
RESEARCH ARTICLE

Metabolomics biomarkers and the risk of

overall mortality and ESRD in CKD: Results

from the Progredir Cohort

Silvia M. TitanID
1*, Gabriela Venturini2, Kallyandra Padilha2, Alessandra C. Goulart3,

Paulo A. Lotufo3, Isabela J. Bensenor3, Jose E. Krieger2, Ravi I. Thadhani4,5, Eugene

P. Rhee4,6, Alexandre C. Pereira2

1 Nephrology Division, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil, 2 Laboratory of

Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP,

Brazil, 3 Epidemiological and Clinical Research Center, University Hospital, Sao Paulo University, Sao Paulo,

Brazil, 4 Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA,

United States of America, 5 Vice Dean of Research, Cedars-Sinai Medical Center, Los Angeles, CA, United

States of America, 6 Division of Endocrinology, Department of Medicine, Massachusetts General Hospital,

Boston, MA, United States of America

* smotitan@gmail.com

Abstract

Introduction

Studies on metabolomics and CKD have primarily addressed CKD incidence defined as a

decline on eGFR or appearance of albuminuria in the general population, with very few eval-

uating hard outcomes. In the present study, we investigated the association between metab-

olites and mortality and ESRD in a CKD cohort.

Setting and methods

Data on 454 participants of the Progredir Cohort Study, Sao Paulo, Brazil were used. Meta-

bolomics was performed by GC-MS (Agilent MassHunter) and metabolites were identified

using Agilent Fiehn GC/MS and NIST libraries. After excluding metabolites present in <50%

of participants, 293 metabolites were analyzed. An FDR q value <0.05 criteria was applied

in Cox models on the composite outcome (mortality or incident renal replacement therapy)

adjusted for batch effect, resulting in 34 metabolites associated with the outcome. Multivari-

able-adjusted Cox models were then built for the composite outcome, death, and ESRD inci-

dent events. Competing risk analysis was also performed for ESRD.

Results

Mean age was 68±12y, mean eGFR-CKDEPI was 38.4±14.6 ml/min/1.73m2 and 57% were

diabetic. After adjustments (GC-MS batch, sex, age, DM and eGFR), 18 metabolites

remained significantly associated with the composite outcome. Nine metabolites were inde-

pendently associated with death: D-malic acid (HR 1.84, 95%CI 1.32–2.56, p = 0.0003),

acetohydroxamic acid (HR 1.90, 95%CI 1.30–2.78, p = 0.0008), butanoic acid (HR 1.59,

95%CI 1.17–2.15, p = 0.003), and docosahexaenoic acid (HR 0.58, 95%CI 0.39–0.88, p =
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0.009), among the top associations. Lactose (SHR 1.49, 95%CI 1.04–2.12, p = 0.03), 2-O-

glycerol-α-D-galactopyranoside (SHR 1.76, 95%CI 1.06–2.92, p = 0.03), and tyrosine (SHR

0.52, 95%CI 0.31–0.88, p = 0.02) were associated to ESRD risk, while D-threitol, mannitol

and myo-inositol presented strong borderline associations.

Conclusion

Our results identify specific metabolites related to hard outcomes in a CKD population.

These findings point to the need of further exploration of these metabolites as biomarkers in

CKD and the understanding of the underlying biological mechanisms related to the

observed associations.

Introduction

Metabolomics has emerged as a new technology for the study of biomarkers and pathways

involved in diseases. In the setting of CKD, some recent epidemiological studies have evaluated

the role of metabolomics-derived biomarkers. Using a cross-sectional design, Sekula et al ini-

tially reported metabolites related to eGFR in the KORA F4 Study (n = 1735) and replicated in

the Twins-UK Study (n = 1164), with pseudouridine, C-mannosyltryptophan, N-acetylalanine,

erythronate, myo-inositol and N-acetylcarnosine emerging as the top associations [1]. In the

same publication, the authors showed that C-mannosyltryptophan, pseudouridine and O-

sulfo-L-tyrosyne were also significantly associated with the risk of incident CKD in the KORA

Study. Similar findings were reported by Solini et al among 285 type 2 diabetes patients in rela-

tion to incident CKD [2]. KORA F4 and Twins Study populations were also used in a cross-

sectional study using targeted metabolomics [3], with results showing glutarylcarnitine as the

top association with eGFR. Yu et al showed that 5-oxoproline and 1,5-anhydroglucitol were

independent predictors of incident CKD in an African American population [4], and the asso-

ciation to 1,5-anhydroglucitol was replicated by our group in a diabetic kidney disease popula-

tion [5]. Rhee et al showed that 9 metabolites were related to the risk of incident CKD in the

Framingham Heart Study [6]. Using information from 5 of them (kynurenic acid, xanthosine,

5-hydroxyindoleacetic acid, kynurenine and citrulline) improved the prediction accuracy for

incident CKD events compared to a model based only on traditional risk factors. Arginine,

methionine and threonine were shown to be potential indicators of renal metabolic function

and biomarkers of renal prognosis in a case-control study comparing participants in a CKD

cohort presenting a fast decline on eGFR in comparison to those showing no decline or a low

decline [7].

