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Abstract 
Systematic investigation of tumor-infiltrating immune (TII) cells is important to the development of immunotherapies, and the clinical 
response prediction in cancers. There exists complex transcriptional regulation within TII cells, and different immune cell types display 
specific regulation patterns. To dissect transcriptional regulation in TII cells, we first integrated the gene expression profiles from single-
cell datasets, and proposed a computational pipeline to identify TII cell type-specific transcription factor (TF) mediated activity immune 
modules (TF-AIMs). Our analysis revealed key TFs, such as BACH2 and NFKB1 play important roles in B and NK cells, respectively. We also 
found some of these TF-AIMs may contribute to tumor pathogenesis. Based on TII cell type-specific TF-AIMs, we identified eight CD8+ 
T cell subtypes. In particular, we found the PD1 + CD8+ T cell subset and its specific TF-AIMs associated with immunotherapy response. 
Furthermore, the TII cell type-specific TF-AIMs displayed the potential to be used as predictive markers for immunotherapy response of 
cancer patients. At the pan-cancer level, we also identified and characterized six molecular subtypes across 9680 samples based on the 
activation status of TII cell type-specific TF-AIMs. Finally, we constructed a user-friendly web interface CellTF-AIMs (http://bio-bigdata. 
hrbmu.edu.cn/CellTF-AIMs/) for exploring transcriptional regulatory pattern in various TII cell types. Our study provides valuable 
implications and a rich resource for understanding the mechanisms involved in cancer microenvironment and immunotherapy. 
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Introduction 
The complexity of tumor microenvironment (TME) and immune 
system is the key factor affecting the development of malignant 
tumors and the response to treatment of individuals. Therefore, 
it is of great significance to study the molecular characteristics 
and regulatory networks of tumor infiltrating immune (TII) cells 
for elucidating the immune-related mechanisms of malignant 
tumors, revealing the mechanisms related to immunotherapy 
response, and discovering new therapeutic targets. 

TII cells in the TME may play an anti-tumor or pro-tumor role 
in the process of tumor occurrence and development [1, 2]. T cell 
infiltration in cancers is closely associated with disease progres-
sion and clinical immunotherapy response [3]. The proportion of 
TCF7 + CD8+ T cells in the TME of melanoma tumors can be 
used to predict the outcome of immunotherapy in patients [4]. 
Liang et al. [5] observed a higher proportion of TII cells in local 
urothelial carcinoma. Ni et al.[6] have revealed that infiltrating 

B cell in TME is associated with the progression of gastric cancer. 
These studies indicate that the tumor immune microenvironment 
is highly complex and heterogeneous, and is closely related to the 
occurrence and development of cancer, survival prognosis and 
treatment response. However, the underlying molecular mecha-
nisms in these TII cells remain unclear. Therefore, it is important 
to study the gene regulation mechanism in TII cells and elucidate 
the influence of TII cells on cancer progression and treatment 
response. 

Transcription factor (TF) regulates the expression of genes and 
are key molecules in cells. The activity of TF determines not only 
the function of cells, but also plays an important role in tumor 
immunity. For example, IRF2 drives CD8+ T cell exhaustion to 
restrict anti-tumor immunity [7]. FOXP3+ plays an important 
role in autoimmunity and cancer through regulating T cell 
heterogeneity and function [8]. In recent years, researchers have 
developed a series of databases related to TF regulation, which
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provide valuable resources for revealing the complex TF reg-
ulation mechanisms in malignant tumors. For example, the 
TRANSFAC database collected transcriptional regulation data 
from eukaryotes [9]. The ChIP-X Enrichment Analysis (CHEA) 
database contains a collection of TF target genes screened 
from published low-throughput experiments [10]. The TRRUST 
database stores experimentally validated TF-target gene infor-
mation extracted from the published literatures [11]. Based on 
these data resources, researchers conducted a series of studies on 
transcriptional regulation in tumors. Kibinge et al. [12] proposed  
a TF-centric computational approach to identify transcriptional 
dysregulation modules in tumors. Liu et al. [13] proposed a strategy 
for construction of individual-specific regulatory networks to 
identify dysregulated transcription factors (TFs) in each sample 
. The regulatory processes and functions of TFs in TME cells 
are quite different. In recent years, the rapid development of 
sequencing technology has allowed researchers to perform 
transcriptional level analysis at cell resolution [14]. Aibar et al. [15] 
proposed the ’SCENIC’ method for single-cell regulatory network 
inference and clustering. With the accumulation of cancer single 
cell transcriptome data, it is necessary to use these data to mine 
effective markers and explore the related mechanisms of cancer 
immunity and immunotherapy. 

Here, we proposed a computational pipeline for identifying cell 
type-specific TF-meditated activity immune modules (TF-AIMs) 
based on dual network restart random walk algorithm and ran-
dom perturbation strategy. We then integrated the transcription 
profiles from tumor single-cell datasets and applied our method 
to identify TF-AIMs specific for six TII cell types. We performed 
a systematic analysis of these identified TII cell type-specific 
TF-AIMs and found that the activation frequency of these TF-
AIMs can predict immunotherapy response information in tumor 
patients. In addition, we identified six tumor molecular subtypes 
based on the activation status of TII cell type-specific TF-AIMs 
across 9680 tumor samples of The Cancer Genome Atlas (TCGA) 
database. Finally, we developed CellTF-AIMs (http://bio-bigdata. 
hrbmu.edu.cn/CellTF-AIMs/), an online database which collected 
TII cell type-specific TF-AIMs. 

Materials and methods 
In this study, we integrated single-cell transcriptome data, tran-
scription factor regulation data, and immune marker data to 
identify immune cell type-specific TF-AIMs in the TME (Fig. 1). 

