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Abstract

Bioinformatics sequence databases such as Genbank or UniProt contain hundreds of mil-

lions of records of genomic data. These records are derived from direct submissions

from individual laboratories, as well as from bulk submissions from large-scale sequenc-

ing centres; their diversity and scale means that they suffer from a range of data quality

issues including errors, discrepancies, redundancies, ambiguities, incompleteness and

inconsistencies with the published literature. In this work, we seek to investigate and ana-

lyze the data quality of sequence databases from the perspective of a curator, who must

detect anomalous and suspicious records. Specifically, we emphasize the detection of in-

consistent records with respect to the literature. Focusing on GenBank, we propose a set

of 24 quality indicators, which are based on treating a record as a query into the pub-

lished literature, and then use query quality predictors. We then carry out an analysis

that shows that the proposed quality indicators and the quality of the records have a

mutual relationship, in which one depends on the other. We propose to represent record-

literature consistency as a vector of these quality indicators. By reducing the dimensional-

ity of this representation for visualization purposes using principal component analysis, we

show that records which have been reported as inconsistent with the literature fall roughly

in the same area, and therefore share similar characteristics. By manually analyzing re-

cords not previously known to be erroneous that fall in the same area than records know

to be inconsistent, we show that one record out of four is inconsistent with respect to the

literature. This high density of inconsistent record opens the way towards the development

of automatic methods for the detection of faulty records. We conclude that literature incon-

sistency is a meaningful strategy for identifying suspicious records.
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Introduction

Bioinformatics sequence databases such as Genbank or

UniProt contain large numbers of nucleic acid sequences

and protein sequences. In 2016, GenBank (http://www.

ncbi.nlm.nih.gov/genbank/) alone contained over 224 bil-

lion nucleotide bases in> 198 million sequences—a num-

ber that is growing at an exponential rate, doubling every

18 months (http://www.ncbi.nlm.nih.gov/genbank/statis

tics/(release 217)). In commercial organizations, the pri-

mary reason for creating and maintaining such databases is

their importance in the process of drug discovery (1). Thus

a high level of data quality is crucial.

However, since these databases are fed by direct sub-

missions from individual laboratories and by bulk submis-

sions from large-scale sequencing centers, they suffer from

a range of data quality issues (2) including errors, discrep-

ancies, redundancies, ambiguities and incompleteness. In

this work, we seek to investigate and analyze the data qual-

ity of sequence databases from the perspective of a curator,

who must detect anomalous and suspicious records.

Usually, a suspicious record is reported manually, by

one of a curator whose job consists mainly of checking the

database records, the record’s original submitter, or a third

person who is a user of the database and has noticed the in-

consistency of that record. To illustrate this difficult job of

spotting erroneous records, in Figure 1, we show the distri-

bution of record ages using boxplot, which is a convenient

way of graphically depicting groups of numerical data

through their quartiles. Hence, Figure 1 shows the distribu-

tion of the ages of records that are marked as ‘alive’

(active) and ‘dead’ (removed); note that this is the termin-

ology used by curators. The age of an ‘alive’ record is com-

puted based on the date on which this paper has been

written, e.g. for a record that has been created exactly

1 year ago, its age is 365 days in the distribution presented

in Figure 1. However, the age of a ‘dead’ record is com-

puted based on its removal date, e.g. if a record is created

and then removed after 10 days of existence, its age is obvi-

ously 10 days in the distribution presented in Figure 1.

Figure 1 leads us to make two hypotheses: since removed

records have an average age of about 1 month at their re-

moval time, either (i) it takes about one month for a prob-

lematic record to be detected, or (ii) curators focus only on

new records, while neglecting older ones. Either way, it is

clear that there is a time window of only 1 month during

which curators act. Hence, if a suspicious record is not

identified in this time window, it has a low probability of

being spotted. These observations show the difficulty of

the curator’s job, and the need for the development of

automatic methods to assist them.

In contrast to previous research, which primarily

focused on detection of duplicate records (3, 4) and errone-

ous annotations (5, 6), we emphasize the detection of in-

consistent records with respect to the literature. In this

work, we define an inconsistent record as a record that

doesn’t match the content of its associated research art-

icles. Each record cites a list of publications by the authors

of the sequence that discuss the data reported in that re-

cord. However, an inconsistent record may: (i) specify a

different organism than the one discussed in its associated

articles, (ii) specify a different gene name (or protein name)

than the one discussed in its associated articles, or (iii)

focus on a gene (or a protein) that is not reported in its

associated articles. For example, the record with the acces-

sion number BK004887 (http://www.ncbi.nlm.nih.gov/nuc

core/BK004887.1?report¼genbank) specifies the organism

‘Gorilla gorilla’, whereas the article PMC555591 (http://

www.ncbi.nlm.nih.gov/pmc/articles/PMC555591/) that is

supposed to report on this sequence refers to the organism

‘Chimpanzee’. This inconsistency has been correctly re-

ported and this record has been removed from the data-

base. On the other hand, the record FJ824848 (http://

www.ncbi.nlm.nih.gov/nuccore/FJ824848) that describes

the complete sequence of a cloning vector pDMK3 (A clon-

ing vector is a small piece of DNA, taken from a virus, a

plasmid, or the cell of a higher organism, that can be stably

maintained in an organism, and into which a foreign DNA

fragment can be inserted for cloning purposes.), has an

associated article PMC2675058 (http://www.ncbi.nlm.nih.