However, few studies have evaluated metabolomics in relation to incident ESRD or other

hard outcome. In a case-control study, Niewczas et al showed biomarkers related to ESRD in

type 2 diabetes [8]. The same group reported 7 metabolites (C-glycosyltryptophan, pseudouri-

dine, O-sulfotyrosine, N-acetylthreonine, N-acetylserine, N6-carbamoylthreonyladenosine

and N6-acetyllysine) associated to ESRD in type 1 diabetes with CKD at baseline [9].

While suggesting interesting insights such as potential novel biomarkers of kidney function,

the role of kidney in the metabolism of aminoacids, the role of some metabolites in neurologi-

cal and nutritional abnormalities seen in uremia, and new biomarkers for predicting hard out-

comes, metabolomics studies in CKD are still few and with diverse results. In addition, most

studies were performed in populations free of CKD at baseline. Although this may be an
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important strategy for deriving biomarkers for early disease, this strategy may fall short to

identify metabolites associated to clinical events when CKD is already established.

In this study, we investigated the relationship between metabolomic biomarkers measured

by GC-MS (Gas Chromatography combined with Mass Spectrometry) and overall mortality

and incident ESRD in the Progredir Cohort Study, an ongoing CKD cohort in Sao Paulo,

Brazil.

Methods

Sample study and outcomes

Details on the Progredir Cohort Study recruitment and baseline collection have been pub-

lished elsewhere [10]. Briefly, patients from the Hospital das Clı́nicas Outpatient Clinic, a qua-

ternary hospital in Sao Paulo, Brazil, were invited to participate in the study. Outpatient

records were reviewed and all patients with age� 30 years-old and at least two measurements

of creatinine (with a minimum interval of 3 months)�1.6 mg/dL for men and�1.4 mg/dL for

women were considered potential candidates. Patients attending oncology, psychiatry, urol-

ogy, HIV/AIDS, viral hepatitis and glomerulonephritis services were excluded. The remaining

candidates were then contacted by phone and invited to participate if no exclusion criteria

were met (hospitalization or acute myocardial infarction in the last 6 months, autoimmune

diseases, pregnancy, psychiatric diseases, ongoing chemo or immunosuppressive therapy,

ongoing renal replacement therapy, glomerulonephritis, HIV/AIDS infection, hepatitis C and

B, and any previous organ transplantation). Recruitment took place from March 2012 to

December 2013, and 454 participants were enrolled. The study was approved by two local Eth-

ics Committees (Ethics in Research Committee–Universitary Hospital, Sao Paulo University,

n˚ 11147/11; and Ethics Commission for Analysis of Research Projects, Hospital das Clı́nicas,

Medical School, Sao Paulo University, n˚ 0798/11) and written informed consent was obtained

from all participants.

Participants were scheduled for a one-day visit in the research center for interviews and

clinical exams according to standard protocols performed by trained personal under strict

quality control. Overnight fasting blood samples, 24hour and spot urine were collected. Urine

and blood aliquots were readily prepared and stored in liquid nitrogen. Diabetes was defined

as previous medical history of diabetes, use of medication to treat diabetes, fasting plasma glu-

cose�126 mg/dl, HbA1C�6.5% or a 2-hour plasma glucose�200 mg/dl after a 75g-glucose

tolerance test. Glomerular filtration rate was estimated by the CKD-EPI equation [11] and

albumin-to-creatinine ratio (ACR) was performed in a morning spot urine. Laboratory data

were determined using conventional techniques [10].

Follow-up is ongoing and made through annual telephone interviews including questions

on death, hospitalizations, and need of renal replacement therapy (RRT). Vital status is investi-

gated periodically by a hot-pursuit strategy [12]. Mortality information is confirmed by official

death certificates with the collaboration of several health offices (PRO-AIM, Fundação SEADE

and Brazilian National Mortality Registry). RRT is ascertained through the city and state´s

Registries (Sao Paulo State Registry of Dialysis and Kidney Transplantation, Sao Paulo City

Registry of Dialysis and Kidney Transplantation).

Metabolomics

Metabolomics was performed according to a standard protocol with few modifications [13].

Serum samples were thawed on ice at 4˚C for 30–60 min. Metabolites from each aliquot of

plasma (70μL) were extracted with a 300μL solvent mixture of acetonitrile, isopropanol and

deionized water (3:3:2 v/v) and spiked with a 5μL internal standard solution (RTL). After
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vortexing for 15 sec, the mixture was centrifuged for 15 min at 15.800xg at 4˚C. Supernatant

(320μL) was transferred to a new microcentrifuge tube, followed by lyophilization in a Speed-

vac concentrator for 18 hours. Subsequently, the residue was suspended in 50μL methoxya-

mine in pyridine (Sigma-Aldrich) solution (40mg/mL), 3μL of FAME (Fatty acid methyl

ester–Sigma-Aldrich) was added, and the mixture was vortexed for 3 min. This methoximation

reaction was performed at room temperature for 16h, followed by trimethylsilylation for 1h

adding 100μL MSTFA (N-methyl-N-trimethylsilyltrifluoroacetamine) with 1% TMCS (tri-

methylchlorosilane) (Sigma-Aldrich). After derivatization, 1μL of this derivative was used for

