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Abstract: The mosquito-borne lymphatic filariasis (LF) is a parasitic, neglected tropical disease
that imposes an unbearable human scourge. Despite the unprecedented efforts in mass drug
administration (MDA) and morbidity management, achieving the global LF elimination slated for the
year 2020 has been thwarted by limited MDA coverage and ineffectiveness in the chemotherapeutic
intervention. Moreover, successful and sustainable elimination of mosquito-vectored diseases is often
encumbered by reintroduction and resurgence emanating from human residual or new infections
being widely disseminated by the vectors even when chemotherapy proves effective, but especially
in the absence of effective vaccines. This created impetus for strengthening the current defective
mosquito control approach, and profound research in vector–pathogen systems and vector biology
has been pushing the boundaries of ideas towards developing refined vector-harnessed control
strategies. Eventual implementation of these emerging concepts will offer a synergistic approach
that will not only accelerate LF elimination, but also augurs well for its future eradication. This brief
review focuses on advances in mosquito–filaria research and considers the emerging prospects for
future eradication of LF.
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1. Introduction

Mosquitoes are unambiguously the most important vectors of infectious disease-causing agents
that tremendously affect global health, with over half of the global human population at risk of
exposure to mosquito-transmitted infections [1] and more than 1 billion cases of such infections
reported each year [2]. Brugia malayi (Brugia), Brugia timori (Partono et al.), and, most importantly,
Wuchereria bancrofti (Cobbold) are the mosquito-vectored filarial parasites causing human lymphatic
filariasis (LF). They are transmitted by members of Anopheles, Culex, Aedes, Mansonia, and Ochlerotatus
genera of mosquitoes, depending on the geographical location and biological peculiarities of each
species [3]. Human LF is a neglected tropical disease (NTD) that presents with chronic disfiguring
pathologies such as lymphoedema and elephantiasis (disfiguring swelling) of the legs, of the scrotum
(hydrocoele) in males, and of the breasts and vulva in females [4], and the resulting deformities also
generate severe psychosocial consequences including sexual disability [5] and mental depressive
illness [6,7].

To address the unbearable disease scourge, the World Health Organization (WHO) launched the
Global Programme to Eliminate Lymphatic Filariasis (GPELF) in the year 2000, with a commitment
towards eliminating LF as a public health problem by 2020. While the GPELF also ensures morbidity
management and disability prevention (MMDP), mass drug administration (MDA) has been the
mainstay of the programme and generous drug donations from world-respected pharmaceutical
companies (Eisai, GlaxoSmithKline, Johnson & Johnson, and Merck Sharp & Dohme [MSD]), have
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been facilitating wider global coverage of the MDA [8,9]. Depending on location and co-endemicity,
the long-adopted WHO recommendations for MDA to eliminate LF are annual albendazole
administration and annual combination therapy systems (using albendazole with ivermectin or with
diethylcarbamazine) for at least five effective rounds. In May 2017, modifications to the existing
recommendations were formulated to optimise human responses to the MDA regimens and accelerate
the pace of the disease elimination. Annual triple-drug regimen (ivermectin + diethylcarbamazine +
albendazole) and biannual albendazole were included, depending on the epidemiological and technical
situations [10]. At the inception of GPELF, an estimated 120 million people were infected, of whom
40 million were seriously incapacitated and disfigured by the disease [11]. However, more recent
data acknowledging a 13-year impact of the GPELF extrapolated that about 67 million people are
now infected: 36 million presenting clinical illness, 19 million with genital hydrocoele, and 16 million
with lymphoedema [12]. Currently, LF accounts for 2 million disease-adjusted life years (DALYs) [13],
not including significant co-morbidity of mental illness commonly experienced by patients and
caregivers [14].

Despite all efforts, global elimination of LF slated for the year 2020 is now practically unattainable,
as 22 of the current 52 endemic countries requiring MDA have not commenced MDA in all of
their endemic implementation units, and the suboptimal human response to current regimens
post-MDA has surfaced [10,14,15]. The latter may have ensued due to the drug inactivity against adult
worms [16] or inter- and intra-species variations causing a differential response to chemotherapy [17];
meanwhile, we cannot afford to overlook the possible emergence of drug-resistant microfilariae
(mf) [18–20]. Beyond the walls of GPELF interventions, other pertinent factors are also pulling the
strings. Successful control of mosquito-borne diseases is often challenged by reintroduction and
resurgence emanating from new or residual human infections that are further disseminated by the
vectors, especially when effective human vaccines are lacking. Although the application of insecticides
has been largely buttressing mosquito control for many decades, toxicity to humans and emergence of
insecticide-resistant traits among mosquito populations have been worrisome trends, and dampen the
effectiveness of other control measures. This implies that even in the face of the new MDA adjustments,
there is still a need to recreate momentum for vector control, if the goal is achieving sustainable
elimination that will lead to disease eradication. This review focuses on the advances in the area
of mosquito–filaria research and promising vector-based research initiatives that may unclog future
eradication of LF.

2. The Mosquito–Filaria System: Past and Present Research

The present era of intense and expanding search for new strategies to abate vector-mediated
pathogen transmission has extended a gradually-increasing priority for research on the
mosquito–filaria system. Mosquitoes are equipped with physiological, immunological, and structural
components that can preclude the establishment of filarial parasites [21–24]. Of particular interest
is how the parasites adapt to the hostile vector environment and achieve transmission. Migratory
timing and mechanical crossing of vector midgut barriers [23,25], as well as ingestion of glycogen
granules and mitochondria of the thoracic muscle cells of the vectors [26–28], constitute some part of
the physical strategies employed by filarial parasites.

Setting aside the physical and macromolecular adaptation mechanisms, recent post-genomic
approaches—transcriptome analysis and proteomic profiling—on B. malayi provide increasing
opportunity to identify and interrogate genes or proteins expressed during filarial parasite life-stages,
serving as important tools in understanding the molecular underpinnings of the biological nature of
filarial worms. In most molecular studies, Aedes aegypti (Linnaeus) and B. malayi are aptly used as a
model system because of their easy adaptability and maintenance in the research laboratory [17,25].
Exsheathment of the ingested mf within the mosquito is required for morphological transformation of
the parasites into the first-stage larvae (L1), and may occur in the mosquito midgut or haemocoel [23,29].
The assessed transcriptome and proteome of B. malayi mf showed upregulated transcripts encoding
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serpin (serine protease inhibitor), endochitinases (e.g., BmCHT1), proteases (e.g., metalloprotease I,
trypsin-like and cathepsin L-like proteases), and Cys2His2 (C2H2) domain-containing zinc finger
proteins [30–32]. Serpins may play a role in host immunoregulation [33], and endochitinases, and
proteases such as cathepsin, may jointly participate in the microfilarial exsheathment process [34–37],
whereas C2H2 domain-containing zinc finger proteins serve as transcription factors [38]. A quantitative
and exploratory transcriptome profiling using dual RNA-sequencing (RNA-seq) chronicled the serial
expression of B. malayi transcripts, spanning microfilarial stages to the development of human-infective
larvae (L3) in the mosquito vector [39] (Table 1). Major findings from the study showed that
transcriptome changes mediating cuticular moulting (transcripts encoding a number of regulatory
and structural components) are pulsatile and that overall transcript expression oscillates between
high levels during the intermittent period between two moults but is maintained at low levels during
ecdysis [39].

Table 1. Chronological RNA-seq expression profiles of Brugia malayi in Aedes aegypti.

Period Upregulated Genes Ontology Parasite Activity

Day 1–2

Mitochondrial ATP synthase complex,
glycolysis, integral to membrane, DNA
replication, signal peptidase complex,
phosphoric diester hydrolase activity

Rearrangement and growth of
preexisting microfilarial structure,
extensive cuticular reorganisation, mf
transforms into L1

Day 2–3
Calcium ion binding, response to stress,
serine-type endopeptidase inhibitor activity,
structural constituent of the cuticle

L1 development

Day 3–4
Ion channel activity, transmembrane
transport, membrane, metallopeptidase
activity, steroid hormone receptor activity

Middle to late L1 development:
numerous mitotic divisions,
lengthening of body, differentiation of
internal structures, e.g., well-defined
intestine

Day 4–5 Calcium ion binding, response to stress First moulting into L2

Day 5–6
Serine-type endopeptidase inhibitor activity,
structural constituent of the cuticle,
metallopeptidase activity

L2 start to feed and develop: genital
primordium is formed

Day 6–7

Glycolysis, integral to membrane,
cysteine-type peptidase activity, structural
constituent of the cuticle, steroid hormone
receptor activity

L2 feed, elongate and further develop:
rectum remains closed with anal plug

Day 7–8 Structural constituent of the cuticle,
transmembrane transport, chloride transport Second moulting into L3

Adapted from [39].

Transcriptomic data on L3 from the mosquito showed upregulated expression of transcripts
encoding various collagen protein family members on the cuticle, metabolic proteins, as well as
proteins involved in stress resistance (e.g., dauer-enriched genes), pathogenesis, and immune resistance
(e.g., serpin, cystatin, and abundant larval transcript–BmALT) and parasitisim (e.g., venom allergen-like
protein–BmVAL-1) [31,32]. Those coding for the moult-mediating cathepsin L-like protease enzymes
(e.g., BmCPL-1, BmCPL-4, and BmCPL-8) were also transcriptionally upregulated [31,32,36]. Generally,
it is believed that the vast majority of these expressed proteins, in both mf and L3, are essential for
establishment of the parasite infection and/or survival in the vector or in the subsequent mammalian
host [31,32].

On the other hand, successful parasite transit through a vector indicates a degree of vector
tolerability or susceptibility to the specific parasite, and the lack of this interspecies adaptive dialogue
at the molecular or genetic level confers vector refractoriness to parasite invasion. The aim of
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manipulating susceptible phenotypes to drive refractoriness into the naturally susceptible vectors has
motivated present research effort to develop particular interest in exploring the mosquito-expressed
genes and gene products that confer susceptibility or refractoriness to filarial worms. Early
investigators, who searched for the chromosomal regions of genes influencing Ae. aegypti susceptibility
to filarial worms, found a sex-linked gene, ƒm, located on chromosome 1 [40,41]. Subsequent molecular
genetic linkage mapping approach using restriction fragment length polymorphism (RFLP) markers
further identified two quantitative trait loci (QTL): fsb1 (corresponding to ƒm) on chromosome 1 and
an additive fsb2 on chromosome 2 [42]. Also, another QTL, idb2, which seems to influence Ae. aegypti
ability to ingest B. malayi, was later found on chromosome 2 and is linked to the initial fsb2 [43].

Exploitation of the QTL to the causative gene(s) level has proved cumbersome, but recent
exome sequencing, RNA-seq application, and an improved genetic linkage mapping using
restricted-site-associated DNA (RDA) sequencing further highlighted that resistance of Ae. aegypti to B.
malayi is driven by a single dominant sex-linked locus on chromosome 1 (corresponding to the QTL)
and that this locus contains a number of known immune response genes, such as those controlling
Toll, IMD, and JAK-STAT pathway activities, as well as other potential resistance-related genes [44,45].
Furthermore, studies have lent credence to early (usually within 48 hours) clearance of filarial worms by
resistant mosquitoes with temporal expression of immune transcripts encoding antimicrobial peptides
(cecropin and defensin) and transferrin, among others [45–47], while in susceptible mosquitoes, a
filaria-induced upregulation of lipohorin and its receptor gene in the vector has been uncovered [48],
an event that may facilitate parasite survival by suppressing mosquito immune responses [49–51].

The understanding of the physiological linkage between mosquito vectors and filarial parasites in
relation to how the parasites cross their developmental checkpoints within the intermediate hosts has
also been broadened. Transition of the ingested mf into L1 in mosquitoes occurs concurrently with
an increased level of mosquito ecdysteroids, and this concomitant increase was also observed with
initiation of L1 moulting to L2 and L2 to L3, implicating that ecdysteroid signaling is critical to the
regulation of intramosquito filarial moulting [52]. Elucidating further the molecular trigger of moulting
in filarial parasites, a functional B. malayi ecdysteroid receptor, Bma-EcR, was characterised [52].

3. Emerging Prospects of Achieving LF Eradication through Implementation of
Mosquito–Parasite Approaches

Considering the vicious circle that may ensue with the current control of LF and the significant
contribution from the insecticide-resistant disease-spreading vectors, knowledge of the molecular
groundwork of the mosquito–filaria system and vector biology, coupled with the present technological
advancement, has a great potential to translate into concrete ideas that may open wide avenues
for developing new transmission-blocking or transmission-reducing strategies to combat LF more
effectively. For instance, RNA interference (RNAi)-mediated silencing of the Bmcpl-1 gene utterly
disrupted B. malayi motility and development into the L3 stage in Ae. aegypti [53], indicating that robust
understanding of the immunological, cellular, and physiological pathways or transductions in both
filarial parasites and mosquitoes during the vector–parasite interface will direct research into devising
novel transmission-blocking strategies, perhaps through delivery of transmission-blocking drugs (TBD)
or vaccines (TBV) into the vectors. Drugs preventing mf exsheathment and mf migration through the
mosquito gut wall, as well as those targeting the intramosquito developmental larval stages (L1, L2,
and L3), have been proposed as potential targets for new antifilarial TBD designs [54]. For example,
drugs acting as ecdysone or Bma-EcR antagonists may successfully arrest intramosquito filarial larval
development. However, a potential but possibly circumventable difficulty in developing such drugs
revolves around pharmacokinetics/pharmacodynamics (Pk/Pd) optimisation [55], regarding the
inability to predetermine or influence the time frame between drug administration to patients and
drug uptake by the haematophagous vectors in relation to the drug half-life, as well as the quantity
of blood imbibed by the mosquitoes in relation to the volume of blood needed for effective drug
action. Characterisation of the parasite- or vector-expressed surface molecules may also allow the
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isolation of potential transmission-blocking vaccine candidates [56]. The feasibility of this approach in
curtailing transmission of mosquito-borne pathogens has been underpinned by the recent impressive
progress made towards developing TBVs against Plasmodium parasites in their Anopheles vectors [57–59].
Altogether, TBD and TBV strategies will surpass the classical insecticide-based vector control, as they
are not subject to selective pressure towards mosquito resistance [58]. Moreover, these strategies will
be especially advantageous if conserved targets that exhibit broad-spectrum activity among different
mosquito or parasite species or strains could be characterised, eliminating the need to develop targets
for each mosquito–filaria combination.

Engineering of mosquitoes through transgenic technologies has become an increasingly emerging,
mating-based control approach aimed at suppressing or modifying target vector populations in
nature. Various methods employed in the current research activities are majorly based on sterile
insect techniques (SITs) and gene drive systems [60–62]. SITs are self-limiting techniques that involve
breeding and releasing of modified sterile males into the target area to mate with the wild females, and
such mating results in the production of non-viable offspring [60]. Although the release of irradiated
sterile male mosquitoes was recently tested in Sudan [63], Italy [64], and Indonesia [65], and showed
encouraging performances, the recombinant DNA-based RIDL (release of insects carrying a dominant
lethal gene) system [60,61,66], a spin-off of SIT, has been most successful and rapidly spreading in
field trials. The most obvious evidence is the release of the transgenic OX513A strain of Ae. aegypti in
the Caribbean [67,68], Malaysia [69] and Brazil [70], with encouraging outcomes towards suppressing
target wild populations. In fact, after critical risk assessment, release of the OX513A strain was
approved by the Brazilian National Technical Commission on Biosafety and will probably be executed
nationwide in the near future [71]. An offshoot of the RIDL technique is also currently pursuing the
production of flightless females in Ae. aegypti progeny [72,73], and experimental studies are likewise
being undertaken using Ae. albopictus (Skuse) [74] and An. stephensi (Liston) [75].

The invasive, self-sustaining gene drive systems use selfish genetic elements to integrate and
spread desired traits in a target mosquito species, either for the purpose of replacing existing
wild mosquito populations with strains or species that are incapable of pathogen transmission
by incorporating anti-pathogen effector genes into the vectors (modification strategy), or for the
purpose of reducing or eliminating natural vector populations by driving detrimental genes into the
populations (suppression strategy) [60,62,76]. The discovery of naturally-occurring selfish genetic
elements, such as HEGs (homing endonuclease genes), the heritable Wolbachia pipientis (Hertig), and
MEDEA (maternal effect dominant embryonic arrest), and the mechanisms of their activity, inspired
the development of synthetic gene drive systems that have now become the major focus of the
current research [60,62,76]. The new synthetic CRISPR/Cas9 (clustered regularly-interspaced short
palindromic repeats/CRISPR associated protein 9) system overcomes many of the shortcomings
of previous synthetic gene drives and is rapidly gaining ground in vector-borne disease research
applications [62,76]. The natural genetic factors controlling mosquito resistance to filarial parasites can
provide the basis for population modification strategies by delivering designed antifilarial RNA or
peptide effector into mosquitoes through CRISPR/Cas9 using tissue-specific promoters [76], while
introgression of desirable suppression genotypes into wild mosquito populations can also be executed
by delivering Cas9/sgRNA (single guide RNA) complexes through embryo injection [62]. As with the
antifilarial mosquito population modification, delivery of effector molecules into the thoracic flight
muscles appears more attractive as the flight muscle-specific promoters have been identified [53,77],
and the thoracic flight muscles provide the longest parasite exposure time to effector molecules, while
the absorption of the molecules by the parasites may also be aided by cuticular lysis/turnover during
moulting and protein uptake via the parasite gut [76]. Essential secreted proteins at the vector–parasite
interface, such as those controlling neuromuscular activities and migratory behaviours, are potential
targets for developing peptide effectors, whereas the functionally-characterised Bmcpl-1 will serve in
RNA effector applications [53,76].
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The vast majority of current research activities towards the suppression of natural mosquito
populations are being undertaken in the field of mosquito-borne viruses such as dengue, and in
malaria control. However, a paramount benefit is the fact that mosquitoes acting as vectors for these
diseases are also competent vectors of LF. Therefore, breakthroughs in these fields of research and
eventual licensed application of the transgenic approaches on a global scale will have an immense
synergistic effect in suppressing LF transmission, especially in areas where target mosquito species act
as the major vector for LF or where the target mosquito-borne disease co-exists with LF. Moreover,
particular species of transgenic mosquitoes can be released in LF-endemic areas even when other
mosquito-borne diseases are not present.

4. Conclusions

The current speed in the war against mosquito-transmitted diseases is moving with an increasing
energy. It is, however, clear that mosquito–filaria research has not been extensively explored, perhaps
because some well-developed and advanced toolkits are still not in use. For instance, there are still
indications that the genetic factors influencing mosquito resistance or susceptibility to filarial parasites
have not been fully probed, but achieving this will require harnessing more advanced techniques
and technologies [76]. Moreover, much remains to be done in the specific functional analysis of
genes and proteins expressed in the intramosquito filarial stages. The quest to better understand
these cardinal building blocks coordinating filarial parasites’ adaptation, survival, development, and
other physiological activities within the vector will unveil hidden ‘golden nuggets’ required to design
novel transmission-blocking chemotherapeutics, vaccines, and potent effector molecules for transgenic
mosquito applications. Transgenic mosquito technologies have become a powerful tool for propelling
vector control research in designing novel control methods with promising effectiveness; nevertheless,
to gainfully utilize the potential of these emerging hi-tech control strategies, an effective dialogue
with the public and the stakeholders, as well as resolving issues regarding the licensed deployment
of engineered mosquitoes in nature, is crucial [78–80]. Overall, considerable progress has been made
in the global control of LF, but achieving the projected elimination target is now clearly uncertain.
To maintain the gains of the current drug-based, vaccine-lacking control approaches and the hoped
effectiveness of the new MDA recommendations, co-implementation of the budding vector control
and transmission-blocking concepts is essential for a synergistic control approach that will not only
speed up LF elimination but also augment the potential for its future eradication.
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