gov/pmc/articles/PMC2675058/) that describes this cloning

vector as pDMK2. This record has not been reported as in-

consistent, and is still alive in the database. Clearly this re-

cord should be flagged as suspicious, for review by

GenBank curators who should recommend to its submitter

that the vector name be corrected.

In this work, we propose that the literature linked to

Genbank records in their ‘REFERENCE’ fields can be

used as background knowledge to check their quality. We

explore a combination of information retrieval (IR) and

machine learning techniques to identify records that are

anomalous and thus merit analysis by a curator.
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Figure 1. Box-plot of the distribution of record ages.
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Specifically, we propose a set of literature-based quality

features, which are used to analyze and compare records

that are ‘alive’ and other records that are ‘dead’ based on

several removal reasons. The analysis we carried out shows

clearly that anomalous records removed because ‘evidence

is not reported/published in the related literature’, group

together in a 2D representation of the data, indicating that

they have shared characteristics based on our proposed

features.

In prior work, we have considered the use of the litera-

ture for data quality assessment of bioinformatics sequence

databases in a supervised classification setting (7). In that

work, we demonstrated that, although fewer than 0.25%

of the records in our data set are known to be faulty, by

automated comparison with literature, faulty records could

be identified with a precision of up to 10% and a recall of

up to 30%, while strongly outperforming several baselines.

However, our error analysis revealed substantial limita-

tions of the methodology, due to the extreme imbalance of

the data and the inadequacies of the available labels. This

work both motivated the need for exploration of unsuper-

vised strategies for detecting faulty records, and gave us

confidence in exploring further the value of the literature

for this purpose.

The contributions of this article are as follows:

• We demonstrate that the research literature can be used

in an automatic, unsupervised setting for assessing the

quality of a record.

• We propose a list of quality indicators, which are based

on the published literature.

• We propose a list of quality indicators for the unsuper-

vised quality analysis, which are based on the published

literature.

• We propose an analysis that shows that the proposed

quality indicators and the quality of the records have a

mutual relationship, in which one depends on the other.

We then show that indeed, outliers may represent incon-

sistent records with respect to the published literature.

• Using principal component analysis (PCA) to reduce the

dimensionality of data for visualization purposes, we

show that records which have been reported as inconsist-

ent with the literature fall roughly in the same area show-

ing similar patterns.

• By manually analyzing records not previously known to

be erroneous that fall in the same area than records

know to be inconsistent, we show that 1 record out of 4

is inconsistent with respect to the literature (25% of the

records are inconsistent in that area, denoted Zone B in

Figure 4a). This high density of inconsistent record opens

the way towards the development of automatic methods

for the detection of faulty records.

The rest of this article is organized as follows: in the

next section, we discuss the related work; next, we describe

the list of quality indicators that we use to measure the lit-

erature consistency; then, we describe the experimental

setup; then, we present the evaluation results and our anal-

ysis; and in the last section, we conclude with key

observations.

Related work

There is a substantial body of research related to data qual-

ity in bioinformatics databases. Previous research has

focused mainly on duplicate record detection and errone-

ous annotations, as reviewed below.

Duplicate records

Koh et al. (3) use association rule mining to check for du-

plicate records with per-field exact, edit distance or BLAST

sequence (8) alignment matching. Drawbacks of this

method, and its poor performance, have been shown by

Chen et al. (4). Similarly, Apiletti et al. (9) proposed ex-

traction of association rules among attribute values to find

causality relationships among them. By analysing the sup-

port and confidence of each rule, the method can show the

presence of erroneous data. Other approaches use approxi-

mate string matching to compute metadata similarity (10–

12), under the assumption that duplicates have high meta-

data similarity.

Some approaches consider duplicates at the sequence

level; they examine sequence similarity and use a similarity

threshold to identify duplicates. For example, Holm and

Sander (13) identified pairs of records with over 90% mu-

tual sequence identity. Heuristics have been used in some

of these methods to skip unnecessary pairwise compari-

sons, thus improving the efficiency. Li and Godzik (14)

proposed CD-HIT, a fast sequence clustering method that

uses heuristics to estimate the anticipated sequence identity

and will skip the sequence alignment if the pair is expected

to have low identity. Recently, Zorita et al. (15) proposed

Star Code to detect duplicate sequences, which uses the

edit distance as a threshold and will skip pairs exceeding

the threshold. Such methods are valuable for this task, but

do not address the problem of consistency or anomaly.