GC-MS in Agilent 7890B GC system operated in splitless mode. A DB5-MS + 10m Duraguard

capillary column (Agilent 122-5532G) within which helium carrier gas flowed at a rate of

1.1mL min-1, was applied for metabolite separation. The injector temperature was set at

250˚C. The column temperature was held at 60˚C for 1 min, and then increased to 310˚C at a

rate of 10˚C/min during 37 minutes. The column effluent was introduced into the ion source

of an Agilent 5977A mass selective detector. The detector operated in the electron impact ioni-

zation mode (70 eV) and mass spectra were recorded after a solvent delay of 6.5 min with 3

scans per second. The MS quadrupole temperature was set at 180˚C and the ion source tem-

perature was set at 280˚C. Each sample was analyzed in three technical replicates. We used

blank (serum replaced by deionized water) and quality control (serum pool) samples every day

to verify the existence of impurities in the reagents and equipment contamination, as well as to

check the sensitivity and compliance of the injector system, respectively.

Identification of compounds was made comparing the mass spectra and retention time

(RT) of all detected compounds with the Agilent Fiehn GC/MS Metabolomics RTL Library

(version A.02.02) and the National Institute of Standards and Technology (NIST) library 11

(2014) using Unknowns—Agilent MassHunter Workstation Quantitative Analysis (version

B.06.00). Retention time and electron ionization spectra were used for metabolite identifica-

tion. Absolute retention times were locked to the internal standard d27-myristic acid 3mg/mL

(Product # 366889; Sigma- Aldrich; RT of the locking standard is 16.752 minutes) using the

RTL system provided in Agilent’s MassHunter software.

Statistical analysis

Metabolomics data were available for 450 of the 454 participants. In addition, 1 participant

was lost to follow-up and renal replacement therapy could not be ascertained for 5 partici-

pants. Deaths and ESRD were ascertained up to May-2017. Censoring date was defined as the

last day of contact.

Initially, 10940 metabolites were identified from the spectrograms in at least one sample.

Only those identified in at least 50% of the samples were kept for analysis (n = 293 metabolites,

later reduced to 265 after exclusion of column contaminants and internal standards). For sur-

vival analysis, we first performed Cox regression models on a composite outcome of overall

death and incident renal replacement therapy (n = 129) adjusted only for GC-MS batch to

select metabolites with a false discovery rate (FDR) q value > 0.05. This procedure selected 34

metabolites. We then adjusted multivariable models for each selected metabolite on the risk of

the composite outcome. These models were adjusted for the effect of traditional risk factors

(age, sex, diabetes, SBP, and eGFR at baseline). We also evaluated hazard risks of events of all-

cause mortality alone (n = 93) and incident ESRD alone (n = 36). Since mortality imposes an

important competing risk on the risk of ESRD in a CKD population, we repeated the survival

analyses for ESRD using unadjusted and adjusted Fine and Gray models. We assessed the per-

formance on ROC curves of traditional models (based on age, sex, DM, SBP, baseline eGFR

and smoking) versus models with added selected metabolites.

Metabolomics and CKD: The Progredir Cohort
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Finally, pathway was explored by the construction of correlation matrix and pathway analy-

sis. In addition, by using the 34 selected metabolites we have derived metabolite networks

based on partial correlations using a modification of a graphical Gaussian model, stratified by

biochemical class.

Statistical analyses were done using SPSS (version 20.0) and R (“survival” and “cmprsk”

packages). For pathway analysis we have used MetaboloaAnalyst (http://www.metaboanalyst.

ca/) using KEGG homo sapiens library and hypergeometric test adjusted for multiple compari-

sons (FDR<0.05). For the metabolite network, we used a model implemented in the “mgm” R

package (https://cran.r-project.org/web/packages/mgm/index.html).

Results

In Table 1, we show the baseline characteristics of the 454 participants of the Progredir Cohort

Study. The participants had a mean age of 67.5 years and presented a mean eGFR of 38.4 ±14.6

ml/min/1.73m2, at study entry. The majority of study subjects were male (63.2%), had hyper-

tension (90.1%) and/or diabetes (56.8%), and 30% reported a previous myocardial infarction

Table 1. Baseline characteristics of all participants and according to the composite outcome in the Progredir Cohort.

