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Summary
Background The National Institutes of Health Stroke Scale (NIHSS) is the most frequently applied clinical rating
scale for standardized assessment of neurological deficits in acute stroke in both clinical and research settings.
Notwithstanding this prominent role, important questions regarding its validity remain insufficiently addressed:
Investigations of the underlying dimensional structure of the NIHSS yielded inconsistent results that are largely not
generalizable across studies. Neurobiological validations by linking measured deficit dimensions to brain anatomy
and function are missing.

Methods We, therefore, employ advanced machine learning to identify an optimal representation of the dimensional
structure of the NIHSS across two independent and heterogeneous stroke datasets (N = 503 and N = 690). Associated
lesion locations are identified by multivariate lesion-deficit mapping (LDM) and their functional relevance is profiled
based on a-priori task activation meta-data analysis, to provide an independent link to the behavioural level.

Findings A five-factor structure of the NIHSS was identified as the most robust and generalizable representation of
stroke deficit dimensions across study populations, settings, and clinical phenotypes. Specifically, the identified
dimensions comprised NIHSS items for (F1) left motor deficits, (F2) right motor deficits, (F3) dysarthria and
facial palsy, (F4) language, and (F5) deficits in spatial attention and gaze. LDM linked four of these factors to
differentially localized, eloquent neuroanatomical areas. Functional characterization of LDM results aligned with
detected deficit dimensions, revealing associations with motor functions, language processing, and various
functions in the perception domain.

Interpretation By cross-validating machine learning in heterogeneous multi-site stroke cohorts, we report evidence on
the validity of the NIHSS: We identified an overarching structure of the NISHS containing a five-dimensional
representation of stroke deficits. We provide an anatomical map of the NIHSS that is of value for future
applications of individualized stroke treatment and rehabilitation.
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Research in context

Evidence before this study
Despite the widespread use of the National Institutes of
Health Stroke Scale, several psychometric properties of the
scale remain understudied, specifically regarding its internal
structure and associated neuroanatomy. We searched PubMed
and Web of Science from the inception of the database to
January 1st 2021 for studies published in English using the
terms “NIHSS” AND “factor” OR “structure” OR “lesion
symptom mapping” OR “lesion deficit mapping”. The
identified studies yielded inconsistent results regarding the
internal structure of the NIHSS with various compositions of
principal deficit dimensions. There were no studies linking the
NIHSS to neuroanatomy and brain function via lesion-deficit
inference methods.

Added value of this study
By using an unsupervised machine learning approach and
systematic in- and cross-sample evaluations of stability and
generalizability on large, multicenter, and heterogeneous
datasets, we report a distinct structure with five
dimensions best representing the clinical construct in

stroke patients as assessed by NIHSS. Lesion deficit
mapping revealed meaningful neuroanatomical locations.
We validate the overarching structure of post-stroke
deficits captured by the NIHSS and provide an anatomical
map of the NIHSS.

Implications of all the available evidence
Our study improves the understanding of the internal
dimensional structure of the NIHSS and its neural and
functional underpinnings that will enhance prognostication of
lesion locations from clinical syndromes, clinical recovery, and
outcomes in individualized treatment of stroke patients. By
mapping brain areas most critical for clinical impairment, our
results contribute to testing individualized selection
algorithms for recanalization therapy in acute stroke. We
promote an approach both integrating information from
eloquent brain regions at risk for infarction and known
outcome predictors such as lesion volumes. Lastly, our study
also opens the window for targeted use of low-dimensional
versions of the NIHSS in research, clinical trials, or clinical
decision-making.

Articles

2

Introduction
The National Institutes of Health Stroke Scale (NIHSS)1

is one of the most frequently applied clinical rating
scales in neurological practice. It is one of the rare tools
for quantifying clinical deficits applied in highly diverse
settings ranging from the decision-making of individu-
alized treatment in acute stroke, measurement and
adjustment of outcomes in clinical trials, to guiding
regulatory agencies of medical institutions.

Despite the widespread use of NIHSS, several psy-
chometric properties of the scale remain understudied.:
Specifically, regarding the validity of the score, two
research questions need to be addressed further: Does
the NIHSS measure a limited number of underlying
constructs (i. e. clinical phenotypes) as intended? Do the
underlying clinical phenotypes reflect neurobiological
properties that can be linked to brain anatomy and brain
functions? A comprehensive understanding of the in-
ternal dimensional structure of the NIHSS and its
neural and functional underpinnings will ultimately
enhance prognostication of lesion locations from clin-
ical syndromes, clinical recovery, and outcomes in
individualized treatment of stroke patients.

Unfortunately, so far only a few studies tested the
construct validity of the NIHSS in terms of its internal
structure and associated neurobiological functions:
Based on data from the NINDS tPA Stroke trial and
using an abbreviated, 12-item-version, the NIHSS has
been proposed to comprise four symptom dimensions.2

The four dimensions were described as capturing left
and right hemispheric, “motor” and “cortical” clinical
deficits (supplemental Table S2).2 However, different
compositions were reported,3,4 and the assignment of
individual NIHSS items to main dimensions varied
across studies with inconsistent results.2,5 In addition,
the “traditional” 4-factor structure of the NIHSS was
mainly detected in data from severely affected patients
from clinical trials and a limited range of stroke etiol-
ogies.5 Patients with less severe clinical deficits (i. e. due
to lacunar stroke) that represent a relevant proportion of
patients in clinical practice were most likely underrep-
resented in these datasets.6

Regarding the mapping of deficit dimensions
captured by the NIHSS to brain anatomy, there are
currently no systematic investigations, mostly due to the
lack of datasets combining both precise, MRI-based
stroke lesion delineations and fine-grained clinical
characterizations from individual NIHSS items. An
anatomical “NIHSS map” would, however, be of high
value as it could be applied to predict principal di-
mensions of clinical deficits in stroke patients for
tailored rehabilitation approaches. Furthermore, map-
ping brain areas most critical for clinical impairment
contributes to the aim of improving selection criteria for
individualized stroke treatment: Involvement of specific
eloquent brain regions is of high relevance for deter-
mining the functional outcome.7–9 However, current
practices for patient selection in stroke treatment, spe-
cifically in patients with late- or unknown time after
symptom onset is based on volumetric measures of
stroke lesions or salvageable brain tissue alone. It is yet
unclear if a more individualized treatment selection
integrating known predictors of functional outcome and
anatomical information on eloquent brain regions at
www.thelancet.com Vol 87 January, 2023
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risk for infarction is beneficial as suggested by recent
work in a subset of patients with large ischemic cores.10

In the present study, we, therefore, aim to address
two key questions: First, to arrive at a generalizable,
optimal dimension structure of the NIHSS, and second,
to detect its structural and functional underpinnings in
eloquent brain areas using lesion-deficit mapping and
functional decoding.

For the first aim, we plan to identify a robust, cross-
validated, and interpretable factor structure of clinical
stroke deficits based on single-item scores of the full-range
NIHSS by implementing data-driven machine-learning
with a comprehensive evaluation procedure in two large,
independent datasets (total N = 1193) collected from
64 independent stroke centres. From a technical point of
view, we improve previous factorial approaches, since
several downsides in methodology, in particular principal
component analysis (PCA) and exploratory factor analysis
(EFA), have been noted. For example, the negative load-
ings presented on PCA and EFA factors are not intuitively
interpretable, and the non-sparse factor solution renders
item-to-factor assignments oftentimes non-intuitive. To
ameliorate these limitations, a projective and orthonormal
extension of the original non-negative matrix factorization
(NMF), i.e., the orthonormal projective (OP)NMF11,12 with
a carefully designed evaluation procedure will be imple-
mented.13 This method has been shown to allow a robust
factorization of psychometric data, and the resulting fac-
tors were found to be more reliably associated with brain
network connectivity patterns than the original
subscales.11,12,14

For the second aim, we map each of the identified
NIHSS factors to anatomical brain lesion areas using
multivariate regression analysiswith cross-validation.Based
on the concept of lesion deficit mapping (LDM), the
resulting factors, i.e., deficit dimensions that represent
contemporaneous neurological symptoms, causatively
originate from strategically localized neuroanatomical
lesion sites that are relevant to corresponding brain func-
tions. To detect such underlying localized brain lesions, an
imaging-based approach, the multivariate LDM, will be
applied.15,16 While the results from LDM inform anatomical
locations for specific symptomdimensions, their functional
relevance to the behaviour level requires additional tools, as
the characterization through BrainMap-based functional
profiling informed by previous task-evoked functional MRI
(fMRI) experiments (http://brainmap.org/). This approach
provides an independent link back to the phenotypic level as
assessed by the NIHSS.
Methods
Sample
We analyzed two large stroke patient datasets providing
single-item NIHSS scores at the time point of hospital
admission. The first dataset comprised a population of
patients with acute stroke lesions demonstrated by MRI
www.thelancet.com Vol 87 January, 2023
and eligibility for treatment with intravenous alteplase
(WAKE-UP trial).17 In comparison, the second dataset
was chosen to comprise a more heterogeneous group of
stroke patients that were selected (1) from everyday
hospital admissions without predefined imaging or
clinical inclusion criteria regardless of acute stroke
treatment (EPOS study) and (2) with predefined imag-
ing and clinical inclusion criteria (I-Know study).

1) Patients randomized in the WAKE-UP trial, an
international, multicenter, placebo-controlled trial of
MRI-based intravenous thrombolysis in patients with
unknown onset stroke based on MRI selection criteria
(referred to as the “first dataset”).17

2) For evaluating the generalizability of the resulting
factorizations to new stroke populations, we pooled
clinical data from two prospective acute stroke studies
(referred to as the “second dataset”). Specifically, we
selected patients from EPOS (“Outcome evaluation by
patient-reported outcome measures in stroke clinical
practice”), a prospective, single-centre, observational
study for outcome evaluation by patient-reported
outcome measures in stroke18 and I-Know, a multi-
center observational study aiming at outcome prediction
based on clinical and imaging variables.7

In both datasets, studies included patients of all sex
and gender. Sex was determined by self-report of study
participants, sex and gender were not applied as exclu-
sion criteria in any of the studies from which data was
selected. From both datasets, we only included patients
who have been able to carry out usual activities in their
daily life without support before stroke. Detailed inclu-
sion criteria for all studies can be found in the
supplemental Table S3. A study flow diagram is illus-
trated in supplemental Fig. S1. In total, N = 503 patients
were included for the first and N = 690 patients for the
second dataset. As intended, several demographic and
clinical characteristics differed significantly between
datasets, providing an optimal setting for testing
generalization performance across independent sam-
ples: There was a higher proportion of male patients in
the first dataset (N = 325, 65% vs. N = 400, 58%;
p = 0.021). Patients in the first dataset were younger
(mean age 65.2 years, SD 11.6 years vs. mean age
71.5 years, SD 13 years; p < 0.001) and more severely
affected by stroke (median NIHSS 6, IQR: 4–9 vs.
NIHSS 4, IQR: 1–9; p < 0.001). In the second dataset,
the severity of clinical deficits was more heterogeneous
as compared to the first dataset, with a higher propor-
tion of patients with either low or high NIHSS values
(see supplemental Fig. S2). Lesion hemisphere side
distributions were similar in both datasets (Chi-squared
test; p = 0.187). Both patients with supra- and infra-
tentorial stroke lesions were included in our study.

Stroke lesion segmentations from MRI data
measured at the time point of hospital admission
were only available in the first dataset (N = 503). Stroke
lesions were segmented based on DWI data as described
3
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previously based on manual segmentations following a
semi-automated procedure using an apparent diffusion
coefficient (ADC) threshold of 620 × 10−6 mm2/s.19

Lesion masks were transformed to Montreal Neurolog-
ical Institute (MNI) space by linear and non-linear reg-
istrations based on FLAIR data.20 All lesion masks were
checked for correct segmentation and registration into
MNI-space by two raters experienced in stroke MR im-
aging (A. K., B. C.). Of note, the MRI data used for LDM
was collected at the same time point of NIHSS scoring
used in our study.
Ethics
Written informed consent was provided according to
national and local regulations by patients or their legal
representatives. Approval of the local ethics committee
(Ethik-Kommission der Ärztekammer Hamburg) has
been obtained (PV54565, and PVN3857).
Factorization of NIHSS using OPNMF
Identification of the internal dimensional structure of
the NIHSS (i.e., factorization) was conducted as re-
ported previously.11–13 OPNMF has several advantages
over traditional factorial analyses that are particularly
well suited for our aims. First, NMF produces intuitive,
non-negative scores with higher values representing
more severe clinical deficits. Second, owing to the pro-
jective constraint in OPNMF, the learned factors can be
readily applied to the NIHSS data of new samples.
Third, the enforced orthonormality constraint not only
promotes a sparse, parts-based representation of the
data improving interpretability but is computationally
less expensive, facilitating the implementation of
various cross-validation and out-of-sample generaliza-
tion evaluations for deriving the optimal factor models.

The core optimization process for OPNMF is to
minimize the reconstruction error measured by Frobe-
nius norm between the input data matrix V and its es-
timate by iterative multiplicative updates of the basis
matrix W:

min
⃦
⃦V−WWTV

⃦
⃦
F

s.t.W ≥ 0; WWT = I

Specifically, we applied OPNMF to decompose the
NIHSS data into two non-negative matrices: 1) a basis
matrix W (i.e., the dictionary) with factors (i.e., deficit
dimensions) as columns and 2) a loading matrix H
(formulated as WTV due to the projective constraint)
with scores representing deficit level of individual
patients as expressed along these dimensions. Impor-
tantly, a non-negative singular value decomposition was
employed to initialize W,21 which enjoys several advan-
tages over random initialization, including reduced
residual error, improved convergence, and deterministic
decompositions.

To derive the optimal (i.e., most robust and gener-
alizable) factor structure of the NIHSS, we followed a
comprehensive evaluation procedure.13 In summary, we
first factorized the 15 NIHSS items within the first
dataset and evaluated the resulting factorizations using
5000 times repeated split-half analysis. In each split-half
analysis, two indices (adjusted Rand-index [aRI] and
variation of information [VI]) was employed to assess
the robustness of item-to-factor assignment, based on
its highest median coefficient, along with the concor-
dance index (CI) between the dictionaries derived from
the two split samples.

The idea of employing aRI andVI is based on the hard-
assignment of items to specific factors (i.e., to useNMF as
a natural clustering). Higher values of aRI (up to 1)
indicate better correspondence of item-pair placement in
the factors derived from the split samples, and lower VI
indicates a higher similarity of factor-label assignment of
items (i.e., more information shared between the factor-
izations) between the two split-samples. Since an itemcan
be influenced by multiple dimensions and thus it may
have small contributions to other factors apart from the
one it is assigned to, we also employed the concordance
index, which reflects the concordance of the cosine sim-
ilarity for each pair of the NIHSS items between the fac-
torizations of split-samples, on all entries of the W
matrices to account for the items with multiple factor-
memberships. Generalizability was assessed by out-of-
sample reconstruction error calculated as how much
reconstruction error is increased for one split-half sample
due to the use of a dictionary from the other half data.

Two additional data perturbation strategies, boot-
strapping and 10-fold cross-validation with testing in
hold-out data, were then employed to corroborate the
split-half findings. The same evaluation procedure was
applied to the second dataset (N = 690).

Following in-sample tests, we performed between-
sample testing for the optimal number of factors in the
generalization from the first to the second dataset, as well as
the robustness of item-to-factor assignment across the fac-
torizations from the bootstraps of these two samples
(repeated 5000 times). Results were derived from the eval-
uation runs toderive the optimal factor structure (referred to
as factor models in the following) using both in- and
between-sample testing. In addition to themain analysis,we
planned for post-hoc analysis in case of evaluations of sta-
bility and generalizability pointing to different optimal solu-
tions. Thismayhappen in thepresence ofNIHSS items that
donotfit any of the factors formedby theother (more closely
expressed) items within a scale. In this case, the approach
was to repeat the evaluation process after excluding the non-
fitting NIHSS items indicated by poor internal consistency
andwithin-factor inter-itemcorrelations as describedbelow.
As a supplemental, explorative approach, we performed a
conventional Principal Component Analysis (PCA)
www.thelancet.com Vol 87 January, 2023
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in-sample in both datasets, methodological details and
results are shown in the supplement (supplemental Figs. S9
and S10).
Internal consistency and relationship among
factors
We assessed the internal consistency of the OPNMF
derived optimal factor structure using Cronbach’s alpha,
where higher values indicate a more closely related set
of items as a factor. We investigated the relationship
between factors by calculating correlations between in-
dividual items, both before and after controlling for the
total NIHSS score. Finally, we tested the effects of total
NIHSS, age, sex, and stroke lesion volume (as inde-
pendent variables) on the joint factor loadings using
MANOVA followed by individual 4-way analyses of
variance (ANOVAs) and bootstrap analysis (10,000 rep-
etitions). Statistical analysis was conducted using R
(Version 4.0.2) and MATLAB (MATLAB 2019b, The
MathWorks, Inc., Natick, Massachusetts, United States).
Lesion-deficit mapping
Multivariate LDMwas conducted in the imaging data of the
first dataset based on the factor loadings from the optimally
generalizable and most stable NIHSS model. We applied
support vector regression (SVR) which operates on contin-
uous variables as a regression extension of the support
vector machine in use for classification.22 LDM was con-
ducted using a dedicated package (https://github.com/
atdemarco/svrlsmgui) applying functionalities of the Sta-
tistics and Machine Learning Toolbox within MATLAB.23

Only voxels with a minimum of five overlapping lesions
were included for statistical testing. Before SVR, lesion
volumeswere regressedout fromthe factor loadings and the
lesion data on a voxel-wise basis and hence their effects on
LDM were controlled. We applied an epsilon-SVR using a
non-linear, radial basis function (Gaussian) kernel analo-
gous to the original publication in comparable stroke im-
aging datasets.23 Specifically, the adjusted voxel-wise lesion
scores for each subject were combined into a matrix and
used as the features to train the SVRmodelwith loadings on
each factor individually serving as the target variable to be
predicted. Three hyperparameters, epsilon, cost, and sigma,
which control the behaviour of SVR, were tuned through a
20-fold cross-validated, Bayesian optimization with 200 it-
erations as implemented in MATLAB (bayesopt) separately
for each factor. The ensuing optimal SVR hyperparameters
related to our dataset with minimal cross-validation error
were used to construct the final SVR model, yielding
regression weights that reflect the true deficit-lesion asso-
ciations. Permutation tests through shuffling the loadings
randomly between subjects 10.000 times were imple-
mented to correct for chance-level associations to derive
significant voxels (p < 0.005) Co-localized voxels that sur-
vived at this voxel-level threshold were further grouped into
www.thelancet.com Vol 87 January, 2023
clusters and an additional cluster-level family-wise error
correction (FWE) of p < 0.05 was applied to ensure an
adequate control for false positives as in prior studies.23

The anatomical location of all significant clusters was
determined in reference to the Brainnetome (grey
matter areas) and the JHU white matter diffusion tensor
imaging atlases.24,25
Functional characterization
Finally, we aimed to provide an independent link from the
anatomical locations identified by LDM to the behavioural
level. Therefore, we performed a functional characteriza-
tion analysis for the revealed significant clusters using the
“behavioural domain” and “paradigm class” meta-data of
prior task-evoked fMRI experiments as sorted in the
BrainMap database (http://brainmap.org/). The behav-
ioural domains consist of five main categories “cognition,
action, perception, emotion, interoception,” together with
their respective subcategories. Accordingly, specific tasks
that were conducted in the respective experiment are
categorized into paradigm classes.

Quantitative “forward inference” and “reverse infer-
ence” were employed to characterize the functional profile
of each significant cluster as previously described.26 Spe-
cifically, the forward inference profiles a significant cluster
via identifying taxonomic labels (domains or subdomains)
for which the conditional probability of finding activation
in a specific cluster is significantly higher than the overall
chance (across the entire database) of finding activation in
that particular cluster. To test the statistical significance of
the forward inference, a binomial test was applied with a
follow-up false discovery rate (FDR) correction for multiple
comparisons at the level of p < 0.05. For the reverse
approach, a cluster’s functional profile was determined by
identifying the most likely behavioural domains and
paradigm classes associated with this particular cluster
based on Bayes’ rule. Here the statistical significance was
established using a χ2 test followed by the same FDR
correction strategy (p < 0.05) to account for multiple
comparisons. In sum, forward inference assessed the
probability of activation given a psychological term (i.e.,
task; [P(Activation|Task)]), while reverse inference assessed
the probability of a psychological term given activation
([P(Task|Activation)]).”
Role of funders
The funding sources for this project played no role in
the study design, data collection, analysis, interpreta-
tion, writing, or editing of the manuscript.
Results
Sample characteristics
In total, data from N = 503 patients (35% female) were
included in the first dataset (WAKE-UP) and N = 690
5
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Characteristic First dataset Second dataset p-value

Number of patients 503 690 –

Age, years (mean, SD) 65.2 (11.6) 71.5 (13.0) <0.001

Sex, male (%) 325 (65%) 400 (58%) 0.021

Stroke sidea (%) Left 271 (54%)
Right 199 (39%)
Both 19 (4%)

Left 344 (50%)
Right 312 (45%)
Both 22 (3%)

0.187

NIHSS on admission (median, IQR) 6 (4–9) 4 (1–9) <0.001

Stroke volumeb (ml) Mean 7.2 (SD 13.2)
Median 1.7 (IQR 0.5–7.2)

– –

P-values from resulting group comparisons (T-Test, Chi-squared test, and Wilcoxon rank-sum test where appropriate). Imaging data was available for the first dataset only.
aData available for N = 489 patients in the first dataset and N = 678 in the second dataset. bData available for N = 465 patients in the first dataset.

Table 1: Demographic, clinical, and imaging characteristics for all stroke patient datasets analyzed in the study.

Articles

6

patients (42% female) in the second dataset, reflecting
recruitment in 64 stroke centres. Characteristics of both
datasets are shown in Table 1 and supplemental
Table S3. A sex-disaggreated demographic table can be
found in the supplemental Tables S4. As already indi-
cated, the different distributions of age and clinical
severity between the datasets were intended to assess
the generalization across populations and settings.
Deficit dimensions of the NIHSS
Results from in-sample and between-sample evaluations
are shown in Fig. 1. In the first dataset, based on median
evaluation indices, the most robust and generalizable
in-sample factor model indicated the presence of four
dimensions within the NIHSS. Detailed item-to-factor
assignments are illustrated in Fig. 1A. The 4-factor
model broadly separated traditional left-from right-
hemispheric clinical deficits with one factor containing
both NIHSS motor items ("motor arm and leg left") and
non-motor items ("extinction", "gaze", "sensory"). In the
second dataset, robustness and generalization evaluations
resulted in a factor model containing five dimensions to
be optimal (Fig. 1E). These five factors comprised
NIHSS items for (1) left motor and (2) right motor
deficits, (3) “ataxia” and “facial palsy”, (4) language
deficits including level of consciousness responses, and
(5) items related to spatial orientation and awareness.

As a key difference to the 4-factor model, the 5-factor
model in the second dataset separated the previous factor
containing NIHSS items "motor arm left", "motor leg
left", "extinction", "gaze", and "sensory" into two factors
containing motor items ("motor arm left", "motor leg
left") and non-motor items ("gaze", "sensory", "extinc-
tion" and "visual"). Likely, the “necessity” for an addi-
tional fifth factor in the second dataset can be attributed
to the heterogeneity of NIHSS scores, i.e., clinical syn-
dromes, among the stroke populations of both datasets.

In our between-sample comparison analysis
regarding generalization from the first to the second
dataset, a model with five factors (Fig. 1B) was again
identified to be optimal for generalizability. As illustrated
in Fig. 1F, the between-sample analysis indicated a
marginally improved robustness of item-to-factor assign-
ment in a model with six factors. As pre-specified in our
analysis plan, this finding prompted our post-hoc anal-
ysis in case of differing optimal solutions regarding both
generalizability and robustness. The results of this
procedure, identifying and omitting non-fitting indi-
vidual items, are described in detail below.

Of note, only a fewNIHSS items contributed tomultiple
factors. All split-half results were fully corroborated by the
follow-up bootstrapping and 10-fold cross-validation exper-
iments with testing in hold-out data (supplemental Figs. S4
and S5). Results from the between-sample evaluation were
confirmed by accounting for between-dataset differences in
NIHSS score, age, and sex (supplemental Fig. S6).
Internal consistency and relationship among
factors
Given the optimal in-sample and between-sample
generalizability, the 5-factor model was used for subse-
quent analyses of internal consistency and inter-item
relationships. Internal consistency of each factor
assessed by Cronbach’s alpha revealed the highest
values for factors 1 and 2 (Cronbach’s alpha: 0.87 and
0.88), followed by factor 4 (0.79) and factor 5 (0.60). Poor
consistency was shown for factor 3 (0.13). Correlations
between NIHSS items after adjustment of the total
NIHSS score are shown in Fig. 2a and supplemental
Fig. S7 (unadjusted correlations). In summary, correla-
tions within a factor showed moderate to high positive
values except for NIHSS items “level of consciousness”
and “sensory,” which demonstrated comparatively
poorer correlations with other items in the same factor.
In addition, the “ataxia” item showed anticorrelations
with the other two items grouped in factor 3, both before
and after controlling for NIHSS sum scores (before
adjustment: items 7 and 4: r = −0.21; items 7 and 10:
r = −0.12; after adjustment: items 7 and 4: r = −0.15;
items 7 and 10: r = −0.05). Correlations between load-
ings on the five factors are illustrated in Fig. 2B.
www.thelancet.com Vol 87 January, 2023
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Fig. 1: Evaluation of within-sample and between-sample stability and generalizability of NIHSS factor models. Results derived by orthonormal
projective non-negative matrix factorization. Summary of item-to-factor assignments generated from in-sample evaluations (N = 1193): (a) the 4-
factor model derived from the first dataset, (b) the 5-factor model derived from the second dataset, (c) the 5-factor model derived from the first dataset
showing the best generalizability to the second dataset. The weight of an item in assigning to a specific factor (columns of the matrix) within the factor
model structures is colour-coded according to the coefficients by two heat colour maps from grey (minimum) to dark red (maximum). (d) Results
from the evaluation of in-sample stability and generalizability within the first dataset. The best model with four factors was chosen based on the
median variation of information and generalization error achieving local minimum with adjusted Rand-Index and concordance index demonstrating
the highest values. (e) Evaluation of in-sample stability and generalizability within the second dataset. (f) Evaluation of cross-sample stability and
generalizability. Best generalizability from the first to the second dataset based on median out-of-sample generalization error achieving local minimum
is achieved by the 5-factor model. (g) Evaluation of between-sample stability and generalizability (generalization error was assessed by projecting the
factor structures from the first to the second dataset) after post-hoc examination leading to the exclusion of NIHSS items "ataxia" and "sensory" from
the NIHSS. The heatmap for the 13-item abbreviated 5-factor structure resulting from post-hoc examination is illustrated in Fig. 3a. The asterisk (*)
marks optimal models based on evaluation criteria as described in the methods section. Abbreviations: IA, Inattention; LOC, level of consciousness;
NIHSS, National Institutes of Health Stroke Scale.
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Fig. 2: Relationship between NIHSS item scores, factor-loadings, and the association with clinical and imaging parameters. Results for the
5-factor model from all datasets (N = 1193) are shown. (a) Heat map of single NIHSS inter-item correlations grouped by five factors (black
squares) after controlling for total NIHSS score. Colour code: white to red: positive correlations, white to blue, negative correlations. (b)
Boxplots of bootstrap results (repeated 10,000 times) for Pearson correlation among the loadings on the five factors after controlling for total
NIHSS score. Line: median, diamond mean, whiskers 5th and 95th percentile. (c) Effect of age, sex, total NIHSS score, and lesion volume on the
loadings of each of the five factors. Bootstrap results (repeated 10,000 times) for 4-way analysis of variance. Boxes refer to beta values: Line,
median; diamond, mean; whiskers 5th and 95th percentile. *mean and median p < 0.001 (ANOVA). Abbreviations: NIHSS, National Institutes of
Health Stroke Scale; LOC, Level of Consciousness.
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MANOVA revealed a significant influence of total
lesion volume (F (4,495) = 11.1; p < 0.001) and total
NIHSS (F (4,495) = 19.2; p < 0.001) on the joint factor
loadings, whereas no significant effects were detected
for sex (F (4,495) = 1.5; p = 0.200) and age (F (4,495),
p = 0.186). Consecutive 4-way ANOVAs (Fig. 2C)
demonstrated that lesion volume had a significant pos-
itive effect on factor 5 (median beta = 0.012; mean and
median p < 0.05; averaged over 10,000 bootstraps). The
total NIHSS score was shown to have a significant
positive effect on all factors (F1: median beta = 0.198;
F2: median beta = 0.113; F3: median beta = 0.108; F4:
median beta = 0.128; F5: median beta = 0.085; all mean
and median p < 0.05; averaged over 10,000 bootstraps).
Due to the high collinearity of total NIHSS and lesion
volumes (r = 0.56, p < 0.001), we conducted separate
www.thelancet.com Vol 87 January, 2023
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consecutive 3-way ANOVAs omitting the total NIHSS
score showing a significant positive effect of lesion
volumes on all factors (see supplemental Fig. S8).
Post-hoc examination on factor-structure stability
Our between-sample bootstrapping evaluation pointed
to a 5-factor model for optimal generalizability between
both datasets, as demonstrated above. However, item-to-
factor assignment robustness between the samples from
the original two datasets indicated a marginally
improved robustness for an alternative, albeit less
generalizable, 6-factor model (Fig. 1F). To follow up on
this finding, we performed an additional examination:
Looking at the potential 6-factor model in detail
(Fig. 1C), it isolated NIHSS items “ataxia” and “sensory”
from the 5-factor model’s factors 3 and 5 into one
additional (sixth) factor that demonstrated extremely low
internal Consistency (Cronbach’s alpha = −0.035).
Looking back at the 5-factor model, exactly these items
were also characterized by poor correlations with other
items in the respective factors, indicating their relatively
less well-fit to their respective factors. From a clinical
perspective, the “ataxia” item exclusively measures
clinical deficits for infratentorial (cerebellar) stroke le-
sions. Therefore, it would be conceivable that it does not
contribute well to the overall internal structure of the
NIHSS, which was designed to capture supratentorial
stroke lesion deficits.27

Hence, we removed the “ataxia” NIHSS item from
factor 3, which considerably increased its internal consis-
tency (Cronbach’s alpha = 0.60 after and 0.13 before the
removal of “ataxia”). Similarly, removing the “sensory”
item from factor 5 yielded a slightly increased value of
Cronbach’s alpha (from 0.6 to 0.62). We re-ran the
between-sample bootstrapping evaluation after excluding
the two items “ataxia” and “sensory”. This resulted in a 5-
factor structure which was now the superior model
regarding both generalizability and item-to-factor assign-
ment robustness (Fig. 1G). In addition, running OPNMF
again on the scores of the abbreviated 13-item NIHSS
within the first dataset resulted in an identical factor
structure to the one derived based on the full 15-item
NIHSS but discarding the items “ataxia” and “sensory”
(Fig. 3a). Our post-hoc examination, therefore, suggested
that the items “ataxia” and “sensory” affect item-to-factor
assignment robustness, yielding a sixth factor that is
poorly defined, causing instability in the item-to-factor
assignment. In other words, discarding this sixth factor
resulted in the identical 5-factor structure as found before
our post-hoc examination.
Neuroanatomical lesion locations and functional
relevance of NIHSS deficit dimensions
We performed LDM based on factor loadings from the
final 5-factor model derived from the first dataset with
www.thelancet.com Vol 87 January, 2023
NIHSS items “ataxia” and “sensory” removed (Fig. 3).
By this approach, the identified voxels/brain regions
represent neural correlates of a low-dimensional struc-
ture of the NIHSS. That is, damage to either of the
different clusters listed in Table 2 may yield similar
impairments in the corresponding principal dimensions
of the NIHSS. Stroke lesion masks were available for
N = 451 (of N = 503) patients from the first dataset. The
reasons for exclusion of N = 52 patients were insuffi-
cient data quality preventing robust lesion segmentation
and registration to the MNI template (n = 38) and
bilateral lesions (n = 14). The spatial distribution and
frequency of stroke lesions are illustrated in Fig. 3b and
supplemental Fig. S3.

Significant clusters (cluster-level FWE p < 0.05
corrected) from LDM were detected for all factors
except for factor 3 (Fig. 3C; Table 2). Specifically,
higher loadings (i.e., higher deficit severity) of factor 1
(NIHSS items “motor arm right” and “motor leg
right”) were associated with stroke lesions located in
the left subcortical white matter (internal capsule,
striatum) and left cortical motor areas (precentral gy-
rus, 496 voxels in total). Loadings of factor 2 (“motor
arm left” and “motor leg left”) were associated with
lesions located in the right subcortical white matter
(internal capsule, striatum, 215 voxels). Functional
characterization (BrainMap) of these significant clus-
ters showed a functional relation with motor tasks and
behavioural domains of motor action execution and
motor learning (Fig. 4, blue and red bars). Factor
loadings for factor 4 (“language”, level of conscious-
ness commands and questions) were associated with
lesions located at the left frontal cortex (caudal and
ventrolateral areas of the left precentral gyrus) and left
temporal cortex (left superior and middle temporal
gyrus, 87 voxels in total). These clusters were found to
be functionally associated with various language do-
mains and related tasks (Fig. 4, green bars). Lastly,
factor 5 (“gaze”, “visual”, “sensory” and “extinction”)
was mapped to lesions at right-hemispheric, cortical
(parietal and temporal lobes), and subcortical (basal
ganglia) areas (2741 voxels in total). Lesioned brain
areas were associated with a variety of behavioural
domains, including sensory, motor, and other percep-
tive functions (Fig. 4, orange bars).

The LDM and functional characterization results
were largely replicated in the supplementary analyses
where loadings from the 5-factor model before the post-
hoc examination (i.e., including items “ataxia” and
“sensory”) were used (see supplemental Figs. S11 and
S12, supplemental Table S6).
Discussion
In this study, we provide a comprehensive analysis of
the internal structure of the NIHSS using an innovative
approach with out-of-sample validation, followed by
9
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Fig. 3: Results of lesion-deficit mapping. (a) Summary of item-to-factor assignments generated after post-hoc examination of the 5-factor
model leading to the exclusion of NIHSS items "ataxia" and "sensory" from the NIHSS used for lesion-deficit mapping (LDM) in the first dataset
(N = 451). The weight of an item in assigning to a specific factor (columns of the matrix) within the factor model structures is colour-coded
according to the coefficients by two heat colour maps from grey (minimum) to dark red (maximum). (b) Brain areas with lesion coverage for
statistical analysis (voxels affected by stoke lesions in N ≥ 5 patients are marked in yellow overlay). (c) Significant Clusters (cluster-level FWE
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Factor Anatomical location
(Human Brainnetome Atlas and JHU
ICBM-81 White matter atlas)

Factor 1 (496 voxels) Left Internal Capsule

Left Precentral Gyrus

Left Globus Pallidus

Left Putamen

Left External Capsule

Left Superior Corona Radiata

Left Postcentral Gyrus

Left Thalamus

Factor 2 (215 voxels) Right Globus Pallidus

Right Putamen

Right Internal Capsule

Right Caudate

Right External Capsule

Factor 4 (496 voxels) Left Superior Temporal Sulcus
Left Precentral Gyrus
Left Middle Temporal Gyrus
Left Superior Longitudinal Fascicle

Factor 5 (2741 voxels) Right Putamen

Right Globus Pallidus

Right Insular Cortex

Right Internal Capsule

Right Nucleus Accumbens

Right External Capsule

Right Caudate

Right Middle Temporal Gyrus

Right Precentral Gyrus

Right Superior Temporal Gyrus

Results from LDM after post-hoc analysis excluding NIHSS items "ataxia" and
"sensory"). The anatomical locations of significant voxel clusters (Fig. 3C) are
referenced by the Human Brainnetome Atlas for grey matter areas and JHU
ICBM-81 White matter atlas. Locations are listed in (descending) order ranked
by the number of voxels. No significant voxels were identified for factor
loadings in factor 3.

Table 2: Results of Lesion-Deficit Mapping (LDM) for individual factor
loadings of the 5-factor model.

Articles
LDM and functional profiling. We reported two main
findings. First, systematic evaluation and cross-
validation in independent datasets revealed an optimal
factor structure of the NIHSS, representing five symp-
tom dimensions as the most stable, replicable, and
generalizable across patient populations and study set-
tings. Second, LDM linked deficit dimensions to
anatomical regions with corresponding brain functions
corrected p < 0.05 following voxel-level p < 0.005 thresholding) identifi
representative sections of a brain template in MNI standard space oriente
factor 4 and 5 are illustrated in an additional sagittal orientation to illustra
for details. LDM results based on the 5-factor model before post-hoc exam
z-coordinates of each section are shown. Abbreviations: IC, internal capsu
Sulcus; MTG, Middle Temporal Gyrus; Put, Putamen; MTG, Middle Te
Consciousness.
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as informed by functional characterization, incorpo-
rating prior task-evoked fMRI experiments. Intriguingly,
the characterized functional profiles of significant
anatomical clusters and their associated NIHSS behav-
iour deficits were mutually confirmed by LDM and
functional decoding by task activations. Therefore, our
results converged from brain dysfunction to structure
and independently back to brain function, providing
comprehensive evidence supporting the construct
validity of the NIHSS.

From a methodological point of view, our study
highlights the impact of cross-validation and the evalu-
ation of out-of-sample generalization performance in
differing stroke populations for determining the inter-
nal structure of the NIHSS. An in-sample analysis of the
NIHSS in the first dataset indicated the presence of four
factors. When encountering the second independent
dataset, a model with five factors was superior regarding
generalizability. These differing results are explained by
the distinct characteristics of both datasets, specifically
the larger heterogeneity of clinical deficits of patients in
the second dataset. Whereas the first dataset comprised
pre-selected patients from a randomized stroke trial
based on evidence of an acute stroke lesion and planned
treatment by thrombolysis (WAKE-UP trial),17 the sec-
ond dataset comprised a more “general” stroke hospital
population irrespective of planned thrombolytic treat-
ment (EPOS study) complemented with a cohort of pa-
tients with large-vessel occlusions, higher NIHSS scores
and larger final infarct volumes (I-Know study). Of note,
the 5-factor model remained superior after matching
both datasets for age, sex, and NIHSS score, indicating
that none of these variables drove the emergence of the
fifth factor.

Synthesizing results from NIHSS factorization,
LDM, and functional decoding of associated anatomical
regions, we found that the five deficit dimensions are
linked to disturbed lateralized and non-lateralized brain
functions. Brain regions identified by LDM represent
neural correlates, i. e. network hubs supporting prin-
cipal brain functions as captured by a low-dimensional
structure (five factors) of the NIHSS.

Disturbed left-hemispheric brain functions were
captured by two factors: factor 1 with NIHSS items
“motor arm right” and “motor leg right” for right-sided
motor deficits and factor 4 capturing speech deficits
(“LOC questions”, “LOC commands” and “best lan-
guage”). Although LOC items do not assess language
ed through 10,000 repeated permutation tests are shown in red on
d in radiological convention. Significant clusters for the loadings on
te the anatomical localizations on the cerebral cortex. See also Table 2
ination (full 15-item scale) are shown in supplemental Fig. S11. MNI
le; PrG, Precentral Gyrus; GP, Globus Pallidus; STS, Superior Temporal
mporal Gyrus; INS, Insular Cortex; R, right; L, left; LOC, Level of
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Fig. 4: Results from the functional characterization of anatomical locations revealed by lesion-deficit mapping. Functional characterization
based on the BrainMap database based on data from both datasets (N = 1193).28 Functional profiles of each characterized factor were
determined by forward inference (left columns), assessing the activation likelihood ratios for each significant cluster concerning a given domain
or paradigm and reverse inference (right columns), assessing the probability of a domain’s or paradigm’s occurrence given activation in a
significant cluster. Only significant functional assignments (false discovery rate corrected p < 0.05) are presented. Results for behavioural
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directly, they evaluate the patient’s comprehension
abilities needed to respond to questions and simple
commands. In both factors, correlations between indi-
vidual items were high. As demonstrated by LDM,
clinical deficits attributed to factor 1 (right-sided motor
deficits) were significantly associated with stroke lesions
involving left-hemispheric white matter in the internal
capsule and precentral cortical areas. This finding is
plausible given the presence of upper motor neurons in
these areas, including both precentral, primary motor
cortical areas and the corticospinal tract at the level of
the internal capsule. Damage and degeneration of the
corticospinal tract are known determinants of motor
impairment and recovery after stroke.29,30 Functional
characterization of areas detected by our LDM analysis
revealed behavioural domains of motor functions such
as “execution of actions” and motor paradigm classes
such as “grasping”. For factor 4 (speech), significant
associations were detected for two left-hemispheric
clusters. The first comprised the left caudal precentral
gyrus (premotor cortex), closely adjacent to Broca’s area
at the inferior frontal gyrus. The identified area can be
attributed to language production based on findings
from LDM studies after brain injury or data from elec-
trical stimulation experiments.31 The second involved
the left superior and middle temporal cortex and adja-
cent portions of the superior longitudinal fascicle (SLF).
The results fit well with the organization of language
functions in a network of temporo-frontal cortical brain
areas located in the dominant (left) hemisphere con-
nected through long traversing white matter bundles
such as the SLF, as shown by previous LDM studies in
stroke patients,5 histopathology in animal and human
brain studies and functional imaging experiments in
healthy participants.31–33 Consistently, functional char-
acterization revealed behavioural domains and experi-
mental paradigms covering various aspects of language
functions.

Deficits of right-hemispheric brain functions were
captured by two factors: Factor 2 containing NIHSS
items for left-sided motor deficits (“motor arm left” and
“motor leg left”) and factor 5 containing various items
sensitive to deficits in lateralized attention and neglect,
mainly present in patients with right-hemispheric
stroke,34–36 comprising “gaze,” “extinction and inatten-
tion,” “sensory” and “visual”. Of note, some of these
items are likely linked by potential rating mis-
attributions rather than shared anatomical substrates.
For example, ratings of sensory deficits can erroneously
occur in patients with spatial neglect.37 As a result of our
post-hoc examination, the internal consistency of factor
5 was improved after removing the “sensory” item and
domains (a) and paradigm classes (b) are shown for each factor by col
detected for lesion-deficit mapping of factor 3, it was omitted from fun
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LDM conducted on the adjusted factor. We located sig-
nificant clusters in the right hemispheric subcortical
and cortical areas involving the basal ganglia (caudate
nucleus and putamen) as well as the right precentral,
middle and superior temporal gyrus. In terms of later-
alization, our LDM findings are in line with the frequent
occurrence of spatial neglect with eye deviation and
extinction (factor 5) in patients with right hemispheric
stroke.34–36 Regarding the specific anatomical locations,
damage to right-temporal cortical areas has been shown
to evoke spatial neglect due to the involvement of
cortico-subcortical structural brain networks promoting
lateralized attention under physiological circum-
stances.38 These distributed networks also involve
subcortical structures such as the putamen and caudate
nucleus that were likewise detected in our LDM anal-
ysis. Functional characterization of identified brain re-
gions revealed various brain functions involved with
perception, emotions, and action execution which are at
least in part affected by deficits in lateral attention. As an
alternative interpretation, the significant effect of lesion
volumes on factor loadings (Fig. 2c) indicates that factor
5 might more generally represent the extent of right-
hemispheric stroke. In addition, we note that, that the
proposed behavioural domain of factor 5 (neglect/spatial
inattention) and corresponding behavioural experiments
are underrepresented in the BrainMap taxonomy and
database, which could explain the absence of more
specific functional associations.

Apart from the lateralized deficit dimensions, our
analysis revealed the presence of a previously not re-
ported factor (factor 3) representing clinical deficits
without stereotypical lateralization, specifically “dysar-
thria”, “facial palsy”, and “ataxia.” Looking at individual
items within this factor 3, we note that “ataxia” is the
only NIHSS item exclusively capturing symptoms from
infratentorial stroke.27 Indeed, in our post-hoc exami-
nation of the 5-factor model, the internal consistency of
factor 3 increased after removing “ataxia”, with the
remaining items consistently grouped into factor 3
among all model solutions. There are two important
aspects of this result: First, it indicates that, across
diverse stroke populations, the NIHSS captures a clin-
ical syndrome of non-lateralized clinical deficits, namely
“dysarthria” and “facial palsy”. This finding is distinct
compared to the most common understanding of the
NIHSS being constructed along two axes of strictly left-
or right-hemispheric clinical deficits. As an explanation,
the “traditional” factor structure of the NIHSS was
initially verified in data from the National Institute of
Neurological Disorders and Stroke (NINDS) tPA Stroke
Trial, which included a selection of severely affected
our coding. Note that since no significant anatomical regions were
ctional characterization analysis.
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stroke patients (median NIHSS: 14) with mainly cardio-
embolic or large-vessel occlusive stroke aetiology.5

Patients with less severe clinical deficits (“minor
stroke”) and those with lacunar stroke lesions were most
likely underrepresented in these datasets.6 However,
patients with relatively small lesion volumes and lower
NIHSS scores are common in stroke populations5 and
were well represented in our study, specifically the
second dataset.

Second, from a clinical point of view, factor 3 closely
corresponds to a clinical syndrome found in patients
with lacunar stroke caused by strategically located le-
sions involving the white matter motor pathways.39–41

Interestingly, LDM did not reveal any anatomical loca-
tions associated with symptom severity for factor 3. If
we consider this factor to represent lacunar syndromes,
the negative LDM results could be explained by the
limited power from our sample size to detect associated
lacunar lesions that occur in high anatomical variability
in both hemispheres and the brain stem, where lesion
coverage was low in our dataset.

Analysis of relationships between factor loadings and
associations with lesion volumes (Fig. 2) supports our
interpretations of individual deficit dimensions. Load-
ings from factors capturing left- and right-hemispheric
deficits were negatively correlated since bilateral motor
deficits rarely occur in stroke patients. Accordingly,
there was a strong positive correlation between left-
hemispheric factors 1 (right motor deficits) and
4 (speech). There was a significant effect of larger lesion
volumes on higher factor loadings for factor 5 (neglect)
due to the incremental effect from larger, territorial
stroke lesions involving cortical areas underlying brain
functions of spatial awareness and orientation.

Our proposed 5-factor structure underlying the
NIHSS is based on an innovative, more optimal,
comprehensive, systematic evaluation in independent
datasets as compared to previous reports, where a
4-factor model was suggested by EFA, capturing latent
dimensions of left- and right-hemispheric, cortical, and
motor symptoms.4,2,42 Regarding the generalizability of
the principal NIHSS factor structure, Lyden et al.
employed CFA on an independent stroke population42 to
test for the a-priori hypothesis of a 2- or 4-factor struc-
ture.5 In contrast, our fully data-driven approach evalu-
ated multiple potential factor models across datasets.
Interestingly, our findings also suggest excluding two
NIHSS items (“ataxia” and “sensory”), as these would
affect factor-structure stability leading to less robust
factorization across independent samples. This obser-
vation converges with previous results that have either
removed these items post-hoc or before analysis.4

Therefore, our results further strengthen the argument
for excluding both “ataxia” and “sensory” items for a
modified, 13-item version of the NIHSS. Of note, at the
brain level, the full-version 5-factor model (15 items)
and the 13-item post-hoc structure gave almost identical
LDM results corroborating a reliable link between lesion
locations and their affected deficit dimensions.

Our study is limited by the relatively low lesion vol-
umes in the first dataset resulting in moderate lesion
coverage for LDM, owing to the stereotypical lesion
distribution of stroke lesions in anterior circulation
stroke. In addition, the NIHSS is biased toward symp-
toms resulting from supratentorial stroke lesions,
further limiting the sensitivity to detect relevant associ-
ations between behaviour and anatomy at the infra-
tentorial level (brainstem and cerebellum) in our study.
We expect that in cohorts with larger territorial stroke
lesions, LDM would identify additional cortical brain
areas in peripheral brain regions for all factors (specif-
ically for brain functions located in cortical brain areas).
Although patients with larger final infarct volumes were
represented in the second dataset, the generalization of
LDM results to patient populations with territorial
perfusion deficits (i. e. resulting from large vessel oc-
clusion) was not assessed in our study. Also, indepen-
dent datasets for testing the out-of-sample predictability
of lesion locations for the severity of clinical deficits in
specific NIHSS dimensions would be desired, given that
there was no imaging data from the time point initial
NIHSS scoring available in our second dataset. How-
ever, datasets comprising accurate MRI-based lesion
delineations and fine-grained clinical phenotyping (i.e.,
single NHSS items) are scarce. Future studies, poten-
tially from multicenter cooperation that include larger
patient numbers with more severe and extensive lesion
volumes, are needed.

In summary, by using an unsupervised machine
learning approach of OPNMF and systematic in- and
cross-sample evaluations of stability and generalizability
on large, multicenter, and heterogeneous datasets, the
present work revealed a structure with five dimensions
best representing the clinical construct in stroke pa-
tients as assessed by NIHSS. Besides clearly lateralized
clinical deficits, our results revealed an additional, non-
lateralized factor, potentially capturing lacunar syn-
dromes frequently encountered in stroke patients.
Subsequent LDM revealed meaningful neuroanatomical
locations corroborated by functional behavioural char-
acterizations. Our work shows the overarching structure
of post-stroke deficits captured by the NIHSS. We pro-
vide an anatomical map of the NIHSS that can be
applied to predict principal dimensions of clinical defi-
cits in stroke patients, potentially guiding individualized
rehabilitation approaches. By mapping brain areas most
critical for clinical impairment, our results contribute to
testing individualized selection algorithms for recanali-
zation therapy in acute stroke integrating the strategic
importance of eloquent brain regions and known
outcome predictors. Lastly, our study also opens the
window for targeted use of low-dimensional versions of
the NIHSS in research, clinical trials, or clinical deci-
sion-making.
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