Data collection 
Single cell gene expression data 
Gene expression of scRNA-seq datasets were retrieved from Gene 
Expression Omnibus [16] and EMBL-the European Bioinformatics 
Institute (EBI). In total, 15 tumor single cells RNA sequencing 
datasets were obtained, which includes 14 datasets from GEO and 
one dataset from EMBL-EBI (https://www.ebi.ac.uk/arrayexpress/ 
experiments/E-MTAB-6149/) (Fig. S1). We collected 197 019 single 
cells from six cancer types (breast cancer, colorectal cancer, 
glioblastoma, head and neck, lung cancer and melanoma). 
Furthermore, cell types for 75 245 of these 197 019 single cells 
have been annotated in the original study (alveolar cells: n = 1710; 
B cells: n = 6421; endothelial cells: n = 1696; fibroblasts: n = 1774; 
immune cells: n = 9941; macrophage: n = 420; malignant cells: 
n = 2793; mast cells: n = 120; myeloid cells: n = 9756; NK cells: 
n = 125; T cells: n = 40 489) (See online supplementary material 
for a colour version of this Fig. S1). In this study, cells that have 

annotated cell type in original study were used for subsequently 
identifying TII cell type-specific TF-AIMs. 

Single cell gene expression of CD4+ helper T cells and CD8+ 
cytotoxic T cells were downloaded from https://support.10 
xgenomics.com/single-cell-gene-expression/datasets [17]. 

Furthermore, two datasets (GSE115978 and GSE120575) contain 
immunotherapy information (Table S1). The therapeutic response 
of patient was evaluated using the Response Evaluation Criteria in 
Solid Tumors (RECIST) guidelines. Patients with either a complete 
response, partial response, or stable disease were classified as 
responders, whereas those with progressive disease were deemed 
non-responders. Specifically, in the GSE115978 and GSE120575 
datasets, the post-treatment remaining tumor tissues were iden-
tified as resistant tissues. 

Expression profiling of tissue sample 
We also obtained gene expression datasets at tissue sam-
ple level, which contains immunotherapy information. Four 
datasets including GSE35640, GSE91061, GSE78220 from GEO and 
PRJEB23709 from European Nucleotide Archive were collected. We 
also obtained the immunotherapy response information of the 
samples in the above four datasets. The therapeutic responses 
were also classified according to the RECIST criteria. Patients 
with complete response, partial response, or stable disease 
were categorized as responders, whereas those with progressive 
disease were deemed non-responders. The detailed treatment 
information for datasets is shown in Table S1. 

In addition, the mRNA expression data of 9680 tumor tis-
sue samples of 32 cancer types were obtained from the TCGA 
database [18] (See online supplementary material for a colour 
version of this Fig. S2). 

TF regulation and BioPax pathway data 
We integrated TF-target gene regulation data from multiple data 
sources, including TRANSFAC [19], ENCODE [20], CHEA [10], and 
TRRUST [11]. Datasets were combined into a TF-targets network. 
We download TRANSFAC, ENCODE, and CHEA datasets from 
Harmonizonme (http://amp.pharm.mssm.edu/Harmonizome/) 
[21] and TRRUST datasets from TRRUST web sites (www.grnpedia. 
org/trrust). Finally, the integrated network contains 913 TFs, 
23 626 target genes, and 2 022 650 transcriptional regulatory 
relationships (See online supplementary material for a colour 
version of this Fig. S3). 

BioPAX [22] format integrated pathways were downloaded from 
https://www.pathwaycommons.org/archives/PC2/v10/. Finally, 
we obtained the integrated biological pathway network contains 
a total of 2 374 707 pairs of interactions between 32 875 gene. 

Immune signatures 
The Molecular Signatures Database (MSigDB) [23] collected 
immune signatures which represent cell types, states, and 
perturbations in the immune system. We downloaded 4872 
immune signature gene sets from 389 published immunological 
studies in the MSigDB database (http://software.broadinstitute. 
org/gsea/msigdb/collections.jsp#C7) [24], which contained a total 
of 20 653 genes. 

Methods 
Identifying candidate immune signature gene 
sets regulated by TFs 
Hypergeometric tests were used to calculate the P-value of sig-
nificance for the regulated associations between TF and immune
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Figure 1. Flowchart for identifying TII cell type-specific TF-AIMs. 

signature gene set. For example, if an immune signature gene set 
is denoted as A, and all target genes of a TF are denoted as set 
B, then the P-value of regulatory significance between the TF and 
the immune signature gene set is calculated as follows: 

P (X ≥ x) = 1 − 
x−1∑

k=0 

Ck 
MCn−k 

N−M 
Cn 

N 

Here, x represents the number of overlapping genes of A and B; 
N is the number of background genes (background genes include: 
i. all target genes in TF regulation data; ii. the sum of genes in all 
immune signature sets); n represents the size of set B; M repre-
sents the size of set A. For any pair of TF and immune signature 
set, if the P-value of their hypergeometric enrichment analysis is 
<.01, the TF is considered to significantly regulate the immune 
signature set. We extracted their (A and B) overlapping genes 
for further analysis. This strategy uses target gene enrichment 
to establish TF-immune module candidate regulation, which can 
reduce the influence of TF-target relation redundancy and false 
positive to some extent. 

Mining TF-mediated immune modules based on 
dual network restart random walk algorithm 
For each pair of TF and immune signature regulatory relationship 
with significant hypergeometric test (P < .01), overlapping genes 
were taken as seed nodes, and the dual network restart random 
walk algorithm was used to score genes in the constructed dual 
network, and the random perturbation strategy was used to calcu-
late the P-value of gene random walk scores in the dual network, 
so as to identify TF-meditated immune modules. 

Firstly, integration of TF regulation and BioPax pathway net-
works to construct dual network. The dual network contains two 

networks (TF regulation and BioPax pathway networks) which 
include the same gene nodes. To construct dual network, if the 
gene in the transcriptional regulatory (pathway) network is not 
in the pathway (transcriptional regulatory) network, the gene is 
added to the pathway (transcriptional regulatory) network, but 
does not add its connection relationship, thus obtaining two 
networks with identical gene nodes but different connection rela-
tionships. 

The genes on the network were scored based on dual network 
random walk algorithm [25]. For each pair of TF and immune 
signature, overlapping genes were taken as seed nodes, and then 
the dual network restart random walk algorithm [25] was used to 
evaluate the importance scores of all genes on the network except 
the seed genes. 