All n = 454 No events n = 319 Death or RRT n = 129 p�

Age (years; mean / std) 67.5 (11.9) 66.8 (11.8) 69.3 (11.6) 0.05

Sex (men; n / %) 287 (63.2%) 200 (62.7%) 84 (65.1%) 0.63

Race (white; n/ %) 300 (66.1%) 219 (69.5%) 80 (62.5%) 0.15

Hypertension (n/ %) 409 (90.1%) 282 (89.2%) 122 (94.6%) 0.08

Diabetes (n/%) 257 (56.6%) 172 (53.9%) 82 (63.6%) 0.06

Previous myocardial infarction (n/ %) 147 (32.4%) 95 (30.3%) 51 (39.5%) 0.06

Previous stroke (n/ %) 73 (16.1%) 48 (15.4%) 23 (18.5%) 0.43

Smoking (current or previous; n / %) 269 (59.3%) 184 (57.7%) 83 (64.3%) 0.19

SBP (mmHg; mean / std) 140 (24) 139 (22) 144 (28) 0.05

DBP (mmHg; mean / std) 76 (13) 76 (12) 76 (15) 0.90

Body-mass index (mean / std) 29.4 (5.4) 29.3 (5.0) 29.4 (6.4) 0.89

Waist-to-hip ratio (mean / std) 0.97 (0.10) 0.97 (0.11) 0.98 (0.07) 0.89

Potassium (mEq/L; mean / std) 4.6 (0.5) 4.6 (0.5) 4.7 (0.6) 0.02

Urea (mg/dL; median/ IQR) 69 (54–89) 65 (53–84) 81 (64–107) <0.001

Creatinine (mg/dL;median / IQR) 1.7 (1.4–2.1) 1.6 (1.4–1.9) 2.1 (1.5–2.8) <0.001

Albuminuria (mg/g creatinine; median / IQR) 80 (15–640) 54 (11–366) 344 (47–1529) <0.001

eGFR-CKDEPI (mL/min/1.73 m2; mean / std) 38.4 (14.6) 41 (14) 32 (15) <0.0001

Phosphorus (mg/dL; mean / std) 3.6 (0.6) 3.6 (0.6) 3.9 (0.7) <0.0001

Calcium (mg/dL; mean / std) 9.6 (0.6) 9.6 (0.5) 9.5 (0.6) 0.004

Parathormone (pg/mL; median / IQR) 93 (64–143) 85 (57–126) 126 (84–224) <0.001

Glycemia (mg/dL; median / IQR) 104 (95–126) 103 (95–125) 106 (94–132) 0.30

Glycated hemoglobin (%; median / IQR) 6.2 (5.8–7.2) 6.1 (5.7–7.0) 6.6 (5.9–7.6) 0.006

Total cholesterol (mg/dL mean / std) 169 (40) 170 (40) 165 (41) 0.28

LDL-cholesterol (mg/dL; mean / std) 91 (32) 92 (33) 89 (31) 0.39

HDL-cholesterol (mg/dL; mean / std) 46 (14) 46 (15) 45 (12) 0.57

Triglycerides (mg/dL; median / IQR) 142 (99–192) 142 (102–192) 137 (92–189) 0.41

Bicarbonate (mmol/L; mean / std) 25.6 (2.9) 25.6 (2.9) 25.6 (3.1) 0.91

Hemoglobin (g/dL; mean / std) 13.1 (1.9) 13.4 (1.9) 12.5 (1.8) <0.0001

Albumin (mg/dL; mean / std) 4.3 (0.3) 4.3 (0.3) 4.2 (0.4) <0.0001

� t test for gaussian, Mann-Whitney for non-gaussian and chi square for categorical variables.

https://doi.org/10.1371/journal.pone.0213764.t001
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and 16% a previous stroke. Over a mean follow-up time of 3 years, 129 events of death and

renal replacement therapy occurred and differences in baseline variables according to these

events are also shown in Table 1. As expected, age, baseline renal function, diabetes, previous

myocardial infarction and systolic blood pressure (SBP) were different among groups.

Initially, the relationship between metabolites and baseline eGFR was evaluated and these

results were published elsewhere [14]. While some metabolites presented high inverse associa-

tions to CKD-EPI eGFR, other metabolites, such as tyrosine and glycerol, showed decreasing

levels as eGFR goes down [14].

For the survival analysis proposed here, we initially selected metabolites that reached an

FDR q value <0.05 in Cox proportional hazard models on the composite outcome adjusted

only for GC-MS batch effect, an approach that left 34 metabolites for further analysis, shown

in Table 2 (a full list of the 265 metabolites and estimates is provided as S1 Table). Those 34

selected metabolites were also evaluated in homo sapiens pathway analysis (S2 Table).

Although not reaching significant values for multiple comparisons, aminoacyl-tRNA biosyn-

thesis, galactose metabolism, pentose phosphate pathway and tyrosine metabolism appeared as

enriched considering raw p values.

Next, Cox regression models for these 34 metabolites on the composite outcome were

rebuilt, now adjusting for the effect of sex, age, baseline eGFR, diabetes, and batch. The vari-

ables significantly associated with the composite outcome after these adjustments are shown in

Table 3 and the correlation between these metabolites is provided in S3 Table. These metabo-

lites, tested either as combination of top associations or combination of metabolites selected

by stepwise models, did not improve the performance of a model based on traditional cardio-

vascular risk factors (age, sex, diabetes, SBP, baseline eGFR and smoking) for the prediction of

mortality and/or ESRD events (data not shown).