Erroneous annotations

Sequence databases exist as a resource for biomedicine, but

the utility of the sequence of an organism depends on the

quality of its annotations (12). The annotations indicate the

locations of genes and the coding regions in a sequence, and

indicate what those genes do. That is, annotations serve as a
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reading guide to a sequence, which makes the scientific com-

munity highly reliant on this information. However, knowing

that computational annotation methods introduce errors (5,

16, 17), the effect and the presence of these errors have been

widely studied (1, 5, 17–19). Some researchers then have de-

veloped strategies to detect and handle erroneous annota-

tions. Weiser et al. (20) proposed Xanthippe, a system that is

based on a simple exclusion mechanism and a decision tree

approach using the C4.5 data-mining algorithm. Xanthippe

uses the rules that are derivable from the learned decision tree

to detect and flag a large proportion of the annotation errors;

the method considerably increases the reliability of both auto-

matically generated data and annotation from other sources.

Functional annotations are often inferred from sequence

similarity to other annotated sequences, with the possibil-

ity of errors. The functional annotations in these sequences

may themselves have been acquired through sequence simi-

larity. Thus the possibility of erroneous annotation propa-

gation may arise (17, 19). Hence, Kaplan and Linial (6)

proposed a protein-clustering method that enables auto-

matic separation of annotations that are mistakenly associ-

ated with a protein from true hits. The method quantifies

the biological similarity between pairs of proteins by exam-

ining each protein’s annotations, and then proceeds by

clustering sets of proteins that received similar annotations

into biological groups. Using a set of 327 test cases that are

marked false positives, the authors show that their method

successfully separates false positives in 69% of the cases.

Finally, Koh et al. (21) proposed a method for detection

of attribute outliers from the correlation behavior of attri-

butes. This method has been successfully applied to biolo-

gical data, with results showing that this method is

effective in identification of attribute outliers and detection

of erroneous annotations.

Overall, existing data quality analysis methods for se-

quence databases focus only on the internal characteristics

of records. Our work demonstrates that the literature asso-

ciated to records is a valuable external source of informa-

tion for assessing the quality of sequence database records.

What makes a sequence record consistent?

Our goal is to exploit the relationship between sequence re-

cords and the literature associated to those records. Hence,

in this section, we first describe the structure of a sequence

record, and then we describe a set of IR-based quality

features.

Sequence record structure

The format of a sequence record can be regarded as having

three parts (2): the header, which contains the information

that applies to the whole record; the features, which are

the annotations on the sequence; and the sequence itself.

The header section is composed of several fields: the

‘LOCUS’ field, which contains a number of different data

elements, including locus name, sequence length, molecule

type, and modification date; the ‘DEFINITION’ field,

which is a brief description of sequence or sequence’s func-

tion; the ‘ACCESSION NUMBER’, which is a unique

identifier for the record; the ‘SOURCE’ field, which gives

information about the sequence’s organism; and the

‘REFERENCE’ field, which lists a set of publications by

the submitters of the sequence that discuss the data re-

ported in the record. It is clear that the header represents a

rich source of information about the given sequence.

Knowing that the ‘DEFINITION’ field of a record pro-

vides a succinct description of the sequence (information

such as source organism, gene name/protein name, descrip-

tion of the sequence’s function, a completeness qualifier,

etc.), we suggest to primarily use and focus on the informa-

tion given in that field to assess the consistency of a record

with respect to the literature.

Quality factors

As stated previously, the ‘DEFINITION’ field of a record

provides a succinct description of the sequence, while re-

search articles given in the ‘REFERENCE’ field discuss the

data reported in that record. Hence, adopting the approach

of information retrieval (IR), if we consider the description

given in the ‘DEFINITION’ field of a record as a query

into PubMed, the set of documents that can be considered

as most relevant to that query are those listed in the

‘REFERENCE’ field of that record. We propose to use IR

methods to measure the quality of a record in terms of the

quality of the query that is derived from the definition field

of that record.

To find indicators or features to represent the quality of

each query (record), we draw on the large body of previous

work on query quality prediction (22–24). These include

predicting the quality of queries using either pre-retrieval

indicators like Query Scope, that are calculated for a query

as a whole, or post-retrieval indicators like Query Clarity,

that involve assessing the results of an initial retrieval and

hence are more expensive to compute. In the following, we

describe the set of query quality predictors we used.

