
Targeted treatments for fragile X syndrome

Elizabeth Berry-Kravis & Andrew Knox &

Crystal Hervey

Received: 26 October 2010 /Accepted: 24 January 2011 /Published online: 19 February 2011
# Springer Science+Business Media, LLC 2011

Abstract Fragile X syndrome (FXS) is the most common
identifiable genetic cause of intellectual disability and
autistic spectrum disorders (ASD), with up to 50% of
males and some females with FXS meeting criteria for
ASD. Autistic features are present in a very high percent of
individuals with FXS, even those who do not meet full
criteria for ASD. Recent major advances have been made in
the understanding of the neurobiology and functions of
FMRP, the FMR1 (fragile X mental retardation 1) gene
product, which is absent or reduced in FXS, largely based
on work in the fmr1 knockout mouse model. FXS has
emerged as a disorder of synaptic plasticity associated with
abnormalities of long-term depression and long-term
potentiation and immature dendritic spine architecture,
related to the dysregulation of dendritic translation typically
activated by group I mGluR and other receptors. This work
has led to efforts to develop treatments for FXS with
neuroactive molecules targeted to the dysregulated transla-
tional pathway. These agents have been shown to rescue
molecular, spine, and behavioral phenotypes in the FXS
mouse model at multiple stages of development. Clinical
trials are underway to translate findings in animal models of
FXS to humans, raising complex issues about trial design
and outcome measures to assess cognitive change that
might be associated with treatment. Genes known to be

causes of ASD interact with the translational pathway
defective in FXS, and it has been hypothesized that there
will be substantial overlap in molecular pathways and
mechanisms of synaptic dysfunction between FXS and
ASD. Therefore, targeted treatments developed for FXS
may also target subgroups of ASD, and clinical trials in
FXS may serve as a model for the development of clinical
trial strategies for ASD and other cognitive disorders.
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In the past decade, the study of the neurobiology and
synaptic mechanisms in fragile X syndrome has emerged as
a molecular doorway to future targeted treatments for
autism and related developmental disorders. Fragile X
syndrome (FXS) provides an excellent model for the
translation of basic molecular neuroscience findings to
clinical treatment because FXS is a genetically defined
condition in which all affected individuals have a uniform
single gene defect as the etiology for their condition, an
increasing body of information is available regarding the
mechanisms through which the genetic defect in FXS
impacts molecular events in neurons and resultant synaptic
plasticity, a sufficient number of individuals with FXS can
be identified to carry out trials, and aspects of FXS model
other more common neurodevelopmental conditions such
as autistic spectrum disorders (ASDs), learning disability,
and attention deficit/hyperactivity disorder (ADHD). De-
spite the positive aspects of FXS as a translational model,
no real template exists for how to approach the translational
process, and there are questions about the length of
treatment required to impact the underlying disorder, the
possibility of developmental windows beyond which
treatment cannot be successful, dosing and trial design
issues, and the problem of how to measure both short- and
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long-term outcomes, which are ongoing hurdles that must
be addressed. Nonetheless, these questions will have to be
addressed for targeted treatment of FXS or any neuro-
developmental disorder to be successful, and this paper will
review the current state of the translational process for
targeted treatment in FXS, including known targets,
preclinical work with small molecule therapeutics aimed
at those targets, active or completed clinical trials, and
issues associated with trial design and outcome measures.

Genetics of fragile X syndrome

FXS is the most common known inherited cause of intellectual
disability (ID), learning disability and ASD, with an estimated
frequency of about 1/2,500–1/4,000 (Hagerman 2008; Turner
et al. 1996). FXS results from a trinucleotide repeat (CGG)
expansion mutation of >200 repeats (full mutation) in the
promoter of the FMR1 (fragile X mental retardation 1) gene
(Verkerk et al. 1991), which leads to methylation and
transcriptional silencing of the FMR1 promoter with conse-
quent loss or significant reduction of expression of the gene
product, FMRP (fragile X mental retardation protein; Devys
et al. 1993). FMRP is a multifunctional mRNA binding
protein involved in the dendritic transport, localization, and
translational regulation of several hundreds of mRNA
ligands. Therefore, FMRP is thought to regulate translation
at the dendrite in response to neural activation, thereby
modulating synaptic plasticity and dendritic morphology (for
reviews, see Bagni and Greenough 2005; Grossman et al.
2006; Bassell and Warren 2008).

Smaller FMR1 expansions with 55–200 repeats (normal is
<45), termed the premutation, are not associated with FMR1
methylation or loss of FMRP expression, but do result in
fragile X-associated tremor/ataxia syndrome (Berry-Kravis et
al. 2007) or fragile X-associated primary ovarian insufficien-
cy (Sullivan et al. 2005). These conditions occur through a
presumed RNA toxicity mechanism due to elevated levels of
CGG repeat-containing mRNA which accompany the mild
reduction in translation of FMRP in the presence of the
repeat expansion (Berry-Kravis et al. 2007). Some premuta-
tion carriers have been found to have subtle evidence of
features that overlap those seen in FXS, including emotional
problems such as anxiety, social deficits, obsessive thinking,
and/or depression (Hessl et al. 2005; Cornish et al. 2005). A
small subgroup of carriers with a larger premutation have
mild cognitive disorders and features of FXS, presumed due
to uncompensated reduction in translation, with a resultant
deficit in FMRP (Tassone et al. 2000).

Because FMR1 is located on the X chromosome, females
with a full mutation are more variably affected and, on
average, more mildly affected than males due to the
production of FMRP from the normal FMR1 allele on the

non-mutated X chromosome. Severity of the cognitive
impairment and behavioral phenotypes in females with
FXS and the full mutation is inversely related to the
activation ratio for the normal FMR1 allele and the level of
FMRP (Loesch et al. 2002, 2004). Likewise, in males with
a full mutation and mosaicism for an unmethylated allele,
the severity of the cognitive disorder is related to the
amount of unmethylated DNA and FMRP level (Loesch et
al. 2002, 2004; Tassone et al. 1999).

Fragile X phenotype

Males with a completely methylated full mutation commonly
display mild to moderate ID (Hagerman et al. 2009). Females
with the full mutation typically present with learning
disabilities, although approximately 25% have ID (de Vries
et al. 1996). Physical features include macroorchidism
(present in most adult males), and more variably present
are prominent ears, macrocephaly, long face, high arched
palate, and loose connective tissue leading to hyperextensible
joints, flat feet, and soft skin (Hagerman et al. 2009).
Medical problems commonly include frequent ear infections,
mitral valve prolapse, and seizures (Hagerman et al. 2009).
Males with FXS have characteristic behavioral features
including hyperactivity, impulsivity, attention problems,
anxiety, mood lability, and autistic features such as poor
eye contact, shyness, self-talk, hand flapping, hand biting,
hyperarousal to sensory stimuli, and substantial perseverative
language and behavior (Hagerman et al. 2009; Berry-Kravis
and Potanos 2004; Wang et al. 2010a). They demonstrate an
enhanced sympathetic response to sensory stimuli, as
measured by electrodermal responses (Miller et al. 1999),
heart rate variability (Boccia and Roberts 2000), and
pupillary responses (Farzin et al. 2009); abnormal sensory
gating can be demonstrated in prepulse inhibition studies
(Hessl et al. 2008a). Anxiety disorders are common in both
males and females with FXS, including selective mutism,
separation anxiety, social phobia, and specific phobias
(Hagerman et al. 2009; de Vries et al. 1996; Sullivan et al.
2007), and there is often generalized anxiety with multiple
specific areas of difficulty. Aggression occurs in at least 30–
50% of males and is most commonly seen in adolescence
(Hessl et al. 2008b).

Females with FXS exhibit more variable and less
frequent involvement with respect to physical features and
medical problems, but often have attention problems,
impulsivity, and executive function deficits even when
their IQ is in the normal range (Hagerman et al. 2009; de
Vries et al. 1996; Berry-Kravis and Potanos 2004; Wang et
al. 2010a). Shyness, selective mutism, specific phobias,
social anxiety, and social deficits are common in females
(Berry-Kravis and Potanos 2004; Wang et al. 2010a).
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Molecular neurobiology and synaptic pathology in FXS

FMRP is an mRNA-binding protein involved in the
transport, localization, and translational regulation of a
subset of dendritic mRNAs (Darnell et al. 2001; Brown et
al. 2001; Chen et al. 2003; Miyashiro et al. 2003). Many of
the known interactions of FMRP at the synapse are shown
in Fig. 1a. The protein has two hnRNP K homology
domains and one RGG box as well as nuclear localization
and export signals. The RGG box of FMRP mediates
interactions with G-quartet sequences in mRNA ligands
(Darnell et al. 2001), although there appear to be other
mechanisms for FMRP-mRNA interactions as well. FMRP
is predominantly found in dendritic spines associated with
polysomes (Feng et al. 1997) or non-translating ribonu-
cleoprotein (RNP) particles known as processing bodies
(PB; Ceman et al. 1999; Zalfa et al. 2003; Blackwell et al.
2010; Weiler et al. 1997). In the PB, FMRP interacts with
the FMRP homologs FXR1 and FXR2 and other proteins
including Argonaute and CYFIP1, mRNA decapping
enzymes, the guide RNA BC1, miRNAs, and mRNA
targets (Bagni and Greenough 2005; Zalfa et al. 2003); in
concert with these other proteins and RNAs, FMRP
mediates a predominantly repressive effect on the transla-
tion of its mRNA cargos. Over 500 mRNA cargos of
FMRP have been identified (Darnell et al. 2001; Brown et
al. 2001; Chen et al. 2003; Miyashiro et al. 2003), with
many coding for proteins thought to influence synapse
formation and synaptic plasticity.

After transport to dendrites and spines, FMRP binds to
mRNAs (including its own) and regulates their translation
in response to neural activation (Weiler et al. 1997, 2004).
Specifically, FMRP appears to regulate translation path-
ways activated by group 1 metabotropic glutamate recep-
tors (mGluR1 and mGluR5; Huber et al. 2002; Antar et al.
2004; Aschrafi et al. 2005) and muscarinic (M1) acetyl-
choline receptors (Volk et al. 2007) and possibly has a more
general function in the regulation of translational activation
by multiple synaptic Gq-linked receptors, including dopa-
mine D1 receptors (Wang et al. 2010b). Activation of these
receptors transiently induces FMRP dephosphorylation
(Narayanan et al. 2008), which results in the reduction of
FMRP interaction with Argonaut (AGO2) and microRNAs
in the RISC complex and increased interaction with Dicer
(Cheever and Ceman 2009) and, hence, loss of interaction
with bound mRNAs, thereby relieving the repressive effect
of FMRP on the translation of these mRNA targets, leading
to the production of a pulse of new protein (Qin et al.
2005). Some of the FMRP-regulated proteins, in particular
STEP (Zhang et al. 2008) and Arc (Park et al. 2008), are
likely responsible for AMPA receptor endocytosis and
resultant maintenance of translation-dependent group 1
mGluR-induced long-term depression (LTD) in hippocam-

pus, as well as other receptor-activated translation-
dependent forms of LTD and long-term potentiation (LTP)
throughout the brain.

In the fmr1 knockout mouse, FMRP is absent, and there
is both constitutively elevated translation of FMRP target
mRNAs (∼2-fold normal) and a loss of the translation
“pulse” after mGluR stimulation (both due to loss of
baseline translational repression when FMRP is not
present). Thus, levels of synaptic proteins corresponding
to a number of FMRP target mRNAs have been shown to
be constitutively elevated in the fmr1 knockout mouse,
including MAP1B, PSD95, CaMKII, STEP, PIKE, amyloid
precursor protein (APP), Arc, PP2A, potassium channel
Kv3.1b, and others (Darnell et al. 2001; Brown et al. 2001;
Chen et al. 2003; Miyashiro et al. 2003; Park et al. 2008;
Zhang et al. 2001; Muddashetty et al. 2007; Goebel-Goody
et al. 2010; Westmark and Malter 2007; Shumbos et al.
2010). The levels of many of these proteins have also been
shown to be unresponsive to group I mGluR activation.
This dysregulated dendritic expression (either temporally,
spatially, or quantitatively) of multiple FMRP mRNA
ligands results in abnormal synaptic plasticity, including
enhanced mGluR-activated hippocampal (Huber et al.
2002) and cerebellar (Koekkoek et al. 2005) LTD and
impaired LTP in the hippocampus (Lauterborn et al. 2007),
cortex (Li et al. 2002; Larson et al. 2005), and amygdala
(Subrathan et al. 2010). Other expected consequences of
excessive constitutive activation of mGluR-mediated den-
dritic protein synthesis are also found in the fmr1 knockout
(KO) mouse, including reduction of synaptic AMPA
receptors (Koekkoek et al. 2005; Lauterborn et al. 2007),
abnormal epileptiform discharges (Chuang et al. 2005), and
abnormal dendritic spine morphology (Grossman et al.
2006; Comery et al. 1997; Irwin et al. 2002; Nimchinsky et
al. 2001).

Indeed, the cerebral cortex of adult fmr1 KO mice
(Grossman et al. 2006; Chuang et al. 2005; Comery et al.
1997; Irwin et al. 2002; Nimchinsky et al. 2001) and
autopsy specimens from individuals with FXS (Irwin et al.
2001) both show increased density of long, thin, tortuous
postsynaptic dendritic spines which are considered “imma-
ture” and are normally seen in early neocortical develop-
ment as well as reduction of mature, short mushroom-
shaped spines. This pattern appears to represent a deficit in
the “pruning” of unnecessary synaptic contacts, suggesting
that FMRP is required for the important processes of
synapse stabilization and pruning during synapse matura-
tion. The morphological abnormalities and synaptic plas-
ticity deficits found in the fmr1 knockout mouse are
associated with numerous cognitive, behavioral, and elec-
trophysiological phenotypes, including abnormal ocular
dominance plasticity (Dolen et al. 2007), olfactory learning
deficits (Larson et al. 2008), impaired memory formation
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(Ventura et al. 2004; Brennan et al. 2006), decreased motor
learning (Koekkoek et al. 2005), increased open-field
hyperactivity (Yan et al. 2004) and abnormal marble
burying (Paylor 2008), abnormal social behaviors (Paylor
2008; Mines et al. 2010; Spencer et al. 2008), abnormal
prepulse inhibition (PPI; Paylor et al. 2008; de Vrij et al.
2008), prolonged epileptiform bursts (Subrathan et al.
2010), neuronal network hyperexcitability (Gibson et al.
2008), audiogenic seizures (Yan et al. 2005), abnormal
growth patterns (Dolen et al. 2007), and increased protein
synthesis (Qin et al. 2005).

Findings in the Drosophila model of FXS, in which
there is loss of dfmr1 (homolog of the FMR1 gene in the
Drosophila genome) activity (Zhang et al. 2001) parallel
those in the knockout mouse and include defects in
circadian rhythms, synaptic branching, courtship behavior,
and learning (Zhang et al. 2001; McBride et al. 2005;
Dockendorff et al. 2002; Morales et al. 2002). Furthermore,
many phenotypic features of FXS in humans resemble or
overlap those seen in the mouse and fly models, including
seizures, electrical excitability on EEGs, hypersensitivity to
tactile stimuli, cognitive difficulty, strabismus, enhanced
anxiety, coordination problems and loose stools, and are
effects that have been proposed to occur in a setting of
exaggeration of mGluR-mediated protein synthesis-
dependent processes that would normally be inhibited by
FMRP (Bear et al. 2004; Bear 2005).

The pathways through which group 1 mGluRs and other
forms of neural stimulation activate translation show
abnormal activity in the fmr1 knockout, suggesting the
activity levels in these pathways themselves, are under the
control of FMRP. Group 1 mGluRs regulate dendritic
translation through several pathways (Waung and Huber
2009). One pathway involves the activation of phospholi-
pase C (PL-C), with resultant production of IP3 and DAG
from PIP2, leading to the activation of PKC and induction
of the mitogen-activated protein kinase kinase pathway
through the phosphorylation of MEK, extracellular signal-
regulated kinase (ERK), and Mnk1 in sequence, leading to
translational activation through eIF4E. The second pathway
involves signaling through homer-linked PIKE/PI3K, with
conversion of PIP2 to PIP3, which then recruits pleckstrin
homology-containing kinases PDK1 and Akt to the
membrane where they are phosphorylated, with subsequent
activation of mTOR and phosphorylation of 4EBP leading
to the release of eIF4E to form eukaryotic initiation factor
complex 4F and activation of CAP-dependent translation.
mTOR activation also results in the phosphorylation of
p70S6 kinase, which activates TOP-dependent translation.
The PI3K enhancer, PIKE, is a predicted mRNA target for
FMRP and in fact is found to be elevated in the fmr1
knockout, with resultant downstream activation of Akt,
mTOR, S6 kinase, and 4EBP (Sharma et al. 2010). A third

pathway involves direct Homer interaction and phosphor-
ylation of EF2 kinase, which inhibits translational elonga-
tion and affects translational regulation (Waung and Huber
2009). Furthermore, excessive dephosphorylation of
GSK3ß to the inactive form of the enzyme (presumably
due to higher levels of phosphatase PP2A, in the fmr1
knockout) occurs in fmr1 knockout mouse brain, is
dependent on elevated signaling through group 1 mGluRs,
and may mediate and/or result from disturbances of
translational regulation in the absence of FMRP (Min et
al. 2009). Thus, in the fmr1 knockout, translational
activation due to the absence of direct FMRP-mediated
ribosomal inhibition and stalling is compounded by an
increase in the activity of translation-activating cascades
because of increased basal levels of synthesis of FMRP-
target proteins that participate in those cascades.

Additional complex changes in molecular events at the
synapse occur in the absence of FMRP, in many cases because
of increased basal activity of proteins representing FMRP
target proteins, lack of appropriate sensitivity to synaptic
activation, direct protein–protein interactions of FMRP, or
other yet unknown mechanisms. Examples of identified
synaptic disturbances include FMRP interaction with dRac,
cAMP, and the potassium channel Slack. The small GTPase
dRac is a ligand of the fly dFMR protein and activates p21-
activated kinases (PAKs). It has been proposed that excessive
translation of Rac in the absence of repression by FMRP
might lead to the upregulation of PAK, with resultant
excessive phosphorylation of ERK (also observed in the
fmr1 knockout), and this might mediate some of the cellular
effects of FMRP deficiency (Lee et al. 2003; Hayashi et al.
2007). PAK associated with PSD95 at the synaptic density
(although not total PAK) has been shown to be increased in
the fmr1 knockout, but PAK fails to activate with theta burst
afferent stimulation (TBS) as it does in wild-type mice,
leading to defects in actin polymer stabilization, spine
morphology, and TBS-induced hippocampal LTP (Chen et
al. 2010). Cells from the fmr1 knockout mouse and from
individuals with fragile X show reduced cAMP production

Fig. 1 Synaptic translation and signaling pathways modulated by
FMRP (a) and dysregulation of these pathways in the absence or
significant reduction of FMRP (b). Shaded areas in (b) indicate
groups of targets for different strategies aimed at treatment of FXS by
correcting dysregulated neuronal pathways. Shaded areas are num-
bered according to type of treatment strategy and correspond to
numbering system for treatment strategies in the text as follows: (1)
reduction of activity in pathways that transduce signals from group 1
mGluRs or other Gq-linked receptors to the dendritic translational
machinery via (1a) extracellular pathway (receptor) blockers and/or
(1b) intracellular pathway blockers; (2) reduction of activity of
individual proteins regulated by FMRP; (3) increasing surface AMPA
receptors and/or activity; (4) modification of activity of other
receptors/proteins that regulate synaptic activity; and (5) blocking
translation of mRNAs regulated by FMRP using antisense technology

b
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(Chen et al. 2010; Berry-Kravis and Hicar 1995; Kelley et al.
2007) which is dependent on FMRP levels (Berry-Kravis
and Ciurlionis 1998). Likewise, adenylate cyclase activity
modulates mGluR-mediated regulation of FMRP activity
(Wang et al. 2008a). Although the mechanism through which
FMRP regulates cAMP production is not known, FMRP is
known to bind adenylate cyclase subunit mRNAs (Darnell et
al. 2010). FMRP has recently been shown, for the first time,
to directly interact with a membrane protein by binding the
C-terminus of the sodium-activated potassium channel Slack
and activating the channel (Brown et al. 2010). This suggests
that FMRP has synaptic activities that are distinct from the
role in translational regulation and thus may be very diverse.

Numerous receptor system alterations have been reported
in the fmr1 knockout, including the following examples.
Synaptic GABA system proteins show decreased levels of
GAD and GABA-A receptor subunits α1,3 and 4, ß1 and 2,
and δ1 and 2 in several studies (D’Hulst et al. 2006; Gantois
et al. 2006; D’Hulst and Kooy 2007). In another report,
GABA-A α1, ß2 and δ, and GAD were downregulated at
different specific times during development in the knockout
(Adusei et al. 2010), overall suggesting the potential for
reduced inhibitory signaling and inhibitory/excitatory imbal-
ance in FXS. There is additional evidence for dopamine D1
receptor signaling deficits in the fmr1 knockout brain (Wang
et al. 2008b). New evidence has recently emerged demon-
strating that group I mGluR-dependent protein synthesis-
independent endocannabinoid (eCB) LTD is abnormal in the
fmr1 knockout mouse, likely due to abnormal regulation of
production and levels of endocannabinoid 2-AG at synapses
(Zhang and Alger 2010; Maccarrone et al. 2010). Since eCB-
producing neurons are widely distributed in the brain, this
may be an important mechanism impacting synaptic function
in FXS

Targets, therapeutics, and preclinical work

The model of cognitive and behavioral manifestations in
FXS as the result of downstream effects of excessive
translation normally activated by mGluR or other Gq-
coupled receptor activation, in the absence of FMRP, has
led to the identification of numerous possible treatment
targets, listed in Table 1 and depicted in Fig. 1b (Wang et
al. 2010a; Bear et al. 2008; Levenga et al. 2010; Heulens
and Kooy 2011), directed at (1) reducing activity in
pathways that transduce signals from group 1 mGluRs or
other Gq-linked receptors to the dendritic translational
machinery, (2) reducing the activity of individual proteins
regulated by FMRP, (3) increasing surface AMPA receptors
and activity, (4) modifying the activity of other receptors/
proteins that regulate synaptic activity, and (5) blocking
translation of mRNAs regulated by FMRP using antisense

technology. Success of treatments aimed at these targets has
been tested in cell culture and in animal models of FMRP
deficiency, including both the dfmr mutant fly and Fmr1
knockout mouse models. Indeed, these models have been
proven to be powerful systems to elucidate the causes of
FXS and identify effective therapeutics (Bakker and Oostra
2003). Targeted treatments have shown success in model
organisms even in adulthood (Yan et al. 2005; McBride et
al. 2005), consistent with the finding that induction of
expression of FMRP in adult fmr1 conditional knockout
mice leads to the reversal of most phenotypes (Nelson
2010), suggesting that there may not be an absolute
developmental requirement for FMRP and that deficits
due to the absence of FMRP can be reversed with
intervention to correct the synaptic dysfunction when
applied in adulthood. Preclinical testing of targeted treat-
ments in animal models is presented below, in subsections
defined by the mechanism of the targeted treatment.

Signaling from receptor to dendritic translational machinery

Treatment targets in this category can be divided into those
that act extracellularly on receptors to decrease translational
signaling and those that act intracellularly on the signaling
cascade. Extracellular agents generally target a particular
receptor and thus are more specific treatments whose effects
are often limited to brain or even just specific subsets of
neurons. Intracellular agents have the advantage of potentially
normalizing signaling resulting from the activation of the
pathway through any receptor, and thus may target the
mechanism more generally than receptor-specific molecules.
On the other hand, intracellular agents predominantly target
proteins with substantial overlap in multiple cellular signaling
pathways, including those for growth and specification and
other hormonal responses; therefore, these agents will be
prone to an increased likelihood of off-target effects as well as
cellular and organ toxicity.

Extracellular agents

Potential extracellular agents considered thus far include
group 1 mGluR receptor (particularly mGluR5) blockers and
muscarinic (M1) acetyl choline receptor blockers. Of the
group 1 mGluRs, mGluR1 receptors are present mainly in the
cerebellum and hippocampus, while mGluR5 receptors are
present throughout the brain except in the cerebellum (Bear et
al. 2004; Bear 2005). The broader distribution of mGluR5
receptors, in conjunction with toxicity in the form of motor
deficits observed in animal models treated with mGluR1
blockers, has pointed to mGluR5 receptors as the better
initial target for the pharmacotherapy of FXS.

In cultured neural cells, knockdown of FMRP using
antisense oligonucleotides directed at FMR1 mRNA results
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Table 1 FXS targeted treatments in models and man

Agent/target Phenotypes reversed Translational progress

dfmr mutant fly Fmr1 KO mouse Humans with FXS

(1)a Block translational signaling pathway—external

mGluR5 inhibition
(MPEP, fenobam,
STX107, AFQ056,
RO4917523); MPEP
used in models except
where markeda

Courtship behavior—immediate
recall and short-term memory;
mushroom body formation;
odor-shock memory; survival
on glutamate-containing food

Audiogenic seizuresa;
Epileptiform bursts; open-field
hyperactivity; dendritic spine
morphologya; amygdala
mEPSP frequency; prepulse
inhibitiona; marble buryinga

Fenobam—phase IIa single-
dose open-label trial—PPI
improved, anxiety reduced;
AFQ056—phase IIb trial
completed with improvement
in fully methylated patients,
phase III trial being initiated;
RO4917523—phase II trial in
progress STX107—phase I
completed

mGluR5 inhibition by
genetic reduction of
mGluR5 receptors

Audiogenic seizures; dendritic
spine density; excessive
protein synthesis; abnormal
growth pattern; ocular
dominance plasticity;
inhibitory avoidance
extinction

(1)b Block translational signaling pathway- internal

Lithium (inhibition of
GSK3β and PI turnover)

Courtship behavior—immediate
recall and short-term memory;
mushroom body formation

Audiogenic seizures; open-field
hyperactivity; dendritic spine
morphology; learning and
anxiety deficits in the elevated
plus maze, elevated zero maze,
passive avoidance; social in-
teraction deficit with new mice
and anxiety-related behaviors
during social interaction

Open label trial—behavioral
improvement, some adaptive
skills and verbal memory
improved; ERK biomarker
normalized

GSK3β inhibition (AR-
A014418 or SB-216763)

Audiogenic seizures

PAK inhibition by genetic
reduction of PAK

Dendritic spine morphology;
Cortical LTP deficits; open-
field hyperactivity, repetitive
behaviors, center field anxiety
deficit; Fear conditioning

PI3K inhibition
(LY294002)

Dendritic spine morphology;
mTOR overactivity

ERK/MEK inhibition
(SL327)

Audiogenic seizures; protein
synthesis

(2) Inhibit activity of individual FMRP-regulated proteins

Inhibit MMP9
(minocycline)

Dendritic spine morphology;
anxiety in elevated plus maze;
exploratory behavior in Y
maze

Improvement in behavior in
small open-label trial

Inhibit APP/Aβ with
antibody or by genetic
reduction of APP

Audiogenic seizures; dendritic
spine morphology; marble
burying

Inhibit STEP by genetic
reduction of STEP

AMPA receptor internalization;
audiogenic seizures; open-
field hyperactivity

(3) Activate surface AMPA receptors

Ampakines (CX516,
CX614)

CX614 increases BDNF which
reverses impairments in
hippocampal TBS-LTP

CX516—phase II trial—no
cognitive or behavioral effects
overall—dose too low but may
have helped subjects co-
treated with antipsychotics
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in increased AMPA receptor (GluR1) internalization, presum-
ably due to mGluR5 pathway overactivity as 2-methyl-6-
(phenylethynyl)-pyridine (MPEP), an mGluR5 blocker, is
able to reduce AMPA internalization back to normal levels
(Nakamoto et al. 2007). This finding suggests that synaptic
cellular deficits due to the absence of FMRP can be reversed
by the inhibition of mGluR5-mediated activity. In the dfmr
mutant fly, treatment with MPEP has been shown to reverse
impairments in naïve courtship behavior, immediate recall
and short-term memory (McBride et al. 2005), mushroom
body formation (McBride et al. 2005), odor-shock memory
(Bolduc et al. 2008), and survival on glutamate-containing
food (Chang et al. 2008). MPEP and other mGluR5 negative
modulators (including fenobam, AFQ056, and STX107)
have been shown to reverse multiple phenotypes including
audiogenic seizures (Paylor 2008; de Vrij et al. 2008),
epileptiform bursts (Chuang et al. 2005), open-field hyper-
activity (de Vrij et al. 2008), dendritic spine shape (Spencer
et al. 2008), prepulse inhibition (Spencer et al. 2008), and
behavioral phenotypes including abnormal marble burying
(Paylor 2008). Treatment with MPEP, however, only
partially corrects synaptic plasticity deficits in the fmr1
knockout amygdala, with failure to rescue LTP deficits and
excessive AMPA receptor internalization, but successful
rescue of mEPSC frequency (Subrathan et al. 2010).

Additional support for the mGluR5 receptor as a treatment
target in FXS has come from experiments in which fmr1

knockout mice also heterozygous for a null mutation in the
gene coding for the mGluR5 receptor were generated,
resulting in a 50% reduction in mGluR5 expression, in
addition to loss of FMRP in these animals (Dolen et al.
2007). Numerous phenotypes were rescued by genetically
reducing mGluR5 expression in these fmr1 KO mice,
including abnormal ocular dominance plasticity, increased
density of dendritic spines on cortical pyramidal neurons,
increased basal protein synthesis in the hippocampus,
exaggerated inhibitory avoidance extinction, audiogenic
seizures, and accelerated body growth (Dolen et al. 2007).
The accumulated data showing both pharmacological and
genetic reversal of fmr1 knockout phenotypes have provided
substantial support for the proposal of Bear et al. (Bear et al.
2004, 2008; Bear 2005) that the excessive mGluR5 signaling
in the fmr1 knockout model could be at least partially
responsible for many of the psychiatric and neurological
symptoms, such as poor cognitive development, seizures,
anxiety, movement disorders (stereotypic motor movements),
and even accelerated body growth seen in FXS.

It has been proposed that mGluR1 negative modulators
might also be beneficial for development in FXS, but little
preclinical information is available regarding the effects of
these molecules in the fmr1 knockout. These molecules are
associated with substantial negative cognitive and motor
effects in normal rats (Kolasiewicz et al. 2009; Steckler et
al. 2005) and hence are not in clinical development;

Table 1 (continued)

Agent/target Phenotypes reversed Translational progress

dfmr mutant fly Fmr1 KO mouse Humans with FXS

(4) Other synaptic receptors/proteins

GABA-B agonists
(baclofen, R-baclofen)

Survival on glutamate-
containing food; memory def-
icits

Audiogenic seizures; open-field
hyperactivity; marble burying

R-baclofen phase II trial—
improvement in overall
function, social and language
function in more socially
impaired subject group

GABA-A agonists
(ganaxolone)

Audiogenic seizures

Anticholinesterase
(donazepil)

Open label trial -behavioral and
social improvement

NMDA antagonists
(memantine,
acamprosate)

Memantine—small open-label
trial—no overall improvement

Acamprosate—open-label trial
in 3 patients with improved
language and socialization

Glutamate uptake
inhibition (riluzole)

Riluzole—small open-label trial—
no overall improvement, ERK
biomarker normalized

a Audiogenic seizures: MPEP, fenobam, and STX107; spine shape: MPEP, fenobam, AFQ056; PPI: MPEP, fenobam, AFQ056; motor learning: MPEP,
fenobam, AFQ056; marble burying: MPEP, fenobam, STX107
b All phase II or III trials listed in the table are placebo-controlled double-blind trials, unless otherwise noted

200 J Neurodevelop Disord (2011) 3:193–210



however, they remain possible targeted treatments in FXS
due to the specific disease defect of excessive signaling
through mGluR1 receptors.

Intracellular agents

These agents target the pathway for derepression of
translation after mGluR activation and include lithium,
PI3K inhibitors, GSK3β inhibitors, and PAK inhibitors,
among others. Lithium may attenuate activation of the PL-
C signaling pathway by inhibiting phosphatidyl inositol
(PI) turnover (Berridge 1993) and clearly inhibits GSK3β
activity (Min et al. 2009; Yuskaitis et al. 2010), which
would decrease phosphorylation of ERK and multiple
signaling molecules that regulate translation; all of these
effects would theoretically lead to the reduction of
translational activation. Lithium has been shown to improve
defects in naïve courtship behavior, immediate recall, and
short-term memory in dfxr mutant flies (McBride et al.
2005) and to reverse phenotypes including audiogenic
seizures (Min et al. 2009), open-field hyperactivity (Min
et al. 2009; Liu et al. 2010), deficits on a social interaction
task (Mines et al. 2010; Liu et al. 2010), learning deficits
(Yuskaitis et al. 2010; Liu et al. 2010), anxiety (Yuskaitis et
al. 2010; Liu et al. 2010), novel object recognition
(Venkitaramani et al. 2010), and dendritic spine shape
(Liu et al. 2010) in the fmr1 knockout mouse model. Given
that lithium treatment normalizes levels of activated ERK
and GSK3β in the fmr1 knockout (Venkitaramani et al.
2010), it appears that the main effect of lithium in the fmr1
knockout is to reduce excessive GSK3β activity with
resultant reduction in excessive ERK-mediated translation;
however, lithium may also directly increase surface
expression of AMPA receptors (Du et al. 2010) and reduce
excess MAP1B activity (Owen and Gordon-Weeks 2003).
Other GSK3β inhibitors such as SB-216763 can reverse
these phenotypes as well (Min et al. 2009). Effects of GSK3β
inhibitors are not additive with those of mGluR5 blockers,
suggesting that excess GSK3β activity is due to excessive
activity in mGluR5-activated pathways (Min et al. 2009).

It was noted that PAK-deficient mice had dendritic spine
pathology opposite that observed in the fmr1 knockout, with
excessive short stubby spines and reduced density of spines.
Hence, in double-mutant fmr1 knockout/PAK-deficient mice
(expressing a dominant negative PAK transgene in the
forebrain), rescue of fmr1 knockout phenotypes, including
spine morphology abnormalities, cortical LTP deficits, and
behavioral abnormalities, was observed (Hayashi et al.
2007). It was proposed that because PAK plays a role in
ERK activation, PAK deficiency may correct excessive ERK
activation and signaling and thus partially correct transla-
tional activation and resultant phenotypes in the fmr1
knockout. This is consistent with the finding that reduction

of ERK activation with SL-327 normalizes protein synthesis
and blocks audiogenic seizures in the fmr1 knockout mouse
(Osterweil et al. 2010), and small molecules that inhibit ERK
have been proposed as possible targeted therapeutics in FXS
on the basis of these findings.

Elevated PI3K activity observed in the fmr1 knockout can
be reduced using PI3K antagonist LY294002, resulting in the
reversal of dendritic spine phenotypes (Gross et al. 2010),
normalization of aberrant mTOR activation, and restoration
of sensitivity of mTOR to mGluR activation with 3,4-
dihydroxyphenylglycine (DHPG; Sharma et al. 2010). Thus,
agents acting in this pathway including PI3K, mTOR, and
S6 kinase inhibitors may also be potential treatment targets.

Taken together, the above findings suggest that deficits
in receptor-activated signaling pathways in the absence of
FMRP are beginning to be sufficiently well understood as
to generate many potential targets for eventual treatment of
fragile X syndrome.

Activity of individual proteins regulated by FMRP

Treatment targets in this category would be key synaptic
proteins (other than those in the translational signaling
pathway discussed above) for most of which the mRNA is
an FMRP cargo, and the protein has been shown to be
excessively translated in the absence of FMRP, with
resultant elevated basal levels of protein, typically also
with loss of responsiveness of protein translation/levels to
mGluR activation with DHPG. Even though only one
misregulated protein would be targeted, the protein would
have sufficient key synaptic activity that correction of
levels would be at least partially helpful in reversing
phenotypes. Examples of targets in this category that have
been studied include matrix metalloprotein-9 (MMP9;
Bilousova et al. 2009), APP (Westmark and Malter 2007),
and STEP kinase (Goebel-Goody et al. 2010). Excessive
activity of MMP9 was demonstrated in the hippocampus of
the fmr1 knockout mouse relative to wild type, and
minocycline, an antibiotic that inhibits MMP9, currently
used predominantly for acne in teenagers, was found to
normalize dendritic spine phenotypes in both in vivo and in
cultured hippocampal neurons from the fmr1 knockout as
well as to improve anxiety in the elevated plus maze and
exploratory behavior in the Y maze (Bilousova et al. 2009).
APP and metabolites have been shown to be elevated in the
fmr1 knockout, and either pharmacological (with antibodies
to APP/Aβ) or genetic (creation of heterozygous APP null,
fmr1 knockout double mutant) reduction of APP results in
at least partial reversal of audiogenic seizure, behavioral,
and spine phenotypes (Westmark et al. 2010). STEP levels
are increased in the fmr1 knockout; in fact, STEP may be a
key LTD protein produced by translational activation, and
which then is responsible for the internalization of AMPA
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receptors. STEP/fmr1 double knockout animals show
rescue of open-field hyperactivity and audiogenic seizure
phenotypes seen in the fmr1 knockout, and STEP inhibitors
have been proposed as a potential targeted treatment (Park
et al. 2008).

An example of a different type of target would be a protein
regulated by FMRP directly rather than through control of
translation of its mRNA. One such example would be Slack, a
sodium-activated potassium channel subunit that is activated
by FMRP through direct interaction of FMRP with the C-
terminal of Slack (Brown et al. 2010). In the fmr1 knockout,
current through this channel is significantly reduced relative
to wild type, suggesting that activators of Slack-containing
channels might be a potential therapeutic strategy (Brown et
al. 2010), although no studies of the therapeutic effects of
such agents have yet been conducted.

Surface AMPA receptors and activity

Agents in this category are AMPA activators or “ampa-
kines” and could be utilized to increase deficient synaptic
AMPA receptor activity by direct positive modulation of
receptor activity in the presence of glutamate and/or
inducing BDNF to increase the number of surface AMPA
receptors, thus normalizing deficient LTP. The so-called
ampakine CX614 has been shown to increase BDNF in the
hippocampus of the fmr1 knockout and wild-type mouse.
BDNF, itself, reverses hippocampal TBS-induced LTP
deficits in the fmr1 knockout (Lauterborn et al. 2007).
Behavioral effects of these treatments have not yet been
measured in the fmr1 knockout.

Other receptors/proteins that regulate synaptic activity

The main group of agents in this category that have been
thus far studied in FXS animal models are GABAergic
agents aimed at correcting the reduced activity of GABA
inhibitory systems and reestablishing a balance between
inhibition and excitation in the brain. GABA-A agonists
would be directed at compensating for GABA-A subunit
deficiencies (D’Hulst et al. 2006; Gantois et al. 2006),
while GABA-B agonists act presynaptically to block
glutamate release and thus would tend to decrease group I
mGluR activation and excessive signaling, although it is
likely that GABA-B agonists have a complex mechanism
involving postsynaptic effects as well (Sohn et al. 2007). In
the dfmr mutant fly, a variety of GABA agonists rescue the
lethality phenotype from glutamate-containing food, as well
as memory deficits and neuropathological phenotypes
(Chang et al. 2008). In the fmr1 knockout mouse, racemic
baclofen, a GABA-B agonist, rescues the audiogenic
seizure phenotype (Pacey et al. 2009). The R-baclofen
enantiomer of baclofen appears to have substantially better

potency than S-baclofen, and R-baclofen reverses several
behavioral phenotypes, including marble burying and open-
field hyperactivity as well as audiogenic seizures (Paylor
2008). The GABA-A agonist ganaxolone (Carter et al.
1997) reduces audiogenic seizures in the fmr1 knockout
(Kooy 2010), but no other effects have yet been explored.

Additional receptor targets would theoretically include
mGluR2/3 agonists or antagonists, throughmechanisms having
to do with the regulation of synaptic glutamate levels, and
blockers of endocannabinoid degradation, which would in-
crease defective mGluR-dependent endocannabinoid-mediated
LTD observed in the fmr1 knockout (Zhang and Alger 2010;
Maccarrone et al. 2010). Preclinical testing of these molecules
in the knockout has not yet been accomplished.

Translation of mRNAs regulated by FMRP using antisense
technology

This strategy for developing treatment targets was recently
proposed when it was discovered that mir125a, a small
RNA involved in translational silencing of specific mes-
sages, operates in conjunction with phosphorylated FMRP
and AGO2 to bind to PSD-95 mRNA and block translation
of PSD-95. DHPG and anti-mir125a increase the translation
of PSD-95 by dissociating mir125a from PSD-95 mRNA.
In the absence of FMRP, mir125a is reduced in inhibitory
complexes in synaptoneurosomes and PSD-95 translation is
increased and uncoupled from mGluR activation (Mudda-
shetty et al. 2010). This has suggested that the delivery of
specific siRNAs like mir125a that target FMRP cargos to
fmr1 knockout dendrites might be a new therapeutic
strategy that could compensate for the absence of FMRP
by reducing (normalizing) the translation of their target
messages (Muddashetty and Bassell 2009).

Clinical trial experience with targeted treatments
in humans with FXS

Taken together, the preclinical data with agents acting in the
above mechanistic categories of targeted treatment have
been very promising. Although there is much less informa-
tion on the impact of treatment of humans with FXS with
these compounds, early phase clinical trials have been
initiated and even completed for treatments in many of the
categories (listed in Table 1).

Signaling from receptor to dendritic translational machinery

Extracellular agents

Several mGluR5 negative modulators are currently being
developed for the treatment of FXS and are in clinical trials,
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but are not available for general use in humans. Fenobam,
the first mGluR blocker used in FXS, was administered in a
single oral dose to 12 adult males and females with FXS
(Berry-Kravis et al. 2009). In this trial, an improvement in
the general anxiety level of many of the participants was
observed after the dose, although given that the trial was
open-label, this could have been a placebo effect. A
significant improvement in PPI was also seen, which would
be far less likely to be due to placebo effect. There were no
safety concerns. Concurrently, a phase II double-blind
placebo-controlled, crossover design trial of AFQ056
(Novartis) with treatment of 30 adult males with FXS for
28 days each with AFQ and placebo was conducted in
Europe (Jacquemont et al. 2011). Results of this trial
suggested improvement in maladaptive behavior on the
ABC-C, CGI-I, and the Repetitive Behavior Scale in males
with FXS and full methylation of FMR1, an outcome which
was adequate to support ongoing development of AFQ056
for the treatment of FXS, with a larger multinational
double-blind placebo-controlled 3-month trial evaluating
the effects of multiple doses of the medication started in
Fall of 2010 (clinicaltrials.gov). STX107 (Seaside Thera-
peutics) is completing phase I trials in healthy individuals
and is expected to be ready for treatment trials in FXS in
2011 (clinicaltrials.gov). A double-blind placebo-controlled
dose finding phase II trial of RO4917523 in adult males
and females with FXS is underway and should be
completed by late 2011 (clinicaltrials.gov). No serious
safety concerns have yet emerged in any of these studies,
although only small populations of individuals with FXS
have thus far been exposed to mGluR5 blockers. It has been
proposed that mGluR1 negative modulators might also be
beneficial for individuals with FXS, but these have not been
studied.

Intracellular agents

Although a number of intracellular treatment targets have
been proposed, in most cases, safe and available agents
acting on these targets are not yet developed for use in
humans. One exception is lithium, for which the preclinical
findings in the dfmr mutant fly and fmr1 knockout mouse
suggested promise of therapeutic benefit. Although lithium
has been used for some time to treat mood instability and
aggression in FXS (Hagerman et al. 2009; Berry-Kravis
and Potanos 2004; Wang et al. 2010a), only anecdotal
information on effectiveness was available prior to a pilot
study initiated by Berry-Kravis et al. (2008a) to test the
concept of inhibition of mGluR-activated translational
signaling pathways as a treatment strategy for FXS by
systematically exploring the effects of a short-term
(2 months) treatment with lithium on a broad range of
phenotypes, including behavior, cognition, and biophysical

measures, in a small cohort of subjects with FXS. In
addition, since ERK was shown to be misregulated in the
fmr1 knockout and to have a reduced activation rate in
lymphocytes from humans with FXS (Weng et al. 2008),
ERK activation was explored as a potential biomarker for
the effects of lithium on cellular signaling and more
generally as a model for measuring changes in signaling
during treatment with agents that may impact receptor-
activated translational regulatory pathways. In this pilot
open-label lithium trial in 15 patients with FXS, significant
improvement in behavior was seen in on the Total Aberrant
Behavior Checklist-Community Edition (ABC-C) Score,
the Maladaptive Behavior subscore from the Vineland
Adaptive Behavior Scale, a parent visual analog scale for
target behaviors, and the CGI. Improvement in verbal
memory on the RBANS List Learning task was also
demonstrated in addition to normalization of abnormal
ERK phosphorylation rates in lymphocytes (Berry-Kravis
et al. 2008a). There were no major side effects, but
polydipsia and polyuria were seen relatively frequently as
expected, and there were a few subjects with abnormal
thyroid measurements on lithium. These data suggested that
further studies with a placebo-controlled trial would be
indicated; however, such studies have not yet been carried
out, partly due to concerns about chronic toxicity of
lithium, but also related to hope that less toxic
mechanism-based treatments will be available soon.

PAK inhibitors are being generated for possible use in
humans with FXS (Drug Discovery: PAK Program),
however these are still in preclinical development. PI3K
inhibitors and GSK3β inhibitors have been proposed and
used in the fmr1 knockout, but are not yet in preclinical
development for FXS.

Activity of individual proteins regulated by FMRP

Of synaptic protein targets thought to be regulated by
FMRP and overexpressed in the fmr1 knockout and, by
extension, in FXS, only MMP9 has had a pharmaceutical
inhibitor sufficiently well developed at present for human
trials. Minocycline has been used in clinical trials to inhibit
MMP9 in FXS. An open-label survey study suggested
improvements in anxiety and language in patients with FXS
treated in clinic with minocycline (Utari et al. 2010). An
initial open-label trial of minocycline in 20 participants
with FXS over age 12 showed behavioral improvements on
the ABC-C, VAS, and CGI (Paribello et al. 2010). There
were no major side effects, but two individuals had to stop
treatment due to elevated antinuclear antibodies despite
lack of signs of drug-induced lupus. These results have
been the rationale for an in-progress double-blind placebo-
controlled trial of minocycline in children and adolescents
with FXS age 5 and up. The major detriment to using
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minocycline in children <12 has been the likely side effect
of yellow/brown discoloration of the permanent teeth.
Other side effects that can be seen at any age include GI
symptoms such as vomiting and/or diarrhea (Utari et al.
2010), drug-induced lupus, and pseudotumor cerebri. The
placebo-controlled trial should help delineate the true
margin of benefit provided by minocycline to help with
decisions, especially for younger children, about whether
benefits of minocycline treatment exceed the impact of the
tooth discoloration side effect.

Antibodies to reduce toxic Aβ metabolites of APP have
already been piloted in human phase II trials in Alzheimer’s
disease (Frisardi et al. 2010). Such antibodies could also be
used to reduce overexpressed Aβ in the human FXS brain,
if justified by additional preclinical data in the knockout
mouse.

Surface AMPA receptors and activity

A single human trial has been completed with CX516
(Cortex Phamaceuticals), a direct AMPA receptor-positive
modulator or “ampakine” known to increase LTP and raise
BDNF kevels, thus potentially increasing surface AMPA
receptors (Jourdi et al. 2009). This was a double-blind
placebo-controlled trial of effects of CX516 on safety and
cognitive and behavioral efficacy measures carried out in a
cohort of 49 individuals with FXS (Berry-Kravis et al.
2006). Conceptually, it was thought the CX516 would help
compensate or correct the AMPA receptor deficit resulting
from mGluR pathway overactivity. Realistically, CX516 is
a very weak ampakine, and thus, no improvements were
seen except in the group of patients co-treated with an
antipsychotic (known to potentiate ampakine activity). This
suggests that a more potent ampakine molecule might show
success in FXS; however, such molecules have not yet
come to clinical trials.

Other receptors/proteins that regulate synaptic activity

Based on animal data discussed in the previous section,
coupled with anecdotal clinical experience suggesting
behavioral benefits from racemic baclofen and data from
TMS studies demonstrating enhancement of cortical inhi-
bition by racemic baclofen (McDonnell et al. 2007), a
clinical trial of R-baclofen in humans with FXS has been
conducted. R-baclofen is the enantiomer of racemic
baclofen with more potent GABA-B agonist activity. The
double-blind placebo-controlled crossover trial, conducted
by Seaside Therapeutics, involved 4-week periods of
placebo and active drug treatment for each subject. This
trial showed benefit for R-baclofen over placebo in global
preference for treatment period and clinician global
impression, particularly evident in subgroups of FXS

patients with autism, more severe irritable behavior, or
more severe social deficits. In the group with more
impairment in social behaviors, improvements in the ABC
Social Withdrawal Scale and Vineland Play and Leisure
Scale were also seen (Wang et al. 2010c). There were no
significant safety issues, and many subjects are continuing
treatment through an extension study to evaluate long-term
benefits and toxicity. Further development of R-baclofen is
planned with additional clinical trials.

Other agents acting at an array of receptors have
undergone an exploratory study in groups with FXS. These
include donazepil, an anticholinesterase which raises acetyl
choline in the brain and is extensively utilized for the
maintenance of cognitive function in Alzheimer’s disease.
Donazepil showed promise for the treatment of behavior
and social function in an open-label trial in participants
with FXS and now is being studied in a larger placebo-
controlled trial (clinicaltrials.gov). A small open-label
study of memantine, an NMDA antagonist, in six
individuals with FXS showed modest clinical benefit on
a CGI in 4/6 patients, but no improvement on behavioral
rating scales, and two patients developed significant
irritability that limited treatment (Erickson et al. 2009).
An open-label study of riluzole, a sodium channel blocker
and glutamate uptake activator that indirectly decreases
glutamate receptor activity, in five patients with FXS
showed overall behavioral improvement in only one
subject, although ERK activation rates normalized and
there was a suggestion of improvement specifically in
hyperactivity symptoms (Erickson et al. 2011). An
anecdotal treatment experience has been reported with
three adults with FXS treated with acamprosate, a drug
approved for assisting with alcohol withdrawal that most
likely interacts with multiple receptors but primarily may
exert effects by acting as a mixed agonist/antagonist at
NMDA receptors, activating GABA-A receptors and
possibly inhibiting group I mGluRs. This case series
observed improvement in language and behavior in all
patients (Erickson et al. 2010a). One patient experienced
limiting gastrointestinal side effects that are commonly
seen with acamprosate. Although aripiprazole is a treat-
ment directed primarily at behavior rather than molecular
mechanism, it could theoretically be targeted to dopamine
deficits thought to be present in FXS (Wang et al. 2008b),
given its dopamine agonist activity at lower doses.
Apipirazole has shown good success when used empiri-
cally in FXS clinic populations (Hagerman et al. 2009;
Berry-Kravis and Potanos 2004), and resulted in improve-
ment in ABC irritability, other ABC subscores and other
behavioral rating scales in 15 individuals with FXS treated
in a very recently completed open-label trial (Erickson et
al. 2010b). Plans are underway to initiate a double-blind
placebo-controlled trial of aripiprazole.
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Translation of mRNAs regulated by FMRP using antisense
technology

Treatments utilizing this strategy have just recently been
initiated in preclinical animal models of FXS and are not in
development yet for humans.

Trial design and hurdles to address

Although many neuronal targets for treating the underlying
disorder in FXS have emerged, and early translational work
has begun, there are still many uncertainties about how to
optimally demonstrate treatment effects in a clinical trial
setting. These issues surrounding clinical trial design have
not yet been worked out, nor are there models for cognitive
treatment trials for any neurodevelopmental disorders. FXS,
in fact, serves as a good model to develop such designs,
particularly because FXS is a single genetic disorder in
which all affected individuals have the same basic cellular
defect as the primary cause of their brain disorder, a mouse
model is available, some information on the mechanisms of
the synaptic function of FMRP in brain is known, and
aspects of FXS model more common disorders with likely
mechanistic overlap, including autistic spectrum disorders,
ADHD, and non-verbal learning disability.

Trial design issues that need to be resolved for each
targeted treatment trial in FXS include: (1) length of placebo
treatment and use of crossover designs or open-label
extensions to ensure everyone gets a chance at drug and
increase recruitment; (2) lack of information on optimal
dosing and whether to determine this through dose escalation
or flexible dosing within or between subjects or multiple
fixed-dose arms; (3) how to best detect side effects in
cognitively impaired individuals who may not be able to
report symptoms accurately; (4) the most appropriate age
range to study treatment effects, balancing concerns about
safety that dictate adult trials first, with the possibility that
rapid movement to younger ages may be needed despite
minimal effects in older individuals because much more
significant results may be seen by treating the underlying
disorder in young children who are not as far along in the
process of brain wiring and development and are still in
school; (5) lack of understanding the length of treatment
needed to impact brain wiring and demonstrate measurable
cognitive improvement; (6) drug formulation and how to best
deliver drug to younger children and individuals with
oromotor dyspraxia; (7) inclusion of females and mosaic
individuals, and whether to analyze response separately in
these groups, as individuals with FMRP present in a fraction
of cells may have different dosing ranges and differing
toxicities; (8) whether to allow baseline medications and the
balance between the need to analyze treatment effects in the

absence of medication interactions, problems with recruitment
and patient discomfort if baseline medications have to be
weaned, and the importance of demonstrating that new
targeted treatments can actually improve symptoms even
when treatment with the best available symptomatic regimen
is already in place; (9) numbers of study visits and travel
issues for a disorder in which subject numbers are limited and
participants may need to come to trail sites from far away; and
(10) the problem of lack of validated sensitive outcome
measures for behavior or especially for cognition in FXS (or
other developmental disorders) and lack of biomarkers known
to correlate with functional improvement.

The design and evaluation of outcome measures for trials
in FXS and neurodevelopmental disorders represents the
most significant hurdle in trial design for targeted treat-
ments. Choice of optimal outcome measures has been
plagued by the need to test a broad ability range to prevent
low- or high-functioning individuals from showing ceiling
or floor effects, by problems with cooperation and variable
performance, lack of knowledge about reproducibility of
measures, and by the need to find measures that quantify
core defects and correlate with quality of life and true
functional improvement. Only a subset of outcome meas-
ures utilized in recent trials have turned out to be feasible
and produce valid assessments (Berry-Kravis et al. 2006,
2008a, b, 2009). Only recently have investigators begun to
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Fig. 2 Classes of potential overlap in synaptic mechanisms between
ASD genes/proteins and pathways involved in FXS: (1) proteins
involved in other forms of ASD may be in the signaling cascade for
activation of FMRP-regulated translation; (2) FMRP may directly
regulate proteins involved in different forms of ASD; and (3)
convergence of glutamate and GABA pathway defects in FXS and
ASD due to dysregulation of proteins generally important in
maintaining inhibitory/excitatory balance and balance of activity in
brain glutamate and GABA systems
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develop templates for pre-trial feasibility, reproducibility,
and validity assessment (Hessl et al. 2008a; Berry-Kravis et
al. 2008b; Farzin et al. 2011; Knox and Berry-Kravis 2009).
Choice of outcome measures must also balance the use of
accepted behavioral measures which are generally caregiver
rating scales (such as the ABC) with precedent for use in
drug registration/FDA approval versus use of novel
measures (Hessl et al. 2008a; Farzin et al. 2011; Knox
and Berry-Kravis 2009) that are more quantitative and may
objectively measure core phenotypes and electrophysiology
(such as eye tracking or PPI), thus advancing treatment
science, but have no precedent for registration and are
difficult to use to predict a specific functional outcome.
Outcome measure development for targeted treatment trials
in FXS has been a sufficiently difficult problem that a series
of NIH meetings have been convened specifically to
address this issue, with participation from the FDA (NIH
2009). These meetings have resulted in recommendations
about best choice of currently existing measures, validation
needs for existing measures, optimal types of measures to
be developed, and work that needs to be done to develop
them. No one behavioral scale was felt to capture the range
and character of behaviors typically problematic in indi-
viduals with FXS, and development and validation of a
fragile X-specific behavioral scale has been suggested.
Initial work in preparation for the development of such a
scale has been done by collecting ABC ratings from
multiple sites and looking at items most endorsed for
affected individuals with FXS relative to age and gender.
This early work has indicated that the factor structure and
items incorporated into the ABC (which was developed for
individuals with general cognitive impairment and has been
used extensively in autism) needs to be modified for
optimal validity in FXS (Hessl et al. 2010).

Several years ago, the Fragile X Clinical and Research
Consortium (FXCRC) was created with the help of CDC
funding to help ensure state-of-the-art care delivery to meet
the needs of individuals with FXS across the country and
facilitate large-scale national research efforts. This organi-
zation will also allow FXS Clinics across North America to
collaborate in preparation for large multi-site clinical trials
that will be necessary for FDA approval of targeted
treatments.

Generalizing the FXS model to autism and other
neurodevelopmental disorders

Clearly, there is overlap in the molecular and synaptic
pathways between FXS and autism, and thus, targeted
treatments for FXS will likely target dysregulated synaptic
mechanisms in a subgroup of patients with autism and
defects in the same pathways as are abnormal in FXS

(Fig. 2). Array studies in cohorts of patients with ASDs and
mapping/mutation analyses in families segregating ASDs
are generating a large list of genes implicated in autism
which can be mapped onto specific brain pathways (Wang
et al. 2010a; Marshall et al. 2008; Awadalla et al. 2010;
Pinto et al. 2010). There are three broad categories of
mechanistic overlap between ASD genes and pathways
involved in FXS: (1) defects in proteins in the signaling
cascade for the activation of FMRP-regulated translation
such as SHANK, mTOR, PAK, and PTEN; (2) defects in
proteins regulated directly by FMRP such as PSD95 and
Arc; and (3) defects in proteins generally important in
regulating activity levels and balance of activity in brain
glutamate and GABA systems (Wang et al. 2010a). Treat-
ments directed at all three of these mechanisms are
becoming available in trials in FXS discussed above, and
if successful, these treatment trials will likely be extended
to cohorts with ASDs and other cognitive disorders.
Progress in the development of these targeted treatments
for FXS is likely to result, for the first time, in the
possibility of medical intervention to reverse CNS defects
and resultant clinical manifestations of developmental
cognitive disorders and intellectual disability.
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