In order to better understand the relationship between associated markers with the inci-

dence of combined endpoints we have constructed a Gaussian graphical model containing all

34 pre-selected metabolites and their identified isoforms, age, sex, diabetes, calculated glomer-

ular filtration rate and the presence of the combined outcome. In S1 Fig. we depict the rela-

tionship between the partial correlations of all these variables together.

We then repeated these models separating the events of mortality only (Table 4) and ESRD

only (Table 5). As can be seen in Table 4, D-malic acid, acetohydroxamic acid, butanoic acid,

ribose, glutamine, trans-aconitic acid, lactose and an unidentified molecule (m/z 273) were all

positively related to the risk of death, while docosahexaenoic acid was inversely associated to

overall mortality.

For the ESRD events (Table 5), lactose, 2-O-glycerol-α-d-galactopyranoside, D-threitol and

tyrosine were associated to the risk of ESRD, with tyrosine showing an inverse relationship. To

account for the effect of competing risks, we performed Fine and Gray models for ESRD events

and the subdistribution hazards are also shown in Table 5. With this approach, lactose, 2-O-

glycerol-α-d-galactopyranoside, and tyrosine remained significantly associated to ESRD with

similar estimates to those observed in the Cox models, while D-threitol, mannitol and myo-

inositol presented borderline associations to this event.

Discussion

In this study, we investigated the association between blood metabolites and the risk of overall

death and ESRD in the Progredir Study, a cohort characterized by class 3 and 4 CKD, older

patients and a high percentage of diabetics (57%). Our results disclosed a set of metabolites

associated with the studied end-points.
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D-malic acid, acetohydroxamic acid, butanoic acid, ribose, glutamine, trans-aconitic acid,

lactose and an unidentified molecule (m/z 273) were all positively related to the risk of overall

mortality, while docosahexaenoic acid, an omega-3 essential fatty acid, was inversely related to

this risk, even after adjustments for age, sex, eGFR and diabetes.

D-malic acid can be found in fruits and herbs and is an intermediate in the butanoate

metabolism, a pathway of energy metabolism used by colon bacteria [15], as is butanoic acid, a

metabolite also related to the risk of death in our cohort. The fact that two metabolites of the

same pathway were related to the outcome is of note, although pathway analysis did not show

a significant association when multiple comparison was taken into account. Acetohydroxamic

Table 2. List of metabolites significantly (FDR<0.05) related to composite outcome (n = 129) in Cox regression models adjusted only for batch.

Metabolite Biochemical class HR� p value FDR q values

Lactose Carbohydrates and carbohydrate conjugates 1.57 8.30E-12 2.43E-09

D-threitol Carbohydrates and carbohydrate conjugates 2.46 9.09E-11 1.33E-08

Pseudouridine Nucleoside and nucleotide analogues (class) 2.05 3.15E-09 2.58E-07

Butanoic acid Fatty acids and conjugates 1.83 3.52E-09 2.58E-07

D-mannitol Carbohydrates and carbohydrate conjugates 1.36 9.17E-08 5.37E-06

Trans-aconitic acid Tricarboxylic acids and derivatives 2.07 4.41E-07 2.15E-05

Acetohydroxamic acid Carboxylic acid derivatives 2.06 1.56E-06 6.53E-05

Galactonic acid Medium-chain hydroxy acids and derivatives 1.62 5.11E-06 1.87E-04

Myo-inositol Alcohols and polyols 1.97 6.09E-06 1.98E-04

L-threonine Amino acids, peptides, and analogues 0.60 7.78E-06 2.28E-04

2-O-Glycerol-α-D-galactopyranoside Carbohydrates and carbohydrate conjugates 1.54 3.78E-05 1.01E-03

Galacturonic acid Carbohydrates and carbohydrate conjugates 1.57 5.34E-05 1.30E-03

L-glutamine Amino acids, peptides, and analogues 1.65 6.58E-05 1.39E-03

Xylitol Carbohydrates and carbohydrate conjugates 1.51 6.64E-05 1.39E-03

Gluconic acid Carbohydrates and carbohydrate conjugates 1.79 1.29E-04 2.52E-03

5-hydroxyindol Hydroxyindoles 1.37 1.59E-04 2.90E-03

Unidentified m/z 405 - 1.56 1.71E-04 2.95E-03

Ribose Carbohydrates and carbohydrate conjugates 1.40 2.33E-04 3.80E-03

p-Cresol glucuronide Arylsulfates 1.30 2.74E-04 4.22E-03

Tyrosine Amino acids, peptides, and analogues 0.67 3.26E-04 4.77E-03

(S)-3,4-Dihydroxybutyric acid Beta hydroxy acids and derivatives 1.74 3.83E-04 5.34E-03

L-serine Amino acids, peptides, and analogues 1.56 5.82E-04 7.74E-03

p-Hydroxyphenylacetic acid 1-hydroxy-2-unsubstituted benzenoids 1.28 9.19E-04 1.17E-02

Phenol 1-hydroxy-4-unsubstituted benzenoids 1.27 1.14E-03 1.40E-02

Eicosapentaenoic acid Fatty acids and conjugates 1.39 1.25E-03 1.46E-02

Unidentified m/z 273 - 1.93 1.96E-03 2.21E-02

Ribonic acid Carbohydrates and carbohydrate conjugates 1.51 2.21E-03 2.40E-02

D-malic acid Fatty acids and conjugates 1.52 2.54E-03 2.66E-02

Unidentified m/z 296 - 1.57 3.15E-03 3.18E-02

L-proline Amino acids, peptides, and analogues 0.73 4.33E-03 4.23E-02

Acetamide Carboximidic acids 1.56 5.16E-03 4.87E-02

p-cresol Cresols 1.34 5.32E-03 4.87E-02

Doconexent (docosahexaenoic acid) Fatty acids and conjugates 0.63 5.64E-03 5.01E-02

Threonic acid Carbohydrates and carbohydrate conjugates 1.52 6.44E-03 5.55E-02

Models adjusted only for batch.

� HR per 1 unit log base 2.

https://doi.org/10.1371/journal.pone.0213764.t002
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acid is known for being a synthetic drug with properties of antagonism to bacterial enzyme

urease. However, in our cohort no participant was taking this drug. Unfortunately, very little is

known about acetohydroxamic acid in the metabolome, although it has been reported in plants

[16]. It is also of note that acetohydroxamic acid did not present any meaningful level of corre-

lation with any of the other associated metabolites, suggesting that it may be acting through a

completely independent pathway (S1 Fig). Ribose can be obtained from diet or produced by

the pentose phosphate metabolism, a pathway related to diabetic complications [17–19].

Table 3. Adjusted Cox regression models on the risk of the composite outcome (n = 129) in the Progredir Cohort

Study.

Composite outcome—Cox adj. batch, sex, age, eGFR and DM

HR� 95%CI HR p

Lactose 1.37 1.18 1.60 .0001

Acetohydroxamic acid 1.86 1.34 2.57 .0002

D-threitol 1.80 1.25 2.59 .002

Doconexent (docosahexaenoic acid) 0.57 0.41 0.81 .002

Butanoic acid 1.48 1.14 1.92 .003

D-mannitol 1.21 1.07 1.37 .003

Trans-aconitic acid 1.65 1.17 2.32 .004

Pseudo uridine 1.60 1.14 2.25 .006

L-glutamine 1.42 1.08 1.87 .01

L-threonine 0.76 0.61 0.95 .01

Eicosapentaenoic acid 1.29 1.05 1.60 .02

Ribose 1.25 1.03 1.52 .02

D-malic acid 1.36 1.03 1.79 .03

Unindentified m/z 273 1.40 1.03 1.90 .03

L-serine 1.33 1.02 1.72 .03

p-Cresol glucuronide 1.17 1.01 1.35 .042

galacturonic acid 1.29 1.00 1.65 .048

2-O-Glycerol-α-d-galactopyranoside 1.27 1.00 1.62 .049

Models were adjusted for batch, sex, age, eGFR and diabetes.

� HR per 1 unit log base 2

https://doi.org/10.1371/journal.pone.0213764.t003

Table 4. Adjusted Cox regression models on the risk of overall death (n = 93) in the Progredir Cohort Study.

Death—Cox adj batch, sex, age, eGFR and DM

HR� 95%CI HR p

D-malic acid 1.84 1.32 2.56 .0003

Acetohydroxamic acid 1.90 1.30 2.78 .0008

Butanoic acid 1.59 1.17 2.15 .003

Doconexent (docosahexaenoic acid) 0.58 0.39 0.88 .009

Ribose 1.26 1.01 1.57 .04

L-glutamine 1.40 1.01 1.94 .04

Trans-aconitic acid 1.54 1.01 2.36 .04

Lactose 1.21 1.00 1.46 .05

Unindentified m/z 273 1.45 1.00 2.11 .05

Models were adjusted for batch, sex,age, eGFR and DM.

� HR per 1 unit log base 2

https://doi.org/10.1371/journal.pone.0213764.t004
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Ribose has been reported to be associated with diabetic retinopathy in a study evaluating

metabolomics [20]. Nonetheless, our results suggest that ribose is a marker of worse outcome

independently of diabetes status. Also of note, ribose’s strongest relationship is with docosa-

hexaenoic acid, suggesting that these two metabolites may be modulating outcome risk

through the same pathway. Trans-aconitic acid is a tricarboxylic acid and has been reported in

the urine of patients with organic acidurias [21,22]. Docosahexaenoic acid is an omega-3

essential fatty acid mostly found in fish oil and higher circulating levels have been related to

lower inflammatory biomarkers and lower incidence of diabetes [23], overall mortality

[24,25], CVD [26–28] and atrial fibrillation [29]. In dialysis patients, docosahexaenoic acid has

been shown to be low and associated to increased risk of cardiovascular events [30] and higher

levels of docosahexaenoic acid have been positively related to eGFR in the general population

[31]. Supplementation of omega-3 fatty acid is still polemic [32] but has been shown to have

some beneficial effects in IgA nephropathy [33–35], on eGFR decline after myocardial infarc-

tion [36], and on blood pressure in CKD patients [37].

This is the first study evaluating the association between metabolomics and mortality in a

CKD population. Previous studies have evaluated the association between the metabolome

and the risk of overall death in general population cohorts. One recent study [38] showed that

nine metabolites (cotinine, mannose, glycocholate, pregnendiol disulfate, α-hydroxyisovale-

rate, N-acetylalanine, andro-steroid monosulfate 2, uridine, and γ-glutamyl-leucine) were

independently associated with all-cause mortality. Citrate was the only low-molecular weight

metabolite related to overall death in a study using NMR-platform [39]. In a study evaluating

metabolites related to longevity defined as reaching age above 80 years, isocitrate, aconitate

and malate, all metabolites related to the citric acid cycle, were inversely associated to longevity

and positively related to all-cause and cardiovascular mortality [40]. Interestingly, in our find-

ings malic acid and aconitic acid were positively related to the risk of death. However, the iso-

mers associated in our data were D-malic acid and trans-aconitic acid, which are not the

isomers occurring in the TCA cycle.

When only ESRD events were analyzed, lactose, 2-O-glycerol-α-d-galactopyranoside, and

tyrosine were associated to its risk, while D-threitol, mannitol and myo-inositol presented bor-

derline associations. With the exception of tyrosine, these metabolites share some properties:

they can all be obtained from diet, are fermented by colonic microbioma [41, 42] and are related

to energy metabolism. Interestingly, lactose, D-threitol and myo-inositol are all related to the

galactose pathway. Also, they are strongly correlated in our Gaussian graphical model (S1 Fig).

Tyrosine is a semi-essential aminoacid that can either be obtained from diet or be derived

from phenylalanine through the activity of phenylalanine hydroxylase, further used for

Table 5. Adjusted Cox regression and Fine-Gray models (subdistribution analysis of competing risks) on the risk of ESRD (n = 36) in the Progredir Cohort Study.

Cox Fine and Gray

Metabolite HR� 95%CI HR p SHR� 95%CI SHR P value

Lactose 1.68 1.21–2.34 .002 1.49 1.04–2.12 0.03

2-O-Glycerol-α-D-galactopyranoside 1.77 1.11–2.84 .02 1.76 1.06–2.92 0.03

D-threitol 2.74 1.04–7.20 .04 2.92 0.93–9.18 0.07

Tyrosine 0.59 0.35–0.98 .04 0.52 0.31–0.88 0.02

D-mannitol 1.28 0.84–1.98 0.09 1.26 0.99–1.60 0.06

Myo-inositol 2.92 0.85–1.33 .08 3.57 0.95–13.4 0.06

Models were adjusted for batch, sex,age, eGFR and DM.

� HR and SHR per 1 unit log base 2

https://doi.org/10.1371/journal.pone.0213764.t005
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synthesis of proteins, neurotransmitters and hormones, such as thyroid and adrenergic hor-

mones. It has been shown that the kidney is the major source of tyrosine to the systemic circu-

lation [43] and CKD is associated to decreasing levels of tyrosine in plasma and tissue, while

phenylalanine and its toxic metabolites do not change or build-up [44]. Our data corroborates

this finding since tyrosine was positively related to eGFR. Moreover, tyrosine was related to

ESRD risk, raising interesting questions on the biological effects of decreasing tyrosine stores

in CKD and the possible role of tyrosine supplementation in this population.

Our results are somewhat different from those previously reported by studies evaluating

renal outcomes and metabolomics. This fact may be related to several factors. Differences in

the metabolomics platform used and therefore on quantity and type of metabolites identified,

as well as differences in analytical procedures and data processing, can all contribute to vari-

ability in the observed results. Race may also be a factor, since this is the only study so far per-

formed in a Latin-American population, in contrast to results reported in European and

North-American samples. In addition, most studies have addressed incident CKD, usually

defined as a decline in eGFR or appearance of albuminuria between two time points. Only two

studies evaluated ESRD or other hard outcome as end-points, and these were conducted in

samples exclusively composed of diabetic patients [8,9]. Moreover, most studies were per-

formed in populations free of CKD at baseline, with few evaluating participants with estab-

lished CKD at study entry [7–9]. It is possible that the association between metabolites and the

evaluated outcome changes dynamically as eGFR decreases, particularly considering that renal

function presents such a major effect on metabolite concentration. This last argument also

highlights our incomplete understanding of the mechanisms by which identified molecules

mediate an increased risk of outcomes. However, it is tempting to suggest that the identified

molecules point towards new pathways that may be target of pharmacological modulation in

the CKD scenario.

Our study has some limitations. First, our sample size is moderate and possibly underpow-

ered for smaller differences among groups. In addition, particularly for the ESRD analysis, we

could not run more adjustments, considering the relatively small number of events. Second,

many of the metabolites found to be associated to events, particularly those related to ESRD,

showed a very significant association to baseline (creatinine-based) eGFR [14]. This implies

that despite all models being adjusted for baseline eGFR, we cannot rule out the possibility that

the relationship observed is still being at least partially determined by the fact that these metab-

olites may reflect renal function at baseline, and could, thus, be seen as a result due to reverse

causation. Nonetheless, this is a fundamental challenge for all metabolomics studies in

nephrology research. Whether some of the metabolites with top associations can be used as

more accurate biomarkers of renal function is an interesting hypothesis under investigation [1,

14]. In addition, although we do show results for pathway analysis here, these findings are also

limited by the main reasons mentioned above: our cohort is somewhat underpowered for cap-

turing smaller effects and providing a large number of metabolites for pathway analysis, and

the confounding effect of eGFR remains as a problem even after adjustments, considering the

fact that all our participants present CKD. While exploring metabolite pathways and biochem-

ical classes might provide interesting insights into the biology underlying the association of

metabolites to kidney function, epidemiological studies in CKD populations may not be the

best study design to assess that.

In conclusion, our data show metabolites related to the risk of death and ESRD in a CKD

cohort. Although replication is needed, these findings raise interesting questions on the role of

these metabolites as biomarkers and on the biological mechanisms underlying the observed

relationships.
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28. Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, et al. Metabolite profiling

and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015 Mar

3; 131(9):774–85. https://doi.org/10.1161/CIRCULATIONAHA.114.013116 PMID: 25573147

29. Wu JH, Lemaitre RN, King IB, Song X, Sacks FM, Rimm EB, et al. Association of plasma phospholipid

long-chainω-3 fatty acids with incident atrial fibrillation in older adults: the cardiovascular health study.

Circulation. 2012 Mar 6; 125(9):1084–93. https://doi.org/10.1161/CIRCULATIONAHA.111.062653

PMID: 22282329

30. Shoji T, Kakiya R, Hayashi T, Tsujimoto Y, Sonoda M, Shima H, et al. Serum n-3 and n-6 polyunsatu-

rated fatty acid profile as an independent predictor of cardiovascular events in hemodialysis patients.

Am J Kidney Dis. 2013 Sep; 62(3):568–76. https://doi.org/10.1053/j.ajkd.2013.02.362 PMID: 23602192

31. Higashiyama A, Kubota Y, Marumo M, Konishi M, Yamashita Y, Nishimura K, et al. Association

between serum long-chain n-3 and n-6 polyunsaturated fatty acid profiles and glomerular filtration rate

assessed by serum creatinine and cystatin C levels in Japanese community-dwellers. J Epidemiol.

2015; 25(4):303–11. https://doi.org/10.2188/jea.JE20140093 PMID: 25728619

32. Svensson M, Schmidt EB, Jørgensen KA, Christensen JH; OPACH Study Group. N-3 fatty acids as

secondary prevention against cardiovascular events in patients who undergo chronic hemodialysis: a

randomized, placebo-controlled intervention trial. Clin J Am Soc Nephrol. 2006 Jul; 1(4):780–6. https://

doi.org/10.2215/CJN.00630206 PMID: 17699287

33. Donadio JV Jr, Bergstralh EJ, Offord KP, Spencer DC, Holley KE. A controlled trial of fish oil in IgA

nephropathy. Mayo Nephrology Collaborative Group. N Engl J Med. 1994 Nov 3; 331(18):1194–9.

https://doi.org/10.1056/NEJM199411033311804 PMID: 7935657

34. Donadio JV Jr, Grande JP, Bergstralh EJ, Dart RA, Larson TS, Spencer DC. The long-term outcome of

patients with IgA nephropathy treated with fish oil in a controlled trial. Mayo Nephrology Collaborative

Group. J Am Soc Nephrol. 1999 Aug; 10(8):1772–7. PMID: 10446945

35. Miller ER 3rd, Juraschek SP, Appel LJ, Madala M, Anderson CA, Bleys J, et al. The effect of n-3 long-

chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-

analysis of clinical trials. Am J Clin Nutr. 2009 Jun; 89(6):1937–45. https://doi.org/10.3945/ajcn.2008.

26867 PMID: 19403630

36. Hoogeveen EK, Geleijnse JM, Kromhout D, Stijnen T, Gemen EF, Kusters R, et al. Effect of omega-3

fatty acids on kidney function after myocardial infarction: the Alpha Omega Trial. Clin J Am Soc Nephrol.

2014 Oct 7; 9(10):1676–83. https://doi.org/10.2215/CJN.10441013 PMID: 25104273

37. Barden AE, Burke V, Mas E, Beilin LJ, Puddey IB, Watts GF, et al. n-3 fatty acids reduce plasma 20-

hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease. J Hypertens.

2015 Sep; 33(9):1947–53. https://doi.org/10.1097/HJH.0000000000000621 PMID: 26103129

38. Yu B, Heiss G, Alexander D, Grams ME, Boerwinkle E. Associations Between the Serum Metabolome

and All-Cause Mortality Among African Americans in the Atherosclerosis Risk in Communities (ARIC)

Study. Am J Epidemiol. 2016 Apr 1; 183(7):650–6. https://doi.org/10.1093/aje/kwv213 PMID: 26956554
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