Overlap similarity score

In IR a high quality query is a query that contains enough

information (terms) to describe the user need. Hence, a

high similarity value between a query q and its relevant

documents D reflects a high query quality. We use the
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overlap similarity in order to emphasize the number of

terms of a record definition that are in its set of associated

articles. We use the maximum overlap similarity value ob-

tained across the set of relevant documents to define this

score. It is computed as follows:

Overlapðq; dÞ ¼ max
d2D

jq \ dj
minðjqj; jdjÞ

� �
(1)

Retrieval performance score (RP score)

Based on the relevance paradigm of IR, we assume that a

high quality query should retrieve and place its corres-

ponding articles earlier in the ranking list. Thus, we use the

Reciprocal Rank evaluation measure to define the RP

Score as follows:

RP Score ¼ 1

ranki
(2)

where ranki is the rank of the first relevant document in

the retrieved list of documents that match the query q re-

turned by the system. Note that we used the basic default

Lucene vector-space model function to score and rank

documents in order to compute the RP Scores (https://

lucene.apache.org/core/6_2_0/core/org/apache/lucene/

search/similarities/TFIDFSimilarity.html).

Query scope (QS)

He and Ounis (25) defined Query Scope, an indication

metric of the generality/speciality of a query based on the

size of the document set containing at least one of the

query terms. The basic idea is that a query that matches a

high number of documents is likely to contain generic

terms that don’t precisely express the user need (or respect-

ively, the record definition contains generic terms that

don’t precisely describe the sequence). Hence, we can ex-

pect that high values of query scope are predictive of poor-

quality queries as they retrieve far too many documents.

QS is computed as:

QS ¼ log 1þ N

nq

� �
(3)

where nq is the number of documents that match the query

terms, and N is the number of documents in the collection.

TF score

The usage frequency of the query terms in the relevant

documents is a good quality indicator of the query

(respectively, the record’s quality). Clearly, a high overall

term frequency means that the record is intensively dis-

cussed and reported in its associated articles. We propose

to calculate a global value for the TF of the query terms

across all relevant documents as follows:

TF ¼ max
d2D

X
w2d

1þ log ðfw;dÞ
� � !

(4)

where fw;d is the number of time the term w occurs in the

relevant document d.

TF-IDF score

The TF-IDF (for Term Frequency–Inverse Document

Frequency) is a term’s weighting function that estimates

not only how important is a term to a document, but also

considers how important is that term in the collection or

the corpus. Hence, TF-IDF is defined such that a high value

of is reached by a high term frequency and a low frequency

of the term in the collection. We propose to calculate a glo-

bal TF-IDF value for a query across all relevant documents

as follows:

TF � IDF ¼ max
d2D

X
w2d

log 1þ ðfw;dÞ
� �

� log
N

Nw

� �� � !

(5)

where Nw is the document frequency of w. Like for the TF

score, it is clear that a high global TF-IDF value indicates

that the record is intensively discussed in the relevant docu-

ments while focusing on the main element reported in the

record.

Bayesian smoothing using Dirichlet priors score

(LMDirichlet)

The approach of language modeling for information re-

trieval is based on defining a language model for each

document d, and then estimating the conditional probabil-

ity pðdjqÞ, i.e. the probability that d generates the observed

query q. Several variants of the language modeling tech-

nique for IR have been developed, most of them centered

around the issue of smoothing. The term smoothing refers

to the adjustment of the maximum likelihood estimator of

a language model so that it will not assign a zero probabil-

ity to unseen words. Zhai and Lafferty (26) studied the

problem of language model smoothing and its influence on

retrieval performance. They identified that a Dirichlet

prior-based smoothing approach is among the most effect-

ive. The defined ranking function can be used to estimate

the similarity between the record definition and the
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relevant documents. We refer the reader for the definition

of this ranking function to the original article (26). Note

that in our previous work, this ranking function has been

identified as the main discriminative function to identify

dead records (7).

Similarity of collection–query (SCQ)

Proposed by Zhao et al. (27), this query quality factor is

based on the hypothesis that queries that have higher similar-

ity to the collection as a whole will be of higher quality. SCQ

is computed similarly to the TF-IDF weighting function,

except that it focuses on the whole collection rather than on

only the relevant documents. SCQ is computed as follows:

SCQ ¼ max
d2D

X
w2d

1þ lnðnðwÞÞ � ln 1þ N

Nw

� �� � !
(6)

where n(w) is the frequency of the term w in the collection

(sum of the frequencies of the documents in which w

appears).

Clarity score

The clarity score is post-retrieval query quality factor,

which has been developed by Cronen-Townsend et al.

(22). It is simply the Kullback–Leibler divergence of the

query model from the collection model. To avoid the ex-

pensive computation of query clarity, we computed the

clarity score based on a query model estimated from the

relevant documents themselves. We compute the clarity

score as follows:

Clarity ¼
X
w2q

PmlðwjqÞ � log2

PmlðwjqÞ
PCðwÞ

(7)

where PmlðwjqÞ is the probability of the occurrence of the

word w in the relevant documents, and PCðwÞ is the prob-

ability of the occurrence of w in the collection. As stated

by the authors of the clarity score, a query whose language

model looks like the language model for the whole collec-

tion receives a low score, and a query whose language

model is very different from the collection language model

receives a high score. Therefore, a query with a high clarity

value indicates the lack of ambiguity of that query, and

thus, it indicates that this query is of a high quality.

In total, we have defined eight IR-based quality features

that leverage the literature associated to the records. All the

quality factors defined above can be computed while separ-

ately considering each of the three different fields of the

relevant documents namely, (i) the title, (ii) the abstract and

(iii) the body. This results in a total of 24 quality factors.

Data description

Now we provide details of the dataset that we evaluate in

this article.

Articles

We used the PubMed Central Open Access collection (http://

www.ncbi.nlm.nih.gov/pmc/tools/openftlist/) (OA), which is a

free full-text archive of biomedical and life sciences journal

literature at the US National Institutes of Health’s National

Library of Medicine. The release of PMC OA we used con-

tains roughly 1.13 million articles, which are provided in an

XML format with specific fields corresponding to each section

or subsection in the article. We used the Lucene IR System

(http://lucene.apache.org/) to index the collection, with the de-

fault settings for stemming and English stop-word removal.

We defined a list of biomedical keywords which should not be

stemmed or considered as stop words, such as the protein

names ‘THE’ and ‘Is’. Each section of an article (title, abstract,

body) is indexed separately, so that different sections can be

used and queried separately to compute the quality features.

Sequences

We work with the GenBank nucleotide database, but limit

the sequence database records we work with to those that

can be cross-referenced to the PMC OA article collection.

Specifically, we used a regular expression to extract

GenBank accession numbers mentioned in the PMC OA

articles, thereby identifying literature that refers to at least

one GenBank identifier. This resulted in a list of 733 779

putative accession numbers. Of these, 494 142 were valid

GenBank nucleotide records that we were able to down-

load using the e-utilities API (28). Among the valid records,

only 162 913 records also cite the corresponding articles,

determined via title matching. This process gave us a list of

162 913 pairs of record accession numbers and PMC art-

icle identifiers, which cite each other.

Each record in this dataset was labelled as ‘alive’ or

‘dead’, an attribute that we obtained using the eSummary

API (28). Note that the records that are reported as ‘dead’

are explicitly labelled as such in GenBank, whereas records

that are ‘alive’ are implicitly labelled by not being labelled

as dead. We consider dead records to be suspicious and all

other records to be confident in our labelling.

In addition, ‘dead’ records have been removed for sev-

eral and different reasons, which are often given in a free

text format. We grouped these removal reasons in the fol-

lowing categories:

1. Rm1: records were removed because the sequence was

not directly determined by the submitter.
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2. Rm2: records were removed at the submitter’s request

because the sequence was determined to be incorrect.

3. Rm3: records were removed for unknown reasons.

4. Rm4: records were removed because no experimental

evidence was published to support the records’ data.

5. Rm5: records were removed because the source organ-

ism cannot be confirmed.

Clearly, Rm4 represents the group of records that have

been removed for literature inconsistency reasons. This

group is the focus of our study, and hence, we have chosen

to merge the other groups into a single group of removed

records that we named ‘removed for other reasons’.

We provide more detailed statistics on our final dataset

in Table 1. For example, an article cites 0.51 records on

average; the article PMC2848993 (http://www.ncbi.nlm.

nih.gov/pmc/articles/PMC2848993/) cites 8062 records. A

record is cited on average 1.17 times, while the record

A23187 (http://www.ncbi.nlm.nih.gov/nuccore/A23187) is

the most cited. Among the 162 913 records for which the

relevant articles are in the PMC OA dataset, 162 486 are

alive and only 427 are dead. Hence, our dataset is skewed

toward many alive records and only very few dead records.

Empirical evaluation

In this section, we first carry out a data quality feature ana-

lysis, then, we show and discuss the scatter plot obtained by

applying PCA for data visualization. Finally, we discuss the re-

sults obtained for the data curation task that we carried out.

Quality features analysis

We analyze the literature consistency of our records using

the metrics defined in Section 3.2. To do so, we compare

the distribution of the quality scores obtained for two

groups of records: (i) Rm4, the group of removed records

because of literature consistency reasons, and (ii) the group

of alive records. We visualize the analysis using a violin

plot, which is a similar data visualization method to box

plot except that it also shows the probability density of the

data at different values on each side. We also include a

marker for the median and the inter-quartile range of the

data that we use for comparison.

Figure 2 shows grouped and split violin-plots of the

quality scores for both alive and records of Rm4 group. We

also show a violin-plot for each metric computed based on

different sections of the articles (title, abstract, and body).

At first glance, it is clear that for all metrics, the distribution

of values for the two groups are somehow different.

First, regarding the overlap similarity distribution shown

in Figure 2a, we notice four notable trends: first, term over-

lap increases from title to body and full text since the size

grows accordingly; second, overall, for alive records, there is

a high term overlap of roughly 80% between the descrip-

tions and the body sections; and third, for a small number

of records, in which the overlap similarity is below 0.2,

there is low overlap or no overlap at all between the descrip-

tion field and the full text of their associated articles, thus

suggesting a data quality problem; and last but not least,

Figure 2a shows clearly that literature-inconsistent records

(Rm4 group) tend to have a lower overlap similarity across

all articles parts compared to the alive records as shown by

the median lines. Especially, for the three compared distri-

butions, the third quartile of the Rm4 group is almost al-

ways aligned with the median of the alive records showing

that 50% of the alive records tend to have a higher overlap

similarity than 75% of the records in the Rm4 group.

Hence, we conclude that the overlap similarity is a strong in-

dicator for the literature consistency of the records.

As for the distribution of Retrieval Performance (RP)

scores illustrated in Figure 2b, the difference is unclear.

Indeed, the RP score distributions using the title and the

body are similar for the two groups since the quartiles and

the medians are aligned. However, the RP score distribution

for the abstract is slightly different since the medians and

the third quartiles are not aligned. The alive records tend to

rank higher the relevant documents than the Rm4 group

when querying the abstract sections. This shows that the ini-

tial assumption of this quality score is somehow verified.

Figure 2c shows the distribution of the QS scores. For the

three article parts, it is clear that in general, the records in

the Rm4 group tend to have higher QS scores than the alive

Table 1. Dataset statistics

Article statistics

# Articles Citations of records

Avg Median Max Max entity

1 135 611 0.5114 1 8062 PMC2848993

Sequence statistics

# Sequences Record citations

Avg Median Max Max entity

494 142 1.1755 1 783 A23187

Records for which the relevant article is in our PMC OA dataset

# Records Alive records Dead records

Rm1 Rm2 Rm3 Rm4 Rm5 Total

162 913 162 486 152 19 164 86 6 427
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records. This observation validates the intuition behind the

QS score which is that inconsistent records are likely to con-

tain generic terms that don’t precisely describe the se-

quences. In particular, we notice that the first quartile of the

Rm4 group is almost aligned with the median of the alive re-

cords when querying the titles or abstracts. This again

shows that 50% of the alive records tend to contain less gen-

eric description terms than 75% of the records in the Rm4

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Grouped and splitted violin-plots of the features for both alive and dead records. (a) Overlap distribution. (b) Retrieval Performance Score

distribution. (c) Query scope distribution. (d) Sum TF distribution. (e) Sum TFIDF distribution. (f) LMDirichlet Score distribution. (g) SCQ Score distri-

bution. (h) Clarity Score distribution.
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group. Hence, we conclude that the QS metric is a good in-

dicator for the literature consistency of the records.

Figures 2d and e show the distributions of the TF and

TFIDF scores respectively. Again, overall, for the two metrics,

and for the three article parts, the records in the Rm4 group

tend to have a lower TF and TFIDF scores than the alive re-

cords. This indicates that overall, the records in the Rm4

group are less discussed and reported in their articles than the

alive records, which is a literature inconsistency indicator.

Also, Figure 2f shows the distribution of the

LMDirichlet scores. Again, for the three articles parts, it is

clear that roughly, the records in the Rm4 group tend to

have lower LMDirichlet scores than the alive records. This

indicates that literature-inconsistent records are less likely

to have been generated from the articles. In particular, we

notice that the third quartile of the Rm4 group is almost

aligned with the median of the alive records when using

the titles or abstracts. This again shows that 50% of the

alive records tend to be likely to have been generated from

their research articles than 75% of the records in the Rm4

group. Hence, we also conclude that the LMDirichlet met-

ric is a good indicator for the literature consistency of the

records.

Figure 2g shows the distribution of the SCQ scores.

Here, the difference is unclear, showing that the distribu-

tions are similar between the records of the Rm4 group

and the alive records. This analysis shows clearly that SCQ

is not a good quality factor to detect records inconsistent

with the literature.

Finally, Figure 2h shows the distribution of the clarity

scores. Roughly speaking, the distributions show that the

alive record tend to have higher clarity scores than the re-

cords in the Rm4 group. This indicates that in general, the

definition of the records in the Rm4 group are less clear

than the alive records. This verifies the assumption behind

the clarity score in the context of the detection of

literature-inconsistent records in bioinformatics sequence

databases.

In summary, this quality feature analysis shows that, ex-

cept the SCQ and the RP metrics, all the quality factors

described in Section 3.2 reveal patterns that confirm our

intuitions in the context of the detection of literature-

inconsistent records. This opens new avenues to develop

automatic/semi-automatic methods to assist curators in de-

tecting inconsistent records to ensure a high database qual-

ity. In the next section, we carry out a data visualization/

exploration task.

PCA for data visualization

In many Machine Learning problems, visualizing the data

provides insight into its solvability. Hence, several dimen-

sionality reduction methods have been developed for that

purpose.

In our dataset each record m is represented by its vector

of 24 quality indicators xðmÞ ¼ ½xðmÞ1 ; x
ðmÞ
2 ; . . . ;x

ðmÞ
24 � (see

Section 3.2). Visualizing this 24-dimensional data is very

difficult. Using dimensionality reduction, we can reduce

these 24 D into a 2 D data, and visualizing 2 D data is

much simpler. However, the dimensionality reduction al-

gorithm doesn’t give any meaning to the new features; it is

up to us to figure out what it means. PCA is the most com-

monly used dimensionality reduction algorithm. PCA finds

a vector direction onto which the data are projected and

which gives the smallest sum of squared projected errors.

We refer the reader to the book of Jolliffe (29) for more de-

tails about PCA.

In this article, we use PCA for a 2D visualization of our

dataset as depicted in Figures 3a and b, with 46.41% of

variance retained in the two first components. Both figures

show a scatter plot of the alive records with a Gaussian

kernel density representation. The red points represent the

centroid of the alive records, whereas the blue points may

be considered as outliers. In addition, each figure shows

also the dead records using orange points, i.e. the records

removed for inconsistency reasons in Figure 3a, and those

(a) (b)

Figure 3. Dataset plotted in 2D, using PCA for dimensionality reduction with 46.41% of variance retained in the two first components. (a) Records of

the group Rm4, which have been removed for inconsistency reasons. (b) Records of groups Rm1, Rm2, Rm3 and Rm5, which have been removed for

other reasons.
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removed for other reasons in Figure 3b. The plot in Figure

3 leads us to make the following two observations:

[label¼ (v)]

1. First, in Figure 3b the orange points representing re-

cords removed for reasons other than literature incon-

sistency have the same probability density as the alive

records. This indicates that, using the quality factors

defined in Section 3.2, it is not possible to detect re-

cords that have been removed for other reasons not

related to literature consistency, such as sequence

correctness.

2. Second, in Figure 3a the orange points representing re-

cords removed for literature inconsistency have a differ-

ent probability density than the alive records. It

appears that these records tend to be more outliers, fall-

ing in the south region of the scatter plot.

These two observations led us to ask several research

questions:

• What do alive outlier records represent (blue points)?

• Do all alive outlier records contain anomalies related to

literature inconsistency? Or in contrast, are they highly

consistent with the literature?

• Can we find inconsistent records among the alive ones

within the red points (the centroid region)?

• Can we define an automatic/semi-automatic method

to detect inconsistent records based on our quality

metrics?

• How accurate is a clustering based method to detect

literature-inconsistent records? Can we achieve better

performance than a random selection approach?

To answer all the questions above, we carried out a

data curation task that we describe in the next section.

Data curation task

The main objective of this data curation task is to explore

literature-based consistency assessment. To address the

questions raised in the previous section, we have built a

data curation test set, based on the scatter plot of Figure

3a. We divided the data into three interesting zones to ex-

plore, as illustrated in Figure 4a. Zone A covers the cen-

troid region, Zone B covers the south outlier region, and

Zone C covers the east outlier region. Figure 4b shows the

records effectively selected to be included in the test dataset

for the curation task. The zones B and C contain 100 re-

cords each. In region A, which is very dense, we have ran-

domly selected 100 records. Additionally, we have

randomly selected 100 records from the whole dataset to

be included in the test set for comparison. This gave us a

total of 400 records to be curated in order to answer the

questions previously posed.

We hired a University of Melbourne Masters student in

Bioinformatics with an undergraduate degree in Biology to

perform the job of a database curator. For each record to

(a) (b)

(c)

Figure 4. Curation task. (a) Zones curated. (b) Records curated. (c) Results of the curation task.
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be assessed, we have given the student the full content of

the record and access to each article listed by that record.

The student was then asked to check the record content,

and to review each article to look for inconsistencies.

Inconsistent records include records which either (i) cite

the wrong organism, i.e. a different organism than the one

discussed in its associated articles, (ii) cite a different gene

name (or protein name) than the one discussed in its associ-

ated articles, or (iii) focus on a gene (or a protein) that is

not reported in its associated articles. However, we were

interested in any form of inconsistency, and thus, the stu-

dent was asked to freely consider inconsistency cases other

than those listed here.

The student was trained using a separate training data-

set of 30 records, among which 10 were known to be in-

consistent with the literature, and 20 were consistent. The

30 records were incrementally presented to the student in

three groups of ten records. The student was then asked to

indicate for each record whether she judged the record as

consistent with its associated articles, or not. The student

was able to gradually improve her performance on the task

until she achieved a 100% accuracy on the third group.

We then asked her to check the consistency of the records

of the test set. The results of the curation task are illus-

trated in Figure 4c for visualization purposes, and provided

with more details in Table 2.

The main outcome of this curation task can be summar-

ized as follows:

i. The records of Zone C were all identified as being

highly consistent. They present similar profiles of a

complete genome of a given organism, for which a re-

search article is assigned in order to describe this gen-

ome in detail.

ii. In Zone A, 98% of the records were marked as consist-

ent by the student. Only two records have been identi-

fied as inconsistent. The record with the accession

number KF188702 (http://www.ncbi.nlm.nih.gov/nuc

core/KF188702) cites a different isolate (‘Isolate’ refers

to the place where the organism has been sampled)

code than the one cited in its associated article. The

other record with the accession number KC164376

(http://www.ncbi.nlm.nih.gov/nuccore/KC164376)

was reported as inconsistent with the following com-

ment ‘not too sure about what the species is in the re-

cord, record says ‘synthetic construct’ but it’s not

mentioned at all in the article’.

iii. The random selection methods allowed to identify up

to 7% of inconsistent records.

iv. In Zone B, up to 25% of the records have been identi-

fied as being inconsistent. In other words, in Zone B, 1

record out of 4 is inconsistent with respect to the litera-

ture. This confirms that literature-inconsistent records

have a similar profile, which therefore should lend

themselves to identification using machine learning

methods. We infer from this result that automatic

methods can be developed to help curators in assessing

only records that have a high probability of being

inconsistent.

v. Finally, Zone B contains 17 records which are cur-

rently reported as being inconsistent, and thus are

dead. It is interesting to notice that 8 of these records

have been reported as being consistent by our curator.

We explain that by the fact that our curator may have

insufficient knowledge to detect latent inconsistencies

(not obvious or explicit inconsistencies). Indeed, our

curator acknowledged and mentioned the difficulty in

judging the consistency of several records, mostly be-

cause of the broad knowledge needed to assess them.

Those records for which the consistency was difficult

to reject were marked as consistent by our curator.

This suggests that the current data quality status is

worse than one may think, in that there are certainly

records that have been judged as consistent in the

‘Alive’ data that are in fact inconsistent based on char-

acteristics that require deeper expertise.

Conclusions and future work

In this article, we have proposed an analysis of data quality

in bioinformatics sequence databases from the perspective

Table 2. Details of the results of the curation task

Alive Dead Total

Consistent Inconsistent Consistent Inconsistent

Records Total Rate (%) Total Rate (%) Total Rate (%) Total Rate

Zone A 98 98 2 2 — — — — 100

Zone B 62 74.69 21 25.30 9 52.94% 8 47.57% 100

Zone C 100 100 0 0 — — — — 100

Random 93 93 7 7 — — — — 100
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of consistency with respect to the published research litera-

ture. We have introduced a list of factors that have a mu-

tual dependence with the consistency of a record with

respect to its associated articles. We then compared the dis-

tribution of the values of each quality factor for records

which have been reported as inconsistent with the litera-

ture, with those currently alive in our dataset.

Using PCA to reduce the dimensionality of data for

visualization purposes, we showed that records which have

been reported as inconsistent with the literature fall

roughly in the same area, showing similar patterns accord-

ing to our proposed quality factors. By manually analyzing

the ‘alive’ records that fall in the same area than records

know to be inconsistent, we show that 1 record out of 4 is

inconsistent with respect to the literature (25% of the re-

cords are inconsistent in that area, denoted Zone B in

Figure 4a). This high density of inconsistent record opens

the way towards the development of clustering methods

for the detection of faulty records. The main outcome of

this work is therefore that literature inconsistency shows

promise for helping to flag suspicious sequence records.

This work is to the best of our knowledge the first that

focuses on identifying inconsistent records in biomedical

sequence databases with respect to the published literature.

We have shown that automatic or semi-automatic methods

can be developed to help curators in identifying such

anomalies in order to potentially greatly reduce the effort

required by curators to identify and remove low-quality

records.

Future work includes the use of methods such as k-near-

est neighbor or local outlier factor (30) to detect inconsist-

ent records. We believe that we can achieve high precision/

recall scores using a machine learning classifier devoted to

the detection of outliers. We also envision to release a

benchmark data set for this task, which we hope would at-

tract much attention from the biocuration community in

the future.
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