
Wang et al. BMC Biology          (2022) 20:225  
https://doi.org/10.1186/s12915-022-01418-9

RESEARCH ARTICLE

Toward efficient and high‑fidelity 
metagenomic data from sub‑nanogram 
DNA: evaluation of library preparation 
and decontamination methods
Chun Wang1,2†, Li Zhang1*†   , Xuan Jiang1,2, Wentai Ma1,2, Hui Geng3, Xue Wang4 and Mingkun Li1,2,5* 

Abstract 

Background:  Shotgun metagenomic sequencing has greatly expanded the understanding of microbial communi-
ties in various biological niches. However, it is still challenging to efficiently convert sub-nanogram DNA to high-
quality metagenomic libraries and obtain high-fidelity data, hindering the exploration of niches with low microbial 
biomass.

Results:  To cope with this challenge comprehensively, we evaluated the performance of various library prepara-
tion methods on 0.5 pg–5 ng synthetic microbial community DNA, characterized contaminants, and further applied 
different in silico decontamination methods. First, we discovered that whole genome amplification prior to library 
construction led to worse outcomes than preparing libraries directly. Among different non-WGA-based library prepa-
ration methods, we found the endonuclease-based method being generally good for different amounts of template 
and the tagmentation-based method showing specific advantages with 0.5 pg template, based on evaluation metrics 
including fidelity, proportion of designated reads, and reproducibility. The load of contaminating DNA introduced 
by library preparation varied from 0.01 to 15.59 pg for different kits and accounted for 0.05 to 45.97% of total reads. 
A considerable fraction of the contaminating reads were mapped to human commensal and pathogenic microbes, 
thus potentially leading to erroneous conclusions in human microbiome studies. Furthermore, the best performing 
in silico decontamination method in our evaluation, Decontam-either, was capable of recovering the real microbial 
community from libraries where contaminants accounted for less than 10% of total reads, but not from libraries with 
heavy and highly varied contaminants.

Conclusions:  This study demonstrates that high-quality metagenomic data can be obtained from samples with sub-
nanogram microbial DNA by combining appropriate library preparation and in silico decontamination methods and 
provides a general reference for method selection for samples with varying microbial biomass.

Keywords:  Metagenomics, Efficiency and Fidelity, Low microbial biomass, Sub-nanogram DNA, Library preparation, 
In silico decontamination
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Background
High-throughput sequencing has revolutionized the 
microbiome research, especially that metagenomics 
reveals microbial information with higher sensitivity 
than ever before. Microbial communities have been stud-
ied in a variety of human body and environment niches, 
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including those with low microbial biomass, such as skin 
swabs, cerebro-spinal fluid, placenta, Antarctic fields, 
deep-sea vents, the atmosphere, and fossils. Genomic 
DNA extracts of those samples can be down to the pico-
gram level. The 16S rDNA amplicon sequencing is widely 
used, which overcomes the problem of insufficient input 
material, but leaves functional potential and taxonomic 
information at the species and strain levels unexplored. 
Therefore, shotgun metagenomics profiling of microbial 
composition and functional information is in urgent need 
for ecosystems with low microbial biomass.

Two strategies can be applied when using sub-nano-
gram DNA in shotgun metagenomics. The first is to 
increase the DNA amount before conventional library 
construction using various amplification methods [1–4], 
among which whole genome amplification (WGA, i.e., 
multiple displacement amplification) is the most widely 
used. WGA has been proposed to cause microbial com-
munity distortion [5–7]. However, previous compari-
sons were based on nanogram quantities of DNA, and it 
is unclear whether metagenomics with a lower amount 
of template can benefit more from this technique. The 
second is to construct a library directly from low-input 
DNA. Commercial kits could be classified into three 
different categories based on the DNA fragmentation 
method, mechanical fragmentation (sonication or nebu-
lization), endonuclease digestion, and Tn5 transposase 
tagmentation. Of note, metagenomic library construction 
with as little as 100  fg of DNA using the tagmentation 
technique has been reported [8]. Although some of the 
above methods have been examined for metagenomics 
using sub-nanogram DNA [3, 9], the methods and evalu-
ation metrics utilized in every single study were limited, 
thus a more comprehensive evaluation with updated 
techniques (kits) is still warranted.

Besides the technical issue with the library construc-
tion, the contaminating microbial DNA from reagents 
and the environment is another challenge when dealing 
with low-biomass samples [10–14]. The contaminating 
reads could outnumber the endogenous microbial reads, 
leading to a distorted microbial community and false-
positive findings from metagenomic studies [15, 16]. 
There are a few widely used in silico methods to identify 
contaminating taxa, including (a) methods based on the 
relative abundance, i.e., filtering taxa below an ad hoc 
relative abundance threshold or taxa having comparable 
abundances in true samples and negative controls; (b) 
the Decontam method, i.e., filtering taxa having frequen-
cies that negatively correlate with input DNA quantity 
and/or taxa having a higher prevalence in negative con-
trols than in true samples [17]; and (c) the SourceTracker 
method, which applies a Bayesian approach to estimate 

the proportion of sequences originated from defined 
contaminant sources [18]. Some of the methods have 
been evaluated using 16S rDNA amplicon sequencing 
data generated from a dilution series of a mock micro-
bial community, revealing that none of the methods was 
able to completely remove the contaminants [19]. How-
ever, the performance of these decontamination meth-
ods has not been systematically compared using shotgun 
metagenomic data, and it is unknown whether it differs 
among library preparation methods with varied loads 
and patterns of contaminants.

In this study, we used a well-designed artificial DNA 
material as a template, which represents a wide range 
of microbes with broad coverage of GC contents and 
concentration gradients and has no homology with any 
known sequences [20]. We aimed to evaluate the perfor-
mance of different sequencing library preparation and 
decontamination methods and to provide a reference for 
method selection toward obtaining efficient and high-
fidelity metagenomic data from samples with low micro-
bial biomass.

Results
Overview of experiment design
The synthetic microbial community DNA (sequins), 
which consists of 83 artificial sequences with the pro-
portion of mass varying from 0.01 to 6.9% (Additional 
file 1: Table S1), was serially diluted to generate positive 
samples with 5000  pg, 500  pg, 50  pg, 5  pg, and 0.5  pg 
DNA as well as negative controls. The samples were 
then subjected to WGA-based and non-WGA-based 
library constructions. For the latter, libraries were pre-
pared using five commercial kits capable of handling 
low-biomass samples, including two kits applying 
sonication-based fragmentation, i.e., Nugen Ovation 
Ultralow System V2 Kit (Son_N) and QIAGEN QIAseq 
Ultralow Input Library Kit (Son_Q); two kits apply-
ing endonuclease digestion, i.e., NEBNext Ultra II FS 
DNA Library Prep Kit (End_N) and QIAGEN QIAseq 
FX DNA Library Kit (End_Q); and one kit applying Tn5 
tagmentation, i.e., Vazyme TruePrep DNA Library Prep 
Kit (Tn5_V) (Additional file  1: Table  S2). Two experi-
mental replicates were performed by different operators 
to evaluate the reproducibility of the methods. Shotgun 
sequencing was performed on all libraries, obtaining 
a median of 16.6 million reads per library (range 7.3–
23.2 million, Additional file 2: Fig. S1a). The data from 
each library was separated into two parts, the synthetic 
sequins and the contaminants, which were used to eval-
uate library construction methods and in silico decon-
tamination methods (Fig.  1, see rarefaction curves in 
Additional file 2: Fig. S1b and c).
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WGA substantially changed the microbial composition 
with sub‑nanogram templates
As expected, WGA elevated the DNA amount from 0.5–
5000  pg to 18–34  μg. However, the proportion of reads 
originating from sequins was less in the WGA-based 
libraries than that in the non-WGA-based libraries when 
the template DNA was 50  pg or lower (median 86.0% 
vs. 99.2%, p < 0.01, Wilcoxon test). Meanwhile, the non-
designated reads, including microbial and non-microbial 
contaminating reads and unclassified reads, increased 
markedly with the reduced amount of template DNA for 
WGA (Additional file  2: Fig. S2a). Besides, compared to 
the non-WGA-based libraries, the composition of sequins 
estimated from the WGA-based libraries was more dis-
torted, especially with low template input, reflected by 
larger Jensen-Shannon distance (JSD) to the theoretical 
composition of sequins (p < 0.01, Wilcoxon test, Fig.  2a), 
poorer correlation between the input mass of each sequins 
component and corresponding read numbers (Fig. 2b), as 
well as forming a different cluster from theoretical sequins 
and non-WGA libraries on the principal coordinates anal-
ysis (PCoA) plot and heatmap (Additional file 2: Fig. S2b 
and c). In addition, the JSD between the sequins compo-
sition of experimental replicates of WGA-based libraries 
was greater than that of non-WGA-based libraries, indi-
cating poor reproducibility of WGA in terms of compo-
nent enrichment (Additional file 2: Fig. S2d).

Interestingly, we found that the fragment length 
was positively correlated with the magnitude of WGA 

enrichment bias (p < 0.001, linear regression, Fig.  2c), 
which was represented by the ratio between the abun-
dance of each sequins component in WGA-based librar-
ies and its mean abundance in non-WGA-based libraries. 
It suggested that the efficiency of WGA might be higher 
for longer template DNA. This is further supported 
by Nanopore sequencing data from a sputum sample, 
where the read lengths of the two dominant taxa rose 
from 323 to 2703 bp and from 381 to 3606 bp following 
WGA (Fig.  2d) respectively for Acinetobacter bauman-
nii and Corynebacterium striatum. Meanwhile, the rela-
tive abundance of C. striatum, whose DNA template was 
longer, increased from 15.2 to 86.5% when WGA was 
implemented (Fig. 2e). Furthermore, we found that WGA 
treatment led to uneven genome coverage, particularly 
for 5 pg and 0.5 pg templates (Additional file 2: Fig. S2e 
and f ) and that WGA biased toward DNA fragments 
with lower GC content (Additional file 2: Fig. S2g and h), 
which was in line with previous reports [5–7].

Collectively, WGA introduced a substantial amount 
of contaminants and showed poor fidelity for sub-nano-
gram templates, making it unsuitable for metagenomic 
profiling of low-biomass samples.

Evaluation of non‑WGA‑based DNA library preparation 
methods
We next evaluated the quality of libraries prepared 
using sub-nanogram templates without the imple-
mentation of WGA. First, the proportion of reads 

Fig. 1  Overview of the experiment design. WGA, whole-genome amplification; gDNA, genomic DNA; Son_N, Nugen Ovation Ultralow System V2 
Kit; Son_Q, QIAGEN QIAseq Ultralow Input Library Kit; End_N, NEBNext Ultra II FS DNA Library Prep Kit; End_Q, QIAGEN QIAseq FX DNA Library Kit; 
Tn5_V, Vazyme TruePrep DNA Library Prep Kit
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originating from sequins were higher than 90% for all 
methods using 500  pg and 5000  pg templates (94.81–
99.77% with median 98.68%), but decreased dramati-
cally when the template load became lower except for 
Tn5_V, with 93.7%, 78.21%, 66.29%, 1.64%, and 0.06% 
of total reads assigned to sequins for Tn5_V, End_N, 
End_Q, Son_N, and Son_Q, respectively, when the tem-
plate load was 0.5 pg (Fig. 3a). Second, the library con-
version rate (the rate between actual library quantity 
and theoretical library quantity) was the highest using 
End_N and End_Q, followed by Tn5_V, Son_N, and 
Son_Q (Fig.  3b). Third, the sonication-based libraries 
had lower complexity (i.e., higher duplication rate, the 
ratio of the number of duplicates over the number of 
total mapped reads) than the other methods (Fig.  3c). 
Moreover, the insertion size of library constructed 
with Tn5_V showed the most optimal distribution 
with a peak range of 292–371  bp, which was prob-
ably attributed to the stricter size selection applied in 

the protocol. In contrast, End_Q, End_N, and Son_Q 
showed smaller insertion sizes (peak 193–244 bp, 143–
210 bp, 139–349 bp, respectively), while Son_N showed 
a larger insertion size with higher variance (range 181–
634 bp, Additional file 2: Fig. S3a).

To test the fidelity of various library preparation 
methods, we calculated the JSD between the expected 
sequins composition and the measured profiles, which 
included both sequins and contaminating microbes. 
The endonuclease-based data showed the least devia-
tion from the expected composition, followed by the 
tagmentation-based data, whereas the sonication-based 
data showed significantly higher deviation for samples 
with 50  pg or less input. After removing contaminants 
and only comparing the composition of sequins, we 
found similar results, with the exception that the per-
formance of Son_N significantly improved (Fig. 3d). The 
fidelity might be associated with GC content bias, as 
there was a considerable shift of GC distribution of the 

Fig. 2  The impact of WGA on metagenomic profiling with sub-nanogram DNA. a JSD between the expected and measured composition of 
sequins. The p value from the Wilcoxon test is shown. b Correlations between the input mass of sequins components and corresponding numbers 
of reads per million. Different levels of input amount are indicated by colors; R2 values from linear regression models are shown, p values < 0.001. c 
Correlations between the abundance bias of sequins components and corresponding fragment lengths for libraries with 0.5 pg template. R2 and p 
values from linear regression models are shown. d The length distribution of Nanopore sequencing reads aligned to A. baumannii and C. striatum 
in a sputum sample measured with WGA-based (right) and non-WGA-based (left) libraries. Dotted lines indicate the median lengths. e Relative 
abundances of dominant genera in the sputum sample
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reads toward lower GC values compared to the theoreti-
cal distribution, especially for the tagmentation-based 
method (Additional file  2: Fig. S3b). Besides, there was 
a weak positive correlation between the abundance 
bias (ratio between measured abundance and the theo-
retical value) and fragment length for all methods (p 
values < 0.001, linear regression), and the tagmentation-
based method showed the highest coefficient of determi-
nation (R2 = 0.14, Additional file 2: Fig. S3c). Meanwhile, 
no correlation was observed between the length and GC 
content of sequins components (p = 0.76), suggesting 
that the fragment length may independently influence 
the fidelity. In addition, the reproducibility of all methods 
decreased gradually with reduced input, and endonucle-
ase- and tagmentation-based methods performed better 
than sonication-based methods (Fig. 3e).

Summarizing three crucial metrics, i.e., fidelity of des-
ignated reads, the proportion of designated reads, and 
reproducibility, when there was 5000 or 500  pg input 
material, the performance of all methods was equally 
well except that the tagmentation-based method had 
lower fidelity; when there was 50 or 5 pg input, endonu-
clease-based methods showed better and more balanced 
performance on all three metrics than other methods; 
when there was 0.5  pg input, the tagmentation-based 
method and one endonuclease-based method (Enz_N) 

performed better than the other endonuclease-based 
method (Enz_Q), followed by sonication-based methods 
(Fig. 3f ). Of note, the tagmentation-based method had a 
significantly higher proportion of designated reads than 
other methods with 0.5 pg input, suggesting its attractive 
advantage on samples with very low biomass.

Characteristics of contaminants introduced by library 
preparation
Contaminating reads originated from background DNA 
increased as the input load decreased, and the microbial 
reads accounted for 3.06–45.97% of total reads when the 
input load was 0.5 pg (Fig. 3a). The PERMANOVA analy-
sis revealed that library preparation kits explained the 
largest variance in contaminating microbial composition 
(R2 = 36.4%, p < 0.001, Additional file  2: Fig. S4a), sug-
gesting that a large fraction of the contaminants was kit 
specific. Surprisingly, input amount appeared as the sec-
ond significant explaining factor in the PERMANOVA 
analysis (R2 = 15.6%, p < 0.001), suggesting that there 
were some endogenous contaminants in the sequins. We 
found that the abundance (normalized to total contami-
nating reads) of five genera, i.e., Escherichia, Gammaret-
rovirus, Citrobacter, Mastadenovirus, and Shigella was 
positively correlated with the input amount (p.adj < 0.05 
and R2 > 0.55 for at least four kits, linear regression, 

Fig. 3  Performance of non-WGA-based DNA library preparation methods. a Read composition of raw data. b Library conversion rate. *p < 0.05, 
**p < 0.01, Wilcoxon tests. c Duplication rate of sequins. d JSD between the expected compositions of sequins and measured profiles including 
sequins and microbial contaminants (left) or measured sequins profiles (right). e JSD between the measured profiles of experimental replicates. f 
Evaluation of methods based on three crucial parameters. Fidelity of designated reads was defined as 1 subtracted by JSD between the expected 
composition of sequins and measured sequins profiles, and reproducibility was defined as 1 subtracted by JSD between the measured profiles of 
experimental replicates
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Additional file  2: Fig. S4b), suggesting that they mainly 
originated from the sequins material and were thus 
filtered out in the following analyses. The variance 
explained by the input amount in the PERMANOVA 
analysis after the filtration reduced to 8.7% (p < 0.001).

We quantified the absolute amount of contaminating 
DNA using sequins as a spike-in control. Sonication-
based methods had the highest amount of contaminants, 
with 15.59 pg for Son_Q (median) and 2.32 pg for Son_N, 
whereas other methods had fewer contaminants (0.05 pg, 
0.04  pg, and 0.01  pg for End_N, End_Q, and Tn5_V, 
respectively, Fig. 4a). The most abundant contaminating 
genus of each kit had a relative abundance lower than 
0.06% in libraries with 500 pg and 5000 pg input (Fig. 4b, 
Additional file 2: Fig. S4c), indicating that contamination 
was not a major concern when the input load was high. 
As the input decreased to 0.5 pg, the relative abundance 
of the highest contaminating genus increased to 21.4%, 
14.2%, 1.3%, 1.4%, and 1.0% for Son_N, Son_Q, Tn5_V, 
End_N, and End_Q, respectively, and the proportion of 
remaining contaminants (out of all contaminating reads) 
was 91.1%, 87.1%, 76.0%, 65.9%, and 51.5% when setting a 
relative abundance threshold of 0.1% (Fig. 4b, Additional 
file 2: Fig. S4c).

Concerning the contaminating microbial composi-
tion for each kit, two sonication-based kits (Son_N and 
Son_Q), End_Q, End_N, and Tn5_V formed four distinct 
clusters on the PCoA plot (PERMANOVA R2 = 0.52, 
p < 0.001, Fig. 4c). The JSD between contaminating com-
positions of experimental replicates generally increased 
when the input amount was higher, suggesting greater 
randomness with a reduced contaminating fraction 
(Fig.  4d). We detected 494 core contaminating genera 
(with relative abundance higher than 0.1% in at least half 
of the libraries for each kit) that accounted for more than 
89% of contaminating microbial reads in each kit (Fig. 4e, 
Additional file  1: Table  S3). Of these genera, 110 have 
been found to be contaminants in previous studies [10–
14, 21, 22]. Sixty-three core genera were shared by all five 
kits and accounted for more than 55% of contaminating 
reads in each kit. End_Q, Son_N, Tn5_V, and End_N had 
120, 24, 21, and 12 unique contaminating genera respec-
tively, while Son_Q had no unique ones (Fig. 4e). There 
were 32 high-abundance contaminants (greater than 1% 
in at least half of the libraries in each kit), which varied 
depending on the kit used (Fig. 4f ). Among them, many 
genera are frequently identified in soil and water, e.g., 
Acinetobacter, Bradyrhizobium, and Methylobacterium. 
Of note, some genera are commensal microorganisms 
or potential pathogens that reside in human skin and 
mucosa, e.g., Cutibacterium, Staphylococcus, Corynebac-
terium, Acinetobacter, Streptococcus, and Klebsiella, with 
relative abundances up to 20.4%, 9.4%, 4.1%, 3.2%, 1.8%, 

and 0.3%, respectively, which could result in erroneous 
conclusions in human microbiome studies and pathogen 
detection. Finally, we found that the genome coverage of 
contaminating microbes was stochastic (Additional file 2: 
Fig. S4d), making it difficult to distinguish between con-
taminants and actual signals.

In silico decontamination methods recovered the real 
microbial community from high‑quality libraries
Three types of most widely used decontamination meth-
ods, including filtering taxa with relative abundances 
less than fivefold or tenfold of that in negative controls 
(referred to as fivefold-NC and tenfold-NC), the Decon-
tam method [17] (frequency mode, prevalence mode, 
and either mode), and the SourceTracker method [18], 
were employed to eliminate the impact of contamina-
tion. An optimum threshold for the Decontam method 
was determined as the one that resulted in the best recall 
with the premise of 100% precision (Additional file 2: Fig. 
S5a-e). True positives, false negatives, true negatives, and 
false positives were defined as contaminants accurately 
detected, contaminants missed, sequins detected as 
actual signals, and sequins misclassified as contaminants, 
respectively.

For Tn5_V, Enz_N, and Enz_Q libraries, which had 
a relatively low level of microbial contaminants (maxi-
mum < 10% of total reads, Fig. 3a), the JSDs between the 
decontaminated profile and the actual signal for Decon-
tam-either, Decontam-frequency, and 5/tenfold-NC 
were small (< 0.05, Fig. 5a), with the most abundant con-
taminating genera having a relative abundance of 0.32% 
in the decontaminated profile, indicating that the above 
methods were able to recover the real microbial commu-
nity from contaminated data. The recall for 5/tenfold-NC 
was close to 1, whereas the recall for Decontam-either 
and Decontam-frequency declined dramatically with the 
increased input load (Fig.  5b); however, there was little 
fidelity loss as the false-negative contaminants had low 
abundances.

For Son_Q and Son_N libraries that suffered heavy 
microbial contaminants (0.06–30.89% with a median of 
16.69% and 0.06–45.97% with a median of 6.86%, respec-
tively, Fig.  3a), Decontam-either, Decontam-frequency, 
and 5/tenfold-NC performed equally well when the input 
loads were 500  pg and 5000  pg, with the JSD between 
the decontaminated profile and the actual signal close to 
zero (Fig. 5a). However, the decontamination efficacy of 
the three methods decreased as the input load became 
lower despite of high recalls. Among them, Decontam-
either was the most effective, followed by Decontam-
frequency and 5/tenfold-NC (Fig.  5a, b). Interestingly, 
although Son_N and Son_Q libraries had similar lev-
els of microbial contaminants when the input load was 



Page 7 of 12Wang et al. BMC Biology          (2022) 20:225 	

Fig. 4  DNA contaminants introduced by library preparation. a Quantity of contaminating DNA in each kit. *p < 0.05, Wilcoxon tests. b The 
proportion of remaining contaminants (out of all contaminating reads), after filtering components below certain relative abundances. Dotted lines 
indicate relative abundances of the most abundant contaminating genera in libraries with each input amount, where the proportion reaches 0. 
c PCoA plot based on JSD of contaminating compositions. R2 and p values from PERMANOVA are shown. Circles indicate 95% confidence. d JSD 
between contaminating compositions of experimental replicates. e Venn diagram of core contaminating genera, which had relative abundances 
higher than 0.1% in at least half of the libraries for each kit. The proportion of core contaminating genera in all microbial contaminants for each kit 
is shown in brackets. f Heatmap showing 32 dominant contaminants, which had relative abundances higher than 1% in at least half of the libraries 
for each kit. Common niches of the microbes are indicated on the left. In a, c, and f, libraries with 0.5–50 pg input are shown whereas all libraries are 
used in the rest panels
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0.5  pg, the decontamination methods performed much 
better on the former data (e.g., JSD for Decontam-either, 
0.08 vs. 0.73, Fig. 5a), which could be due to significantly 
higher consistency of contaminants in Son_N librar-
ies (Fig.  4d, e). Of note, although the best performing 
method Decontam-either removed at least 95.8% of the 
contaminating reads for Son_Q libraries with 0.5 pg and 
5 pg inputs, there was still a large difference between the 
decontaminated profile and the actual signal (JSD > 0.5), 
highlighting the limitation of the current decontamina-
tion algorithms.

In addition, Decontam-prevalence and SourceTracker 
showed poor efficacy of decontamination for most 
libraries, owing to their low recalls and in part the low 
precisions of SourceTracker in some libraries (Fig.  5b, 
Additional file  2: Fig. S5f ). Rarefying data to the same 
sequencing depth (7.3 million reads) did not change the 
above results.

Discussion
Metagenomic data with high efficiency, high fidelity, 
and high reproducibility is essential for the understand-
ing of microbial communities in biological niches with 
low microbial biomass. We found that constructing 
libraries directly from sub-nanogram templates was 
superior to conducting WGA before library prepara-
tion. Among the non-WGA-based library preparation 
methods, we recommend using an endonuclease-based 

method for a broad range of input loads. If the major-
ity of the samples in a study have microbial biomass 
as low as 0.5 pg, a tagmentation-based method is rec-
ommended due to its high efficiency in generating 
sequences from designated components, which is prob-
ably attributed to its procedure of combining fragmen-
tation and adaptor ligation into one step that resulting 
in high DNA recovery. Moreover, although current 
commercial kits designed to deal with ultralow inputs 
are mostly based on sonication, their performance with 
less than 500  pg input was quite poor in our evalua-
tion. We suspect that both the extra processing steps 
required by sonication and the mechanical fragmenta-
tion itself induce substantial DNA damage and loss.

Even though suitable library preparation meth-
ods can yield a high proportion of designated reads, 
microbial contaminating reads are unavoidable, thus 
in silico decontamination is necessary especially for 
low-biomass samples. We propose using the Decontam 
method with either mode, which filters taxa that show 
negative correlations with the input load, as well as taxa 
that are more prevalent in negative controls than in 
positive samples. The threshold should be chosen with 
caution to avoid deleting actual signals especially for 
the latter strategy. After decontamination, high-quality 
data resembling the real microbial community could be 
obtained from libraries with less than 10% of total reads 
attributed to contaminants, but not libraries with heavy 

Fig. 5  Performance of in silico decontamination methods. a JSD between actual signals (i.e., measured sequins profiles) and complete profiles 
(including sequins and microbial contaminants) with or without applying decontamination methods. b The recall of different methods in 
identifying contaminants
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and highly varied contaminants. This underscores the 
need to integrate appropriate experimental and bioin-
formatics approaches, while also emphasizing the need 
for improved decontamination algorithms.

We created a standardized dataset with clear labels 
separating actual signals and contaminants, as well as 
diversified levels and patterns of contaminants, which 
will be useful in the development of new decontamina-
tion algorithms. We identified about 500 contaminating 
genera that were mainly introduced by different library 
preparation kits, and more than half of them had never 
been reported before, adding new microbes to the refer-
ence list of common contaminants. It also uncovered the 
differences between contaminants using different pro-
tocols and laboratories, which has been demonstrated 
previously by Salter et al. [10]. Therefore, each laboratory 
should establish its own contaminant databases by con-
structing libraries using serial dilutions of a mock micro-
bial community or its DNA, and repeat this process on 
a regular basis, which is crucial for monitoring contami-
nant levels and profiles, as well as setting a proper thresh-
old for decontamination pipelines.

There are limitations to this study. For the evaluation 
of library construction methods, we constructed librar-
ies following the instruction of each kit’s manufacturer, 
which may alter the comparability of methods. For exam-
ple, double size selection using purification beads was 
only included in the protocol of Tn5_V, which resulted 
in an optimal insertion size distribution but an under-
rated library conversion rate for this kit. Additionally, the 
evaluation could be improved by including more library 
preparation methods/kits, comparing different batches of 
each kit, and determining interlaboratory reproducibility. 
For the evaluation of in silico decontamination meth-
ods, the synthetic DNA material is not able to represent 
some real-world scenarios, such as the varied complex-
ity of different microbial communities, and the presence 
of microbial taxa in both positive samples and environ-
mental contaminants. For example, the 5/tenfold-NC 
method is expected to have reduced precision in real-
world studies than evaluated in this study. Besides, well-
to-well cross-contamination caused by splashing [23] or 
bioaerosol is common and can hardly be detected by in 
silico decontamination methods, and this issue was not 
considered in this study. Finally, our study did not con-
sider all steps of the metagenomic workflow. The impact 
of contamination from DNA extraction kits and different 
quantities of host DNA has yet to be studied.

Conclusions
Altogether, our study provides a general reference for 
method selection in metagenomic studies with sub-
nanogram microbial DNA. For library preparation, we 

recommend the non-WGA-based methods, including the 
endonuclease-based method for a broad range of input 
loads and the tagmentation-based method for ultra-low 
input loads around 0.5 pg. For in silico decontamination, 
we recommend the Decontam method with either mode, 
for which a proper threshold setting is important. By 
combining appropriate library preparation and in silico 
decontamination methods, high-quality metagenomic 
data can be obtained from samples with low microbial 
biomass.

Methods
The mock DNA
Sequins for metagenomics [20] mix version C was kindly 
provided by Garvan Institute of Medical Research, Aus-
tralia. It consists of a pool of 83 artificial DNA sequences, 
including 70 sequences that were selected and inverted 
from the genomes of 62 species (41 Gram-negative Bac-
teria, 19 Gram-positive Bacteria, one Archaea, and one 
parasitic protozoan). The sequences are combined at 
twofold serial dilutions to encompass a 128-fold molar 
concentration range. The mixture has eight staggered 
concentration points, with at least 5 different sequences 
per point to represent a wide range of GC contents 
(29.4–71.06%) and lengths (1929–9120  bp). Besides, it 
contains a trace but unknown amount of 92 byproduct 
sequences (Additional file 1: Table S1). The concentration 
of sequins was measured using Qubit 4.0 fluorometer 
(Life Technologies, Singapore).

Library construction and shotgun sequencing
For the WGA-based strategy, DNA was amplified using 
Qiagen REPLI-g WGA kit (Hilden, Germany), puri-
fied using 1.8 × Beckman Ampure XP beads (Beckman 
Coulter, CA, USA), and used for library construction 
with Vazyme TruePrep DNA Library Prep Kit TD501 
(Vazyme, Nanjing, China). For the non-WGA-based 
strategy, Nugen Ovation Ultralow System V2 (NuGEN 
Technologies, SC, USA), QIAGEN QIAseq Ultralow 
Input Library Kit (Hilden, Germany), NEBNext Ultra II 
FS DNA Library Prep Kit (New England Biolabs, Hert-
fordshire, UK), QIAGEN QIAseq FX DNA Library Kit 
(Hilden, Germany), and Vazyme TruePrep DNA Library 
Prep Kit TD502/TD503 were used following the manu-
facturer’s instructions. The number of PCR cycles was 
listed in Additional file 1: Table S2. Sonication of DNA to 
350 bp was done using Covaris S2 (Woburn, MA, USA). 
The library concentration was measured using real-time 
PCR with primers targeting adaptors, and the library 
length was measured using Labchip GX Touch Nucleic 
Acid Analyzer (PerkinElmer, Hopkinton, MA). Shotgun 
sequencing was performed on Illumina Novaseq 6000 
PE150 platform.
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High-standard practice was followed to minimize labo-
ratory contamination during library preparation, including 
performing all experiments in a class 100,000 cleanroom, 
wearing surgical caps and masks, as well as the applica-
tion of sterile equipment and pipette tips with filters and 
ultra-low retention. Molecular biology-grade nuclease-free 
water (Invitrogen) was used in all processes.

Library construction and Nanopore sequencing
Genomic DNA was extracted from the sputum sample 
using the QIAGEN DNeasy PowerSoil Pro Kit (Hilden, 
Germany). An aliquot of 6 ng DNA was amplified using 
Qiagen REPLI-g WGA kit and then debranched using T7 
endonuclease I (New England Biolabs), while another ali-
quot of 1.7 ug DNA was directly used for PromethION 
library preparation. PCR-free libraries were constructed 
with Native Barcoding Kit EXP-NBD104 (Oxford Nano-
pore Technologies, Oxford, UK) according to the manu-
facturer’s instructions. The MinKNOW software v19.10.1 
was used to collect raw sequencing data, and Guppy 
v3.2.4 was used for local base-calling.

Sequencing data analysis
Illumina raw reads were processed by filtering poly-G 
sequences and low-quality sequences with fastp v0.20.0 
[24] and BBDuk v39.92 (sourceforge.net/projects/
bbmap/) and trimming adapters with Trimmomatic v0.36 
[25]. Paired-end reads were merged using Flash v1.2.11 
[26]. Processed reads were mapped to the sequins ref-
erence using BWA v0.7.12-r1039 [27] and summarized 
using samtools v1.8 [28] to obtain the sequins composi-
tion and sequencing coverage. The duplication rate was 
determined by samtools v1.8, which treats reads with the 
same 5 prime positions of both reads and read-pairs as 
duplicate reads. Kraken2 v2.1.2 [29] was used for the tax-
onomic classification of non-sequins reads at the genus 
level. SeqKit v0.10.2 [30] was used to measure the GC 
content and length of reads. ART v2.5.8 [31] was used to 
generate simulated PE150 sequencing data with at least 
40 × coverage for each sequins component.

The library conversion rate was estimated as follows:

where Qlibrary is the library quantity measured by Qubit, 
Qinput is the input DNA quantity, Eprimer is a constant 2 
representing a 100% primer efficiency, Npcr is the cycle 
of PCR reaction, and Rdesignated is the ratio of designated 
reads (i.e., sequins reads) to all raw reads. The composi-
tional data was normalized using total sum scaling (i.e., 
relative abundance). The abundance bias of each sequins 

Conversion rate =

Qlibrary ∗ Rdesignated

Qinput ∗ E
Npcr

primer

component was calculated as the ratio between measured 
abundance and reference abundance, i.e., the theoreti-
cal value (for measuring the kit bias) or the mean value 
in non-WGA-based libraries (for measuring the WGA 
bias). Jensen-Shannon divergence was calculated using 
the philentropy R package v0.5.0 [32] and further square 
rooted to obtain Jensen-Shannon distance, which is a 
value between 0 and 1 with 0 denoting identical datasets.

Nanopore sequences were demultiplexed and trimmed 
for adaptors and barcodes using Porechop v0.2.4 (https://​
github.​com/​rrwick/​Porec​hop). Kraken2 v2.1.2 was used for 
the taxonomic classification at the species level. Besides, 
the clean reads were mapped to the genome of Homo sapi-
ens and 13 most abundant bacterial species that in total 
accounted for more than 90% of the microbial reads using 
Minimap2 v2.23 [33]. Reads having supplementary align-
ments (SAM flags 2048 and 2064) were filtered out, and the 
lengths of reads mapped to A. baumannii and C. striatum 
were summarized using SeqKit v0.10.2.

Application of decontamination methods
Decontam v1.10.0 [17] was used based on the negative 
correlation between taxa abundance and DNA input 
amount (frequency mode), the prevalence (presence/
absence across samples) of taxa in true positive samples 
versus negative controls (prevalence mode), or either 
mode. Forty thresholds increasing from 0.1 to 0.5 were 
tested (Additional file 2: Fig. S5a-e), and 0.5 was used for 
the frequency mode for all kits, whereas 0.5, 0.5, 0.5, 0.41, 
and 0.27 were used for the prevalence mode for Tn5_V, 
End_N, End_Q, Son_N, and Son_Q, respectively. Source-
Tracker v1.0.1 [18] was used by rarefying all libraries to 
0.5 million reads and defining negative controls as the 
only known source of contaminants. For the 5/tenfold-NC 
method, the NC reference for each library construction 
method was calculated by averaging the relative abun-
dances of each taxon in 2–3 NC samples. For the fivefold-
NC method, a taxon that had an abundance greater than 
fivefold that of the NC reference was classified as a true 
component; otherwise, the taxon was classified as a con-
taminant, so was the tenfold-NC method. The perfor-
mance of methods was evaluated on a per-read basis.

Statistical analysis
Comparisons between the two groups were performed 
using the Wilcoxon tests with libraries from the same 
input amount as matched pairs. PERMANOVA was 
performed using the adonis2 function of vegan R pack-
age v2.5.7 [34]. Differential genera were identified using 
the DESeq2 R package v1.30.1 [35]. Multiple compari-
sons were corrected using the Benjamini–Hochberg 
false discovery rate algorithm [36] with a significance 
level of 0.05 (p.adj value).

https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
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