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Abstract

Longitudinal ’omics analytical methods are extensively used in the evolving field of precision

medicine, by enabling ‘big data’ recording and high-resolution interpretation of complex

datasets, driven by individual variations in response to perturbations such as disease patho-

genesis, medical treatment or changes in lifestyle. However, inherent technical limitations in

biomedical studies often result in the generation of feature-rich and sample-limited datasets.

Analyzing such data using conventional modalities often proves to be challenging since the

repeated, high-dimensional measurements overload the outlook with inconsequential varia-

tions that must be filtered from the data in order to find the true, biologically relevant signal.

Tensor methods for the analysis and meaningful representation of multiway data may prove

useful to the biological research community by their advertised ability to tackle this chal-

lenge. In this study, we present TCAM—a new unsupervised tensor factorization method for

the analysis of multiway data. Building on top of cutting-edge developments in the field of

tensor-tensor algebra, we characterize the unique mathematical properties of our method,

namely, 1) preservation of geometric and statistical traits of the data, which enable uncover-

ing information beyond the inter-individual variation that often takes over the focus, espe-

cially in human studies. 2) Natural and straightforward out-of-sample extension, making

TCAM amenable for integration in machine learning workflows. A series of re-analyses of

real-world, human experimental datasets showcase these theoretical properties, while pro-

viding empirical confirmation of TCAM’s utility in the analysis of longitudinal ’omics data.

Author summary

Tensor methods have proven useful for exploration of high-dimensional, multiway data

that is produced in longitudinal ’omics studies. However, even the most recent applica-

tions of these methods to ’omics data are based on the canonical polyadic tensor-rank
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factorization whose results heavily depend on the choice of target rank, lack any guarantee

for optimal approximation, and do not allow for out-of-sample extension in a straightfor-

ward manner. In this paper, we present a method for tensor component analysis for the

analysis of longitudinal ’omics data, built on top of cutting-edge developments in the field

of tensor-tensor algebra. We show that our method, in contrast to existing tensor-meth-

ods, enjoys provable optimal properties on the distortion and variance in the embedding

space, enabling direct and meaningful interpretation, supporting traditional multivariate

statistical analysis to be performed in the embedding space. Due to the method’s construc-

tion using tensor-tensor products, the procedure of mapping a point to the embedding

space of a pre-trained factorization is simple and scalable, giving rise to the application of

our method as a feature engineering step in standard machine learning workflows.

This is a PLOS Computational Biology Methods paper.

Introduction

Recent developments in high-throughput methodologies enable the assessment of molecular

entities from biological samples on a global scale at steadily decreasing costs, allowing to con-

duct biological and clinical studies at previously unfeasible magnitude, in terms of the number

of biological repetitions and molecules quantified [1]. A consequence of the increased availabil-

ity of ’omics methods is the possibility to conduct large-scale longitudinal studies prospectively

following participants in a variety of clinical contexts. In particular, longitudinal ’omics profil-

ing, combined with clinical measurements, enable to detect and understand individual changes

from baseline, improving personalized health and medicine by using tailored therapies [2].

Yet, despite the surge of longitudinal multiomics studies, the toolset for analyses which fully

utilize multiway structures in the data remains limited to date, with only a handful of applica-

ble algorithms and software being suitable for specific tasks [3–5].

Higher-order tensors (multiway arrays of numbers) are arguably the most natural data

structures for describing high-dimensional, multiway data such as longitudinal ’omics data.