Next, the significance of gene importance scores was evaluated 
based on random perturbation strategy. Specifically, (i) 200 net-
works with the same node degree are randomly generated; (ii) for 
each pair of TF (A) and immune signature (B), dual network restart 
random walks are performed on 200 random networks using the 
same seed nodes (overlapping genes of A and B), and thus each 
gene has a true score Sg and 200 random scores Si (i = 1,  . . .  ,200); 
(iii) the significance of gene importance scores was calculated as: 
Pg = num /200, num represents the number of Si which is greater 
than or equal to Sg. 

We extracted TF mediated immune modules as follows: (i) all 
genes on the network are sorted in descending order according 
to random walk importance score to generate a list of genes 
[g1, g2, . . .  , gn] (g1 has the highest score); (ii) according to the 
significance P-value of gene importance score, the significance 
list of gene importance score [I1, I2, . . .  , In] corresponding to the 
list of genes [g1, g2, . . .  , gn] was generated (I = 1 for genes with 
Pg < .05, otherwise I = 0); (iii) assuming that the position of TF (A)
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in the gene list is m, if  Im = 0, the subnetwork composed of TF (A) 
and seed genes (overlapping genes of A and B) is identified as 
TF-mediated immune module; if Im = 1  and

∑m 
k=1Ik < m, the TF-

mediated immune module is a subnetwork composed of genes 
[g1, g2, . . .  , gm] and seed genes; if Im = 1  and

∑m 
k=1Ik = m, the TF-

mediated immune module is a subnetwork composed of genes 
[g1, g2, . . . , gq] and seed genes (q satisfied Iq = 1,  Iq + 1 = 0  and∑q 

k=1Ik = q). 
Based on the above processes, we can extract the TF-mediated 

immune modules corresponding to each TF. Here, we identified 
∼150 000 TF-mediated immune modules regulated by 742 TFs (See 
online supplementary material for a colour version of this Fig. S4). 

Evaluating the activity of TF-mediated immune 
modules in TII cells 
The activity score of the TF-mediated immune module in all cells 
is calculated using the AUCell algorithm [15]. AUCell is a gene-
based expression ranking method that uses ‘area under the curve’ 
(AUC) to calculate whether a critical subset of the input gene set 
is enriched in the expressed genes of each cell [15]. It is used 
to identify cells with active gene signatures in scRNA-seq data. 
AUCell algorithm explored the threshold of activity score for each 
TF-mediated immune module, evaluated their activation state in 
each cell, and obtained the binary activation spectrum of TF-
mediated immune modules in cells. In this study, the activity of 
TF-AIMs was evaluated for all of these 197 019 cells at single-cell 
resolution. Then, cells that have annotated cell type information 
from the original study were used for subsequent analysis (See 
online supplementary material for a colour version of this Fig. S1). 

Identifying TII cell type specific TF-AIMs 
On the constructed TF-mediated immune module activation pro-
file, there are six TII cell types including B cells, macrophages, 
mast cells, myeloid cells, NK cells, and T cells. In the case of T cells, 
for each TF-mediated immune module, determine whether it is T 
cell-specific: (i) the proportion of TF-mediated immune module 
activated in T cells is calculated, if the proportion value >30%, 
the next step is taken; (ii) 100 T cells were randomly selected, and 
100 cells were also randomly selected from each of the other cell 
types respectively; then, Fisher’s exact test (unilateral test) was 
used to check whether the TF-mediated immune module tend to 
activate in T cells compared with other cell types. In this step, the 
P values of T cells and other five cell types are obtained. If P < .05 
for at least four cell types, then variable x = 1; otherwise variable 
x = 0; (iii) repeat step (ii) 1000 times, and if the variable x = 1  is  >800 
times, the TF-mediated immune module is considered T cell type-
specific TF-AIM. 

In addition, we used similar approach to identify CD4+ and 
CD8+ T cell type-specific TF-AIMs. Due to CD4+ and CD8+ T cells 
are T cell subsets, more stringent criteria are used here: requiring 
Fisher’s exact test P value <.001 in step (ii); the frequency of 
variable x = 1 was 1000 in step (iii). 

Results and discussion 
The landscape of TII cell type-specific TF-AIMs 
Integration of single cell expression profile, TF-target gene regu-
lation and molecular network, we identified TII cell type-specific 
TF-AIMs and constructed the landscape of TII cell type-specific 
TF-AIMs of TME. Cells that have annotated cell type in, see online 
supplementary material for a colour version of this, Fig. S1 were 
used for identifying cell type-specific TF-AIMs. As a result, TF-
AIMs specific for six TII cell types (B cells, CD4+/CD8+ T cells, 

myeloid cells, macrophage cells, natural killer [NK] cells, and mast 
cells) were identified. These TII cell type-specific TF-AIMs were 
merged to construct global landscape of TII cell type-specific TF-
AIMs network in TME (See online supplementary material for a 
colour version of this Fig. S5). The number of TFs ranged from 7 
to 77 across different TII cell type-specific networks. 

To explore the regulation of TF in TII cells, we dissected TF-
AIMs which contained cell type-related immune signatures that 
recorded in the MsigDB database [26, 27]. First, we screened 
the immune-signature gene sets associated with different cell 
types. For example, B cell associated immune-signature gene sets 
(immune-signatures) refer that genes in sets may be up/down reg-
ulated in B cell by comparing with control (recorded in immuno-
logic signature gene sets C7 of MsigDB). Then, TII cell type-specific 
TF-AIMs which contain immune-signatures that associated with 
the corresponding cell type were selected. Finally, these screened 
TF-AIMs were integrated to form immune signature-specific regu-
latory networks in different TII cell types (Fig. 2). Dissecting these 
networks found that TF BACH2 participates in the regulatory 
network formed by B cell type-specific TF-AIMs. BACH2 is mainly 
expressed in B and T lymphocytes and controls terminal differen-
tiation and maturation of B lymphocytes [28]. BACH2 directly reg-
ulates JUN, BLHM, and SPATS2 genes in the network of B cell type-
specific TF-AIMs. The NK cell-associated network is regulated by 
TF ETV7 and NFKB1 (Fig. 2). NFKB1 functions as an important reg-
ulator to mediate cell maturation and effectors of human NK cells 
[29]. The loss of NFKB1 promotes the expression of tumor necrosis 
factor (TNF) and activates the TF STAT1, thereby promoting the 
occurrence of gastric cancer [30]. These evidences confirm that 
NFKB1 is an important TF in NK cells and has multiple functions. 
The TF ETV7 was significantly positively correlated with CD8+ T 
cell infiltration in melanoma, which indicates the regulatory role 
of ETV7 in TME [31]. However, the regulatory mechanism of ETV7 
in tumor NK cells remains unclear. In this study, we found that 
among the NK cell type-specific TF-AIMs regulated by ETV7, ETV7 
directly regulates genes such as JUNB, DGKA, and MAP4K2, which 
provides important guidance for revealing the role and function of 
ETV7 in NK cell-mediated natural immune response. In summary, 
the above analysis results not only demonstrate the reliability of 
our proposed method for identifying cell type-specific TF-AIMs, 
but also suggest these cell type-specific TF-AIMs have important 
significance for revealing the regulatory function of TF in tumor 
immune microenvironment and to studying the mechanisms of 
tumorigenesis. 

TII cell type-specific TF-AIMs contribute to 
tumor pathogenesis 
To further capture key transcriptional regulation in different cell 
types, we next screened TII cell type-representative TF-AIMs. First, 
we counted the activation ratio of TII cell type-specific TF-AIMs 
in different cell types (Fig. 3A). We found that some TF-AIMs 
activated with a high frequency in multiple TII cell types. Then, 
TII cell type- representative TF-AIMs were defined as follows (e.g. 
myeloid cells): (i) TF-AIMs should be activated in at least 30% 
of myeloid cells; (ii) the activation ratio of TF-AIMs in myeloid 
cells are higher (≥two-fold) than at least other four TII cell types. 
Representative TF-AIMs of myeloid cells and B cells recognized 
by the above rules are shown in Fig. 3B. TFs such as SP1, MAF, 
and HSF2 were involved in the representative TF-AIMs of myeloid 
cells. HSF2 directly regulates GDPD3 gene which displayed key 
roles in the maintenance of chronic myelogenous leukemia stem 
cells [32]. Deletion of c-MAF may enhance antitumor T cell immu-
nity via reducing tumor burden [33]. The results further support
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Figure 2. TII cell type-specific TF-AIMs that related with immune features of the corresponding cell type. Big nodes represent TFs; smaller nodes represent 
other genes in TF-AIMs. 

the ability of these identified TF-AIMs to help reveal regulatory 
mechanisms in tumor immune microenvironment cells. Modules 
regulated by SP3, SMAD1, ELF2, GABPB1, and MAF are intercon-
nected to form a crosstalk transcription modulation. SP1 is the 
key gene that links these TF-AIMs. This gene plays an important 
role in the immune system or anti-tumor immune response. For 
example, SP1 binds to and activates the promoters of a number of 
important myeloid genes [ 34]. We found that SP1 acts as a ‘bridge’ 
in myeloid cell type- representative TF-AIMs (Fig. 3B), revealing 
its central role in the transcriptional regulation of myeloid cells 
in TME. In the representative TF-AIMs of B cell, BACH2 regulates 

key genes of tumorigenesis and prognosis, such as TRIB1, SPATS2, 
and JUN. Especially, SPATS2 related with cell cycle progression and 
immune cells infiltration in hepatocellular carcinoma [35]. Zhang 
et al. [36] revealed that c-Jun plays a critical role in liver metastasis 
in human breast cancer model. Kim et al. [37] have demonstrated 
that TRIB1 regulates tumor growth and is associated with breast 
cancer survival and treatment response. In addition, BACH2 also 
directly regulates TF XBP1, which can reduce the proliferation and 
stemness of cancer cells [38]. These two key TFs BACH2 and XBP1 
in the B cell type-representative TF-AIMs reveal transcriptional 
regulatory pathways against tumor proliferation.
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Figure 3. Analysis of TII cell type-representative TF-AIMs. (A) Heatmap of activation status of TII cell type-specific TF-AIMs in different cell types. Each 
column represents a TF-AIMs, each row represents a type of immune cell, and the heatmap shows the proportion of cells in which the corresponding 
TF-AIM is activate. (B) the representative TF-AIMs network for myeloid cell and B cell. P values of edges represent significance of co-expression among 
genes. (C) CD4+/CD8+ T cell type-representative TF-AIMs. Histogram of the number of TF-AIMs regulated by TFs (upper-right). 

In this study, T cell type contains the largest number of cells, 
and CD4+/CD8+ T cells are the dominant cell types of T cell. 
Using the same strategy, we identified 14 and 3 representative 
TF-AIMs for CD4+ and CD8+ T cell types, respectively ( Fig. 3C). In 
the CD4+ T cell type-representative TF-AIMs, MAZ, SP1 and JUN 
genes act as ‘bridges’ to connect key TFs. MAZ is closely related 
to tumor proliferation and metastasis [39]. MAF, a TF regulates 
MAZ, induces CD4+ T cells to produce the anti-inflammatory 
cytokine IL-10 in vitro [40]. Moreover, TF STAT5B, which regulates 
MAF, is closely related to CD4+ T cells in immune cells [41]. These 
results not only verified the accuracy of these TII cell type-specific 
TF-AIMs, but also indicated that CD4+ T cell type-representative 
TF-AIMs dominated by STAT5 → MAF → MAZ played an impor-
tant role in the tumor immune microenvironment. In addition, 
CD4+ T cell type-representative TF-AIMs also contain other well-
known cancer-related genes, such as MAPK6, AKT1S1, AKT3 and 
CDC5L. The CD8+ T cell type-representative TF-AIMs are regu-
lated by two TFs (NFKB1 and NFKBIA). Further analysis found a 
key regulatory axis: NFKB1 → SP1 → IL10. Rivas et al. [42] revealed 
that suppression of Interleukin-10 (IL10) can enhance T-cell 
antitumor immunity and responses to immunotherapy in chronic 
lymphocytic leukemia. Furthermore, cancer genes such as MYC, 
SP1, and JUN that involved in TF-AIMs of CD4+ T cell also exist 
in CD8+ T cell type-representative TF-AIMs. The above results 
suggest that TF could mediate anti-tumor immune response 
by regulating cancer immune-related factors such as IL10, 
and also directly regulate cancer-related genes, thus affecting 
tumorigenesis. 

CD4+/CD8+ T cell type-specific TF-AIMs 
participate in consistent immune pathway 
We further performed functional enrichment analysis for CD4+ 
and CD8 + T cell type-representative TF-AIMs, and found that 
genes in these TF-AIMs were enriched in important immune-
related pathways such as IL27 pathway (M36), IL2 pathway (M122), 
IL2/STAT5 pathway (M234), and T cell activation (GO:0042110) 
regulation of inflammatory response (GO:0050727) and leukocyte 
cell–cell adhesion (GO:0007159) (Fig. 4A). It may indicate that 
CD4+ and CD8+ T cell type-representative TF-AIMs share some 
tumor - or immune-related genes that are widely expressed in 

T cells. In addition, CD8+ T cell type-representative TF-AIMs 
were more highly enriched in functions such as signaling by 
interleukins (R-HSA-449147), AP1 pathway (M167), and negative 
regulation of cell proliferation (GO:0008285). We further analyzed 
the functional annotation of genes in CD4+/CD8+ T cell  
type-representative TF-AIMs, and calculated the differential 
expression of these genes (Fig. 4B and C). Most of genes in 
CD4+/CD8+ T cell type-representative TF-AIMs were differential 
expression between normal CD4+ helper T cells and CD8+ toxic 
T cells (Fig. 4C). This suggests that these CD4+/CD8+ T cell type-
representative TF-AIMs is indeed cell type-specific. Furthermore, 
we found that genes in CD4+ and CD8+ T cell type-representative 
TF-AIMs tend to be complementary (Fig. 4C). The above results 
suggest that CD4+ and CD8+ T cells in TME activate distinct 
subregions of consistent immunomodulation-related functions. 

TII cell type-specific TF-AIMs reveal CD8+ T cell  
subtypes associated with immunotherapy 
CD8 + T lymphocytes in the tumor immune microenvironment 
drive the anti-cancer immune response [43–45]. Immunotherapy, 
which activates the anti-tumor immune response of T cells, has 
been widely studied in cancers. Therefore, we further identified 
CD8+ T cell subtypes based on CD8+ T cell type-specific TF-
AIM. Firstly, based on the activation status of 201 CD8+ T cell  
type-specific TF-AIMs in each cell, we used UMAP for dimen-
sionality reduction. UMAP is a nonlinear dimensionality reduc-
tion technique for analyzing high-dimensional data. It is able to 
discern subtle cell population differences while preserving local 
and global structure in the data [46]. Then, all CD8+ T cells  
(mainly from GSE111894, GSE115978, GSE120575 and GSE123139 
datasets) were unsupervised clustered by k-medoids algorithm. 
As a result, eight CD8+ T cell subtypes were identified (Fig. 5A). 
It was found that the distribution of CD8+ T cell subtypes in  
tissue samples was heterogeneous (See online supplementary 
material for a colour version of this Fig. S6). Figure 5B shows 
the normalized expression rank scores of T cell marker genes 
in each subtype. According to the expression of T cell marker 
gene in different cell subtypes, we found that the expression rank 
of PDCD1 (PD1), CD8A and CD8B in G2, G3, G5, G7, and G8 was 
high, and cells of these subtypes were defined as PD-1 + CD8+

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae368#supplementary-data
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Figure 4. CD4 +/CD8 + T cell type-representative TF-AIMs function analysis. (A) Common enrichment pathways for CD4+ and CD8+ T cell type-
representative TF-AIMs. Bubble size represents negative logarithm of function enrichment P value, enrichment function data source: GO; KEGG 
(Kyoto Encyclopedia genes and genomes); NCI-PID (the NCI-nature pathway interaction) and Reactome. (B) Networks of CD4+ and CD8+ T cell type-
representative TF-AIMs. (C) Function annotation of genes in CD4 + T cells and CD8+ T cell representative modules. The upper bar chart shows the 
negative logarithm of P value of the differential expression of genes between CD4+ helper T cells and CD8+ toxic T cells. The font of significantly 
differentially expressed genes (Wilcoxon sign rank test P < 0.05) was purple. 

T cell (  Fig. 5B). Studies have shown that PD-1 + CD8+ T cells 
proliferation in peripheral blood of tumor patients after receiving 
PD-1 targeted therapy [47], and PD-1 + CD8+ T cells have predic-
tive potential for immunotherapy effect in PD-1 block therapy 
samples [48, 49]. These results suggest that PD-1 + CD8+ T cell  
subtype-specific TF-AIMs may relate to the effect of immunother-
apy. We calculated the proportion of CD8+ T cell type-specific 
TF-AIMs activated in each CD8+ T cell subtype  (Fig. 5C). In PD-
1 + CD8+ T cell subtypes, TF-AIMs regulated by IRF8, NR1H3, IRF7, 
and NFKBIA had a very high activation frequency (Fig. 5C), while 
in other cell subtypes, TF-AIMs regulated by these TFs had a low 
activation frequency. 

Next, we analyzed the association of the above PD-1 + CD8+ 
T cell subtype-specific TF-AIMs with immunotherapy based 
on immunotherapy response/non-response information of 
tumor patients from GSE115978 and GSE120575. Patients 
receiving immunotherapy can be divided into three groups: 
immunotherapy-responsive (R), non-responsive (NR), and resis-
tance groups (see materials and methods). We compared the 
activation ratio of IRF8, NR1H3, IRF7, and NFKBIA-regulated 
TF-AIMs in PD-1 + CD8+ T cell subtypes of different groups of 
patients (Fig. 5D). The results showed that the proportion of 
IRF7 and NFKBIA-regulated TF-AIMs activation was higher in 
the immunotherapy-resistant samples and NFKBIA-regulated
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Figure 5. Analysis of CD8+ T cell subtype-specific TF-AIMs. (A) the UMAP view of CD8+ T cell subtypes. (B) Rank normalized expression of T cell markers 
in eight subtypes. (C) Histogram of activation ratios of CD8+ T cell type-specific TF-AIMs in different subtypes. (D) Proportion of TF-AIMs activation in 
PD-1 + CD8+ T cell subtypes in immunotherapy patients. Rank sum test was used to evaluate the significance P-value. (E) TF-AIMs network for IRF8, 
NR1H3, IRF7 and NFKBIA in PD-1+ CD8+ T cell subtypes. 

TF-AIMs activation was higher in the immunotherapy NR samples 
compared with these response (R) samples. TF-AIMs commonly 
activated in PD-1 + CD8+ T cells contain many tumor driver 
genes ( Fig. 5E). For example, TFs in these TF-AIMs all regulate 
widely expressed cancer related genes such as CCL5, SP1, JUN, 
and MYC. We also found that genes in these TF-AIMs also play 
important roles in cancer immunotherapy. In the IRF7 related 
TF-AIMs, the IRF7-STAT1-CXCL10 axis may relate with CD8+ T 
cell infiltration and immune evasion in cancer [50]. CCL5, which 
is the gene exist in all these four TF-AIMs has been nominated 
as biomarkers for immunotherapy of cancer [51]. These results 
suggest that PD-1 + CD8+ T cell subtype-specific TF-AIMs have 
the potential to be used as cancer immunotherapy-related 
markers, and also can help to reveal the relevant mechanisms 
of cancer immunotherapy. 

TII cell type-specific TF-AIMs predict 
immunotherapy response of cancer 
In order to systematically analyze the relevance of TII cell type-
specific TF-AIMs in immunotherapy, we calculated the activation 
frequency of TF-AIMs in cells of immunotherapy patients from 
GSE115978 and GSE120575. Immunotherapy response-related TF-
AIMs were defined as the activation frequency of which were 
significantly differed between the immunotherapy responsive 
group (R) and the non-responsive group (NR and resistance) 
(Fig. 6A). Figure 6A shows TII cell type-specific TF-AIMs with 
activation frequency changed by more than 1.5 times. These 
immunotherapy response-associated TF-AIMs are regulated by 
TFs such as XBP1, REL, MAFG, STAT5B, NFKB, and IRF7. TF-
AIMs regulated by TFs such as XBP1 and NFKB1 tended to be 
activated in the immunotherapy non-responsive group, while TF-
AIMs regulated by TFs such as REL and STAT5B tended to be 
activated in the immunotherapy responsive group. To further 
verify these immunotherapy related TF-AIMs, we collected 
four immunotherapy related datasets (GSE91061, GSE78220, 
GSE35640, and PRJEB23709), in which samples were classified 

as responders and non-responder (see materials and methods). 
We calculated the differential expression of genes in these 
immunotherapy-associated TF-AIMs between immunotherapy 
responder and non-responder groups (Fig. 6B). The results 
showed that genes in immunotherapy-associated TF-AIMs were 
differentially expressed in independent datasets at the tumor 
tissue/sample level, further confirming the association between 
these TII cell type-specific TF-AIMs and immunotherapy. 

Next, we dissected the regulatory associations in these 
immunotherapy related TF-AIMs (Fig. 6C). We found that multiple 
TF-AIMs regulated by TFs such as IRF7, STAT5B, and NFKBIA are 
relevant to immunotherapy, and these TF-AIMs can crosstalk with 
each other. For example, the two TF-AIMs regulated by NFKBIA 
both contain the regulatory relationship between NFKBIA and 
genes such as CCL5, STAT1, and NFKB1. Therefore, we constructed 
a TF-AIMs crosstalk network related to immunotherapy response 
(Fig. 6D). Functional analysis showed that these immunotherapy 
related TF-AIMs are generally enriched in response to interferon-
gamma (GO:0034341), myeloid differentiation (GO:0030099:) and 
leukocyte differentiation (GO:0002521). In addition, genes of 
STAT6 related TF-AIMs specifically enriched in the IL4 pathway 
(M28), and genes in NFKB1 regulated TF-AIMs specifically 
enriched in the IL12/STAT4 pathway (M290) (Fig. 6E and See online 
supplementary material for a colour version of this Fig. S7). 

We then evaluated the predictive power of TII cell type-specific 
TF-AIMs in Fig. 6A for cancer patients respond to immunotherapy 
based on activation frequency in TME cells (Fig. 6F). We found that 
the frequency of activation of IRF7-AIM2, IRF7-AIM3, and NFKBIA-
AIM was a good predictor for patient’s immunotherapy response 
(AUC values >0.8). We further used a cross-validation approach to 
evaluate the predictive efficacy of TF-AIMs for immunotherapy 
in independent tissue sample expression datasets. The logistic 
regression coefficient of genes in each TF-AIM to immunotherapy 
response was calculated in the training set, and then the 
coefficients were used to predict immunotherapy response of 
individuals in validation datasets. The predictive efficacy of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae368#supplementary-data
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Figure 6. Association analysis of TII cell type-specific TF-AIMs and immunotherapy response. (A) Heatmap of differences for the frequency of TF-
AIMs activation in patient cells in the immunotherapy response/non-response group. Rows are patients and columns are TF-AIMs. Only TF-AIMs with 
activation frequency differences greater than 1.5 times are shown. (B) Heatmaps of differential significance (Wilcoxon symbol rank test p value is 
< 0.05, 0.01, and 0.001, respectively) of gene expression in TF-AIMs in independent samples. Row: Genes in TF-AIMs; column: The accession of the dataset. 
(C) The regulatory networks of TF-AIMs associated with immunotherapy response. Pie charts of each gene: Differentially expressed in independently 
validated datasets. (D) the network of TF-AIMs associated with immunotherapy. (E) Functional enrichment heatmap of immunotherapy associated 
TF-AIMs. (F) Predictive efficacy of activation frequency of TF-AIMs in TME cells to immunotherapy response. (G) Predictive efficacy of immunotherapy 
response-related TF-AIMs in validation sets. 

immunotherapy response-related TF-AIMs in validation sets 
are shown in Fig. 6G and See online supplementary material 
for a colour version of this Fig. S8A. Furthermore, we also 
evaluated the expression of genes in immunotherapy-associated 
TF-AIMs for predicting immunotherapy response (See online 
supplementary material for a colour version of this Fig. S8B). 
We found that TFs such as IFR7, STAT5B, and NFKB related TF-
AIMs exhibited good predictive performance in validation sets 
(AUC > 0.7) (Fig. 6F and G). These results further demonstrate the 
potential of TII cell type-specific TF-AIMs as a marker of cancer 
immunotherapy and facilitate the understanding of the relevant 
mechanisms of immunotherapy. These TII cell type-specific 

TF-AIMs complement the current panel of immunotherapy 
response markers. 

TII cell type-specific TF-AIMs contribute to 
re-classification of pan-cancer 
TII cell type-specific TF-AIMs can reflect the regulation and func-
tion of TFs in TME. We next dissected the activation status of TII 
cell type-specific TF-AIMs in TCGA tumor tissue samples. We used 
the AUCell algorithm to evaluate the activation of TII cell type-
specific TF-AIMs in 9680 tumor tissue samples from 32 cancers 
in TCGA. We found that some TII cell type-specific TF-AIMs were 
generally activated in tumor tissue samples. TII cell type-specific

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae368#supplementary-data
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TF-AIMs activities in 80% of TCGA tumor samples is shown in, 
See online supplementary material for a colour version of this, 
Fig. S9A. The universal activation network contains TF-AIMs spe-
cific to multiple TII cell types. TF STAT2 is expressed in CD4+ 
T cells, myeloid cells, and macrophages, and regulates cell type-
specific TF-AIMs. We performed functional enrichment analysis 
of cell type-specific TF-AIMs in the universal activation network. 
As a result, TF-AIMs which are generally activated in tumors, are 
generally enriched in functions such as leukocyte differentiation 
(GO:0002521), transcriptional dysregulation in cancer (hsa05202), 
negative regulation of cell proliferation (GO:0008285), B cell acti-
vation (GO:0042113), and cellular response to drug (GO:0035690) 
(See online supplementary material for a colour version of this 
Fig. S9B and C). 

By analyzing the activation status of TII cell type-specific TF-
AIMs in each tumor tissue sample, it was found that many TF-
AIMs were only activated in some samples. Therefore, we inferred 
that the activation status of TF-AIMs has the potential to distin-
guish tumor molecular subtypes. Based on the activation profile 
of TF-AIMs in TCGA samples of 32 cancer types, we used consis-
tent clustering to identify six TCGA sample subclusters (Fig. 7A). 
The distribution of clinical characteristics such as age, sex and 
tumor stage of these six sample clusters is shown in, See online 
supplementary material for a colour version of this, Fig. S10. 
Then, the distribution of cancer samples in different clusters was 
analyzed (Fig. 7B). Breast cancer was further divided into different 
molecular subtypes (C1, C2). In addition, Pheochromocytoma and 
Paraganglioma (PCPG), low-grade glioma of the brain (LGG) and 
Glioblastoma Multiforme (GBM) mainly distributed in the C6 sub-
type, this suggests that PCPG is similar to brain tumor in immune-
related transcriptional regulatory modules. The results showed 
that the survival time of samples in different subtypes was sig-
nificantly different (Log rank test: P < .0001) (Fig. 7C). The C6 sub-
type (mainly contains LGG, GBM, and PCPG tumor samples) has 
the worst survival prognosis, which is consistent with previous 
reports [52, 53]. The above results indicate that these identified 
molecular subtypes have biological and clinical significance. 

To further characterize these pan-cancer molecular subtypes, 
we calculated the activation frequency of each TII cell type-
specific TF-AIMs (shown in Fig. 7A) in these six molecular sub-
types (Fig. 7D). We next identified TCGA subtype-specific TF-AIMs 
(Fig. 7E). TF-AIMs whose activation frequency is 1.5 times higher 
in a given subtype than in all other subtypes are defined as 
subtype-specific. We found macrophage, CD4 + T cell and mast  
cell type-specific TF-AIMs are universally activated in C2, C3, and 
C5 subtypes. The TCGA pan-cancer tumor molecular subtype-
specific TF-AIMs crosstalk networks are shown in Fig. S11. For  
each TF, the number of subtype-specific TF-AIMs was counted. 
It was found that some TFs such as IRF7, ETV7, GABPB1, GABPB2, 
and REL regulated TF-AIMs in different subtypes (Fig. 7F). These 
TFs may have differential regulatory mechanisms across different 
subtypes. Then, we focused on TF-AIMs that are activated in only 
one pan-cancer molecular subtype (See online supplementary 
material for a colour version of this Fig. S12). Previous studies 
have shown that the occurrence of LGG and GBM tumors is 
generally accompanied by up-regulation of heat shock family 
genes, and the expression of heat shock family genes is positively 
correlated with the invasion ability of LGG and GBM [54, 55]. In 
addition, interference with HSF2/HSPH1 pathway may play an 
auxiliary role in the efficacy of glioma antitumor drugs [56]. In 
this study, the C6 subtype mainly contained LGG and GBM tumor 
tissue samples, and we found highly specific TF-AIMs in the C6 
subtype, namely C6-HSF2 (Fig. 7G). In this TF-AIMs, the heat shock 

TF HSF2 regulates the heat shock family gene HSPH1 and the 
heat shock TF HSF1(Fig. 7G). These results indicate that these TF-
AIMs can help to characterize the molecular characteristics of 
the corresponding subtypes and further understand the relevant 
regulatory mechanisms. 

CellTF-AIMs: A web interface for exploring TII 
cell type-specific TF-AIMs 
To facilitate the usage of these identified TF-AIMs, we developed 
CellTF-AIMs (http://bio-bigdata.hrbmu.edu.cn/CellTF-AIMs/), 
which stores TF-AIMs specific for different TII cell types including 
B cell, macrophage, mast cell, myeloid cell, NK cell, T cell, CD4+, 
and CD8+ T cell. In total, CellTF-AIMs documents entries of 
associations between 2114 TF-AIMs and 8 TII cell types/subtypes. 
TF-AIMs provide user-friendly interfaces to search or browse these 
associations. The results of search/browse can be freely obtained. 
Users can explore TF-gene target relations and the biology 
function of these TF-AIMs through the network visualization 
function. Furthermore, we used ‘SingleR’ package [57] to annotate 
cells for datasets containing only ‘unknown’ cell type (See online 
supplementary material for a colour version of this Fig. S1). 
CellTF-AIMs collects this annotation information and provides 
‘analysis’ function, users can analyze and visualize the activity of 
TF-AIMs across all of these 197 019 cells in TME. 

Conclusion 
In this study, we provided a computational pipeline for identifying 
TII cell type-specific TF-AIMs. We constructed a transcriptional 
regulation map of TII cells and systematically analyzed these TII 
cell type-specific TF-AIMs. Our analysis revealed important roles 
of BACH2 and NFKB1 in tumor infiltrating B cells and NK cells, 
respectively. In addition, we also found some of these TF-AIMs 
may contribute to tumor pathogenesis. 

We evaluated the association of TF-AIMs with cancer 
immunotherapy response and found the activation frequency 
of these TF-AIMs can predict immunotherapy responses of tumor 
patients. This suggests the potential of TII cell type-specific TF-
AIMs as a predictive marker of cancer immunotherapy response. 
We then identified six tumor molecular subtypes based on 
activation states of TII cell type-specific TF-AIMs across 32 
cancers. The above indicates that these TF-AIMs we identified 
have application significance. Finally, in order to further promote 
the application of these TII cell type-specific TF-AIMs, we build a 
CellTF-AIMs database (http://bio-bigdata.hrbmu.edu.cn/CellTF-
AIMs/). 

In summary, we proposed a computational approach to identify 
and analyze cell type-specific TF-AIMs in TME, and screen out 
TF-AIMs that are predictive of immunotherapy response. Finally, 
we identified novel tumor molecular subtypes based on the acti-
vation status of TII cell type-specific TF-AIMs in TCGA tumors. 
The research of this study has important theoretical significance 
and application value for understanding the transcriptional regu-
lation mechanism of tumor-infiltrating immune cells and realiz-
ing precision treatment of tumor patients. 

Limitations, uniques and future prospects 
Aibar et al. [15] provides SCENIC method to infer single cell gene 
regulatory network. This method has been widely used. Then, the 
updated version of SCENIC+ incorporates single-cell ATAC-seq 
(scATAC-seq) data for constructing TF regulatory networks [58]. 
In the current version of our pipeline, the gene activity matrix
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Figure 7. Analysis of pan-cancer molecular subtypes based on TF-AIMs activation states. (A) Heatmap of activation state of TII cell type-specific TF-AIMs 
with activation frequency between 10% and 50% in samples of six TCGA pan-cancer subtypes. The above annotation bars are the new tumor molecular 
subtypes and the tissue origin of the sample; note on the left is cell type, indicating cell type-specific TF-AIMs. (B) Distribution of six molecular subtypes 
in different cancer types of TCGA. (C) Kaplan–Meier survival curves of samples from six molecular subtypes of pan-cancer. (D) Heatmap of activation 
frequencies of TII cell type-specific TF-AIMs in six molecular subtypes. Column: TF-AIMs; row: Six molecular subtypes. (E) the number of TF-AIMs 
activated in different molecular subtypes of pan-cancer. (F) the number of TF-AIMs regulated by TFs in different molecular subtypes of pan-cancer. (G) 
HSF1 related TF-AIM for C6 subtype. 

transformed from scATAC-seq can also be as input to identify 
TF-AIMs specifically for different cell types. In addition, with the 
increasing number of scATAC-seq data, our approach will consider 
further integrating scATAC-seq data to enhance the capability of 
method. 

Furthermore, there are two unique aspects for our work: (i) 
in addition to the direct target relationship of TF-target gene, 
the regulatory modules identified by our method also contain 
interaction between downstream genes, which may be conducive 
to further molecular mechanism analysis; (ii) we mainly focused 
on TF-regulated immune modules, constructed and analyzed a 
variety of immune cell-specific TF regulatory networks in TME. 
We have applied our pipeline to identify activity TF-AIMs across 
cells of multiple datasets which mainly from lung cancer and 
melanoma. Our analysis involved multiple TME cell types such 
as T cells, B cells, NK and myeloid cells which are important 
components of the tumor microenvironment. However, there are 
still limitations in terms of data coverage such as the range of can-
cer types and TME. With the continuous accumulation of cancer 
single cell data, we will further widely integrate and analyze single 
cell data of various cancer types in future study. Meanwhile, both 
our pipeline and the TF-AIM candidates are accessible from our 
web interface (http://bio-bigdata.hrbmu.edu.cn/CellTF-AIMs/), it 
can also further promote the broad application of our pipeline in 
different cancer types. 

Key Points 
• We integrated the transcriptional profiles from single-

cell datasets, and proposed a computational pipeline to 

identify TII cell type-specific transcription factor (TF) 
mediated activity immune modules (TF-AIMs). 

• A comprehensive characterization and analysis of these 
TF-AIMs revealed key TFs in TII cells and the poten-
tial of TF-AIMs to be used as predictive markers for 
immunotherapy response of cancer. 

• We identified and characterized six molecular subtypes 
of pan-cancer based on the activation status of TII cell 
type-specific TF-AIMs across 9680 tumor tissue samples 
from TCGA. 

• A user-friendly web interface CellTF-AIMs (http://bio-
bigdata.hrbmu.edu.cn/CellTF-AIMs/) for exploring tran-
scriptional regulatory in various TII cell types was con-
structed. 
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TF-AIMs TF mediated activity immune modules 
TME Tumor microenvironment 
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