We then compared the remaining 8868 non-in-
ternal smORFs predicted by RiboCode with the 5744 predicted
from ORFLine (Supplementary Fig. S2). Of these, 1957 (22.1% in
RiboCode and 34.1% in ORFLine) are found as exact genomic co-
ordinate matches by both pipelines (Table 1). We sampled the anno-
tated smORFs, which are differentially identified by the two
pipelines and noticed that smORFs predicted by RiboCode typically
have low RPF coverage or are assigned a low or negative ORFScore,
or low RRS, and are filtered out by ORFLine (Supplementary Fig.
S3). Our criteria for metrics have shown to be robust in smORF pre-
diction in previous studies (Bazzini et al., 2014; Guttman et al.,
2013). ORFLine also predicted 356 smORFs encoded by low abun-
dance transcripts (25% percentile) that are not predicted by
RiboCode. Overall, RiboCode predicted more putative smORFs,
but some of which appeared to share the stop codon but different
start codons. RiboCode maps Ribo-Seq reads to the transcriptome
and can lead to redundant positive signals from multiple transcripts.
By contrast, ORFLine maps reads uniquely to the genome. We also
observed that for the different putative smORFs predicted by
RiboCode and ORFLine, those unique to ORFLine have higher RPF
coverage and ORFScore.

2.4 smORF conservation
To examine the conservation of smORF-encoded micropeptides be-
tween species, we employed PhyloCSF to analyse signatures of evo-
lutionary conservation. About 11.4% of smORFs had a PhyloCSF

score >50, thus showing strong evidence of conservation (Fig. 2A),
with canonical smORFs being enriched among these (Fig. 2B). A
small subset (~6.5%) of uORFs, ncORFs and dORFs showed high
PhyloCSF scores, indicating conservation of smORFs CDS. There
are over 60% of smORFs lacking signs of selective pressure to main-
tain their amino acid sequences (no cross-species sequence alignment
and not conserved, Fig. 2A), in which uORFs, ncORFs and dORFs
are enriched (Fig. 2B). The median length of canonical smORFs is
79 codons, however, the median length of uORF, dORF and ncORF
are 24, 34 and 33 codons, respectively. By comparison with other
classes, canonical smORFs are, on average, longer and more highly
conserved (Fig. 2C). Having distinct transcript organization, size,
conservation and peptide structure, the cellular and molecular func-
tions of canonical smORFs, uORFs, dORFs and ncORFs are likely
to differ from each other, with less conserved classes primarily inde-
pendent of peptide sequences. However, we observed that the
PhyloCSF score positively correlates with the length of coding se-
quence (data not shown). Therefore, it is likely that the conservation
of shorter smORFs is underestimated.

2.5 Canonical smORFs
A total of 338 canonical smORFs were predicted in B and T cells.
About 88% of these are conserved or weakly conserved between
species (Fig. 3A). We divided canonical smORFs into ‘short CDS’
and ‘short isoforms’, the latter are the products of alternative splic-
ing of transcripts from genes annotated as encoding proteins longer
than 100 amino acids (Couso and Patraquim, 2017). Among the
predicted canonical smORFs, 54.4% are short CDSs and 45.6% are
short isoforms. There are hundreds of putative short CDSs in mouse
and human, these are typically located on monocistronic transcripts
and their host transcripts are structurally shorter and simpler com-
pared with canonical mRNAs (Couso and Patraquim, 2017). We
have predicted 184 short CDSs and they have a median size of 79
codons. We find short isoforms have a median size of 80 codons and
resemble short CDSs in size and conservation (Fig. 3B). As short iso-
forms share conserved protein sequences with their longer canonical
protein isoforms, they may have functions that are directly related
to their longer protein isoforms (Couso and Patraquim, 2017).

To increase confidence that predicted canonical smORFs were
indeed translated, we calculated the TE of the short CDSs and short
isoforms. When compared to long CDSs of expressed protein-coding
transcripts, we found their median TE to be greater (Fig. 3C). We
also conducted GO term enrichment analysis comparing the 184
short CDS and the 154 short isoforms against all smORF-encoding
genes of B and T cells. The top hits of short CDS are related to che-
mokine activity and mitochondrial biology (Fig. 3D and
Supplementary Table S5). We observed enrichment of gene products
involved in mitochondrial complexes: e.g. Romo1 is located in the
mitochondrial membrane and is responsible for increasing the level
of reactive oxygen species in cells (Na et al., 2018). Romo1 also has
anti-microbial activity against a variety of bacteria by penetrating
the bacterial membrane (Sha et al., 2012). The chemokines Ccl1,
Ccl22, Ccl3, Ccl4, Ccl5, Cxcl10 and Cxcl11 are predicted indicating
the ability of the pipeline to identify bona fide micropeptides with
immunoregulatory properties.

Table 1. ORFLine and RiboCode prediction commonality/difference by class

Class ORFLine RiboCode Commonality Unique to ORFLine Unique to RiboCode

Annotated (including canonical/ca-nonical_

exte-nded/canoni-cal_truncated)

368 (338 canonical þ
30 canonical_extended)

290 183 185 107

Novel (non-coding) 501 990 69 432 921

nuORF 4174 5133 1401 2773 3732

ouORF 441 1718 185 256 1533

ndORF 243 506 121 122 385

odORF 17 231 3 14 228

Total 5744 8868 1957 3787 6911
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2.6 uORFs
Approximately 50% of annotated animal mRNAs contain uORFs
(Andrews and Rothnagel, 2014; Couso and Patraquim, 2017) and
translation of uORFs has been widely reported in different organ-
isms (Calvo et al., 2009; Johnstone et al., 2016; Wang and
Rothnagel, 2004). We observed that the median TE of uORFs is
greater than that of long CDS (Fig. 4A). About 4% of the uORFs
have a high PhyloCSF score and TE above the median TE of long
CDS and potentially encode conserved functional micropeptides
(Fig. 4B, for B cells activated with LPS and IL-4þIL-5). However,
the amino acid sequences of the majority of uORFs are not con-
served, suggesting that any potential function is largely independent
of the encoded peptide. The proportion of expressed uORF-contain-
ing transcripts in B cells and T cells is between 6.2% and 12.4%, ex-
cept resting B cells (2.7%). Several studies have shown a repressive
effect of uORFs on the translation of the main CDS (Chew et al.,
2016; Johnstone et al., 2016; Zhang et al., 2019). We compared the
TE of the CDS in all uORF-containing transcripts versus those lack-
ing uORFs. As expected, the presence of uORFs and overlapping
uORFs was associated with a translation repression (Fig. 4C). We
performed GO enrichment analysis for all uORF-containing genes
to discover their associated biological processes (2881 target genes)
and these genes are mostly enriched in processes linked to protein
modification, regulation of gene expression and cellular response to
stimulus (Fig. 4D and Supplementary Table S5). These enrichments
are consistent with regulatory uORFs mediating the rapid changes
in gene expression in response to stress and environmental stimuli.

2.7 smORFs in non-coding RNAs
Non-coding ORFs (ncORFs) are smORFs that are found in anno-
tated long non-coding RNAs (lncRNAs) and pseudogenes. They are
typically short with a median length of 33 codons. By definition,
non-coding RNAs are not translated into protein. However,

annotated lncRNAs have been predicted from their sequences to
contain six smORFs on average (Couso and Patraquim, 2017). We
have predicted 501 translated ncORFs and 14.4% of these are con-
sidered conserved or weakly conserved. We noticed very different
distributions of size and PhyloCSF score between ncORFs and ca-
nonical smORFs (Fig. 5A). The distribution of TE for ncORFs is
also different from that for long CDS, the median TE of ncORFs is
greater than long CDS (Fig. 5B). Three ncORFs identified in LPS-
activated B cells (Cct6a, Gm16675 and 6330418K02Rik) were
found to have a high PhyloCSF score and TE, so we infer them to en-
code functional micropeptides (Fig. 5C). We searched the micropep-
tides they encode in NCBI BLASTp database (Altschul et al., 1990),
but did not find any match for Gm16675 and a partial match for
6330418K02Rik to three uncharacterized proteins with 35.59–
78.18% identity in Habropoda laboriosa and Gulo gulo. The exam-
ples likely reflect that these genes are misclassified as non-coding,
although it is possible that they could also have functions as a non-
coding RNA in addition to their peptide coding capacity.

2.8 dORFs
A total of 243 ndORFs and 17 odORFs were predicted with a me-
dian length of 34 AA. Only 20 (~7.7%) are conserved or weakly
conserved (Supplementary Table S6). The TE of dORFs is lower
than the long CDSs in general (data not shown). The low TE indi-
cates a very low level of translational reinitiation after the stop
codon of the upstream CDS (Gunisova et al., 2018). In B cells acti-
vated with LPS and IL-4 þ IL-5, we noticed that dORF-containing
transcripts show no significant difference in TE compared to those
without (Supplementary Fig. S4).

2.9 Signal sequence-containing micropeptides
An N-terminal signal peptide sequence of 16–30 amino acids is char-
acteristic of proteins destined to be secreted, resident within cellular

Fig. 2. smORFs showing different conservation and length distributions according to their classes. (A) Most smORFs are not conserved at the peptide level. Pie chart represents

the coding potential (PhyloCSF score). smORFs with PhyloCSF score �50 are considered conserved. smORFs are considered weakly conserved if their PhyloCSF scores are

positive but smaller than the threshold 50. (B) Canonical and extended smORFs are enriched in conserved peptides. Enrichment heatmap depicts log 2 ratio of the number of

smORF observed (obs) to the number of smORF that would be expected (exp) by chance given overall distributions of smORF classes and conservation levels. (C) Scatter plot

shows the distributions of codon length and PhyloCSF score for each smORF type. Marginal densities of length and PhyloCSF score are also shown on the top and the right-

hand side of the scatter plot. Green dashed line indicates a PhyloCSF score of 50. Here, the original classification in Figure 1B was simplified by combining the canonical and

canonical extended ORFs as canonical; nuORF and ouORF as uORF; and ndORF and odORF as dORF. Canonical smORFs are on average longer and more conserved than

other types
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membranes or within compartments of the secretory pathway.
Using SignalP server (Petersen et al., 2011), we predicted 80 candi-
dates including known chemokines (CCL-1, -2, -4, -5 and -22) and
the cell surface protein CD52, as well as the recently identified
lncRNA encoded Aw112010 (Jackson et al., 2018) and
1810058I24Rik micropeptides (Bhatta et al., 2020). Amongst these,
28 are canonical micropeptides and they typically have high levels of
conservation. Of the remaining 52 non-canonical micropeptides, 12
show conservation (Fig. 6A).

We selected seven putative smORFs for further characterization
(Fig. 6B). First of all, all of the selected uORFs do not overlap with
the main CDS. Except for Zdhhc5, all are in different reading frames
from the main CDS. To examine the expression of signal sequence-
containing micropeptide host transcripts, we compared mouse
RNA-Seq datasets for lymphocytes spanning B cell terminal differ-
entiation (Shi et al., 2015), Th1 cell activation (Davari et al., 2017)
and regulatory T cells (Luo et al., 2016) as well as epidermal cells
(Sendoel et al., 2017). These data revealed dynamic expression pat-
terns for several of the host transcripts. For example, BC031181
was down-regulated during B cell differentiation but up-regulated
during Th1 cell activation, it was also highly expressed in epidermal
cells (Fig. 6B). To determine if the selected putative micropeptides
are likely functional, we compared the conservation of amino acid
sequence between different mammalian species (Supplementary Fig.
S5). All of the micropeptides including those encoded in uORFs
show evidence of conservation. This indicates positive selection
pressure of the coding sequence of these micropeptides.

2.10 In vitro characterization of predicted micropeptides

with signal sequence
We investigated if the micropeptides with signal sequences are
secreted. To this end, we selected and cloned seven putative
smORFs with predicted signal sequences into a dicistronic mamma-
lian expression vector, which allowed synthesis of the micropeptide
with a FLAG epitope tag at its C-terminus and of GFP driven by an
IRES from the same transcript. HEK293T cells transfected with
micropeptide-encoding plasmids displayed anti-FLAG signals in
both total cell lysates (C) and supernatant (S) fractions (Fig. 6C).
GFP was detected in all total cell lysates, but the smORF encoded in
the Slc39a9 transcript showed no evidence of expression. The
smORFs encoded by Phf21a (uORF) and BC031181 (canonical)
showed the most abundant expression and secretion. The smORFs
encoded by Zdhhc5 and Tbpl1 expressed less strongly but showed
evidence of secretion. By contrast, the smORFs encoded by Opa1
and 1190007I07Rik were weakly or not at all secreted (Fig. 6C). A
recent report demonstrates that the human ortholog of
1190007I07Rik, named C12orf73, encodes a functional micropep-
tide named BRAWNIN found at the inner mitochondrial membrane
and required for respiratory complex III assembly (Zhang et al.,
2020). These results demonstrate that putative smORFs can be
expressed and secreted, but additional investigations are required to
validate their subcellular localization and to demonstrate their bio-
logical functions.

Further investment into the generation of antibodies and model
organisms will be required to assign function to micropeptides with

Fig. 3. Analysis of canonical smORFs. (A) Pie chart shows 87.8% of canonical smORFs are conserved or weakly conserved. (B) Canonical smORFs were further divided to

short CDSs (54.4%) and small isoforms (45.6%). A scatter plot shows the relation between ORF length and conservation score. (C) TE (of B cell activated with LPS and IL-

4þIL5) distributions of long CDS (CDSs >100 codons), short CDSs and small isoforms. Mean and standard deviation are shown. Significance was computed using two-sided

Wilcoxon test. (D) Biological process gene ontology terms found to be significantly enriched in the short CDS gene list
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Fig. 4. uORFs regulate the translation of their downstream CDS. (A) TE distributions of long CDS and uORF. Significance was computed using a two-sided Mann–Whitney

test. (B) Scatter plot of uORF TE and PhyloCSF score. Green broken line represents a PhyloCSF score of 50 used as a threshold for conservation, blue broken line represents

the median TE of long CDS. uORFs that are conserved and have a high TE are highlighted. (C) Cumulative distribution of TE in expressed uORF-containing transcripts versus

transcripts lacking uORFs as control. Significance was computed using two-sample Kolmogorov–Smirnov test for each uORF set compared to the control (1 uORF P¼1.321e-

14, 2þ uORFs P¼1.828e-6). (D) Biological process gene ontology terms found to be significantly enriched in the uORF-containing gene list

Fig. 5. Translated smORFs predicted in non-coding RNAs. (A) Canonical smORFs and ncORFs showing very different distributions in length and PhyloCSF score. (B) TE dis-

tributions of long CDS and ncORF. Significance was computed using a two-sided Mann–Whitney test. (C) TE and PhyloCSF score are shown for ncORFs (LPS-activated B

cells). Scatter plot of ncORF TE and PhyloCSF score. Green broken line represents a PhyloCSF score of 50 used as a threshold for conservation, blue broken line represents the

median TE of long CDSs. ncORFs that are conserved and have high TE are highlighted. Three genes (Cct6, 6330418K02Rik, Gm16675) potentially encode micropeptides

ORFLine identifies novel secreted micropeptides 3157



Fig. 6. Predicted signal sequence-containing micropeptides and their host transcripts expression under different conditions. (A) Scatter plots show the distributions of length

(codon) and PhyloCSF score for each predicted signal peptide containing micropeptides. (B) Heatmap analysis of host transcript expression during B cell terminal differenti-

ation, Th1 cell activation, resting/activated regulatory T cells and epidermal cells (Epi). Selected micropeptides are shown in the heatmap, they are conserved in humans and

there is limited or no information regarding their function. They are ordered by length. (C) Expression and secretion of micropeptides. Plasmids encoding predicted micropepti-

des were transfected into 293 T cells and micropeptides in total cell lysate (C) and total secreted fraction (S) were detected by anti-FLAG antibody. GFP expression indicates

transfection efficiency
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signal sequences. It will be exciting to validate the existence of
receptors and to shed light onto the biology of these micropeptides.
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