Indeed, an impressive adoption of tensor factorization methods for time-series analysis has

recently emerged, allowing trajectory analysis for microbiome data [6–8] as well as neural

dynamics [9]. Generally referred to as tensor component analysis (TCA) [9], these multiway

dimensionality reduction methods for ’omics data provide a view on global—multivariate vari-

ations in the data, thus complementing methods such as [3–5] for univariate time-series analy-

sis. The TCA is most often computed using CANDECOMP/PARAFAC (CP) factorization [10,

11], which dramatically limits the ability to apply machine learning (ML) algorithms, as it does

not allow for straightforward mapping of unseen data points to the reduced space. In addition,

CP-based TCA requires choosing the number of components (dimensions) to be considered,

since different choices may result in significantly different transformations of the data, addi-

tional uncertainties in analyzing complex information are introduced. Moreover, when alter-

nating least squares (ALS) is used for finding the CP factors, there is no guarantee that the

resulting factors will correspond to the best low-rank approximation.

In this article, we present TCAM, a method for unsupervised dimensionality reduction which

provides an answer to the unmet need for trajectory analysis of longitudinal ’omics data

(Fig 1). Our method is based on a cutting-edge mathematical framework (the M-product

between tensors), which allows for a natural generalization of the notion of singular value
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decomposition (SVD) for matrices (2nd order tensors) to higher order tensors [12]. In contrast

to existing ALS-CP-based methods, TCAM factors do not depend on prior choice of target rank,

resulting in consistent outputs between executions. Additionally, given a fitted TCAM factoriza-

tion, the embedding of a new trajectory is straightforward, unlike CP-based methods in which

such computation is untrivial. Moreover, TCAM enjoys provable optimality regarding the vari-

ance and distortion of the embeddings. Finally, we stress that unlike other tensor methods

(e.g., [6]), that rely on statistical properties of the data and its generative process, TCAM makes

no assumptions regarding the structure of the data, making it suitable for any choice of nor-

malization method. Thus, allowing the usage of TCAM with diverse data types (e.g., different

’omics sources) and providing the flexibility needed to answer different kinds of questions.

Following the formal construction of TCAM, we present a series of comparative analyses,

using real-world data collected from longitudinal ’omics studies. These experiments, and their

TCAM analyses, highlight how TCAM overcomes both the shortcomings of using traditional,

matrix-based workflows for the analysis of these data, and those that remain when employing

existing, state-of-the-art tensor methods. Given its theoretical guarantees, TCAM should be

applicable to any kind of ’omics data (assuming the adequate normalization of the data).

Empirical evidence for this claim is given through the re-analysis of a longitudinal proteomics

dataset, in which we utilized TCAM to uncover insights that were not mentioned in the original

work from which the data was taken (though established in the literature). Finally, we show-

case the straightforward application of TCAM to supervised machine learning workflows, where

TCAM serves as a ‘drop-in’ feature-engineering step in the pipeline by the virtue of its out-of-

sample extension.

Fig 1. Illustration of settings and workflow. Center rhombus describes the typical data produced in a longitudinal

experiment, where high-dimensional samples are collected from multiple subjects across various timepoints. Left-hand

side describes a summarized overview of standard, non-tensor-based workflows, including (top to bottom) ordination

plots with repeated measurements, per-timepoint multivariate analysis, and funnels for discovery using univariate

time-series analysis. Top right—schematic derivation of TCAM from TSVDM. Bottom right—TCAM’s output and its

applications, including exploratory analysis of the data through a reduced features space where variation between

points reflects differences between high-dimensional temporal trajectories, feature engineering for downstream ML

workflows, and feature selection for downstream univariate exploration.

https://doi.org/10.1371/journal.pcbi.1010212.g001
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Models

Preliminaries and notations

A real tensor of order-N, denoted by A 2 Rd1�d2�����dN , is a multi-dimensional array with real

entries indexed by N-tuples. For example, the i1, i2, . . ., iN entry of A is denoted by Ai1;i2 ;...;iN
.

In this paper, we consider 3rd order tensors A 2 Rm�p�n holding data from p-dimensional

samples, collected from m subjects across n time-points. The size of p is determined by the

number of features measured in the ’omics method being used, e.g., it can be the number of

observed bacterial species in metagenomics sequencing or the number of genes in transcrip-

tomics. We consider a “subject centered” view of the data tensor, that is, viewing the order-3

tensor as an m-long “list of matrices” where each matrix corresponds to a time-series collected

from a single individual, as illustrated in Fig 2a and 2b. We use MATLAB notations for slicing

and indexing of tensors, e.g., Ai;:;: 2 R
1�p�n denotes the ith horizontal slice of A, which may be

considered as a p × n matrix. Fibers of A are obtained by fixing two indices. Of particular

interest are the tube-fibers that are the n dimensional vectors Ai;j;:.

We briefly define the tensor-tensor product following the construction in [12]. Let M be an

n × n invertible matrix, then the mode-3 product the tensor A with the matrix M is denoted

by the tensorcA ¼ A�3M whose tube-fibers are given bycA i;j;: ¼ MA i;j;:. Note that since M is

non-singular, it holds thatcA�3M
� 1 ¼ A. The face-wise product of tensors A 2 Rm�p�n and

B 2 Rp�r�n
is denoted by the tensor C ≔ A4 B 2 Rm�r�n

where each slice C:;:;i is given by

the matrix product A:;:;iB:;:;i 2 R
m�r

. The ?M tensor-tensor product of A and B is defined as

C ≔ ðcA 4 bBÞ�3M
� 1. Given a non-singular n × n matrix M, the tubal singular value decom-

position with respect to the ?M-product (TSVDM) of A is written as A ¼ U?MS?MVT
where

U;V are ?M-orthogonal tensors and S is f-diagonal (Fig 3) (see S1 Text for formal

definitions).

Kilmer et al. have recently established an Eckart-Young like—best low-rank approximation

results for the case where M is a non-zero multiple of an orthogonal matrix [12]. Briefly, the

best t-rank q (multi-rank ρ) approximations of a tensor A are obtained by t-rank q (multi-

rank ρ) truncation of A’s TSVDM. In this work, we further generalize these results to a novel

notion of explicit rank truncation (see S1 Text). To maintain consistency, throughout all

Fig 2. Subject centered view of 3rd order tensor. a An illustration of the data structure. b The right panel presents a

breakdown of the left tensor into m horizontal slices that are p × n matrices.

https://doi.org/10.1371/journal.pcbi.1010212.g002
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demonstrations in this study, we considered M defined by the (scaled) Discrete Cosine Trans-

form (DCT-II). However, we encourage TCAM users to experiment with different transforms,

e.g. the software implementation allows for sampling a random M 2O(n) at uniform (Haar)

distribution.

Proposed method: TCAM

The mean sample of a tensor A, is defined as �A ¼ 1
m

Pm
i¼1

Ai;:;: 2 R
1�p�n�

. A tensor A is in

mean-deviation form (MDF), if k �A k2
F¼ 0, where k�kF denotes the Frobenius norm:

k A k2
F¼
P

k;j;iA
2

k;j;i. Any tensor A can be centered to MDF by subtracting its mean sample

from each horizontal slice. So, henceforth we assume that A is in MDF.

Given a tensor A in MDF, with a factorization A ¼ U?MS?MVT
, the ranking vector r of

A is an ordered set of tuples r ¼ fðrh;1; rh;2Þg
pn
h¼1

where rh,1 2 {1, . . ., p} and rh,2 2 {1, . . ., n}

denote indexes of diagonal entries of bS such that

bS r1;1 ;r1;1 ;r1;2
� bS r2;1 ;r2;1 ;r2;2

� � � � � bS rnp;1;rnp;1;rnp;2
ð1Þ

The TCAM of A is defined by a scores matrix Z 2 Rm�pn whose entries are

Z‘;h ¼ ½ðA?MVÞ�3M�‘;rh;1 ;rh;2 ð2Þ

and an np × p loadings matrix V with entries Vh;j ¼
bV rh;1;j;rh;2

. Algorithm 1 for obtaining TCAM

highlights that most of the computational effort is due to the TSVDM, which requires

Oðnðpm2 þm3ÞÞ arithmetic operations, omitting the overhead involved with applying the ×3

M operations that are of negligent cost compared to that of the SVD computation. The explicit

rank-q truncated TCAM is obtained by keeping the first q columns and rows of Z and V respec-

tively. Each row of the factors matrix represents the p-dimensional time-series (trajectory) of

each subject, while the loadings matrix measures the contribution—magnitude and direction

—of each of the p ’omics features to each of the TCAM factors across samples.

Given a time-series of samples X 2 R1�p�n
, not necessarily included in the horizontal slices

of A, the transformation of X to the reduced dimensional space defined by the TCAM fitted

using A is given by Algorithm 2 and is equal to

xh ¼ ½ðX?MVÞ�3M�‘;rh;1 ;rh;2 : ð3Þ

This ability to transform new data points to the reduced features space makes TCAM amena-

ble for use as a feature-engineering step in supervised ML workflows.

Fig 3. Illustration of the TSVDM decomposition for a 3rd order tensor. Left hand side of the equation shows that data

tensor A, right hand side shows the factors U 2 Rm�m�n
;S 2 Rm�p�n

;VT
2 Rp�p�n

, where U;V are ?M-orthogonal

tensors and S is f-diagonal.

https://doi.org/10.1371/journal.pcbi.1010212.g003
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Algorithm 1 TCAM construction
Input: Data A 2 Rm�p�n

Parameters: Orthogonal matrix M 2 Rn�n

1: �A  ð
Pm

i¼1
Ai;:;:Þ=m

2: U;S;V  TSVDMðA � �AÞ
3: rh  (rh,1, rh,2) (see Eq 1), bsh  

bS rh;1 ;rh;1 ;rh;2

Output:
Explained variance portion: fbs2

h=ð
Pnp

j¼1
bs2

j Þg
np
h¼1

Transformation parameters: r;V; �A
Algorithm 2 TCAM projection

Input: X 2 R1�p�n a single (multivariate) time-series
Parameters: TCAM transform parameters: �A, r, V
1: Z  ðX � �AÞ?MV
2: bZ  Z�3M 2 R

1�p�n

3: zh  ½ bZ�1;rh;1 ;rh;2
Output: z 2 Rnp

The transformation in Eq 3 (Fig 4), is a member of the family of pseudo ?M-orthogonal,

explicit rank-q truncated tensor-to-vector mappings (see S1 Text). As such, it enjoys two fun-

damental properties: variance maximization and minimization of the distortion. Formally, let

Z ¼ QðAÞ 2 Rm�q
denote the image of a tensor A 2 Rm�p�n

(in MDF) under a pseudo ?M-

orthogonal explicit rank-q truncated tensor-to-vector mapping Q, then

1. The sample-variance of the image, Tr(ZTZ)/(m − 1), is maximized when Q is defined by the

explicit rank-q truncated TCAM.

2. The distortion in the configuration caused by Q, kAAT − ZZTk�, where A 2 Rm�np
is the

matrix obtained by mode-1 unfolding of A, is minimized when Q is defined by the explicit

rank-q truncated TCAM.

Combined, these properties provide a formal justification for applying multivariate hypoth-

esis testing methods such as PERMANOVA [13] to the reduced space representation of the

data, in addition to meaningful and intuitive interpretation for the results of such methods.

Proofs for these statements, along with additional details, are given in S1 Text.

We now remark regarding the choice of q. The dimension of the reduced space depends on

the purpose of the analysis. For example, one might choose q based on the traditional

Fig 4. Illustration of the TCAM mapping defined in Eq 3 and Algorithm 2. Top: right multiplication of new data

point X 2 R1�p�n
(a matrix) by V, followed by application of M (middle), and concatenation (bottom).

https://doi.org/10.1371/journal.pcbi.1010212.g004
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considerations for choosing the number of principal components, such as signal—noise ratio

assumptions or based on scree plots. Regardless of the considerations for choosing q, it should

be noted that unlike CP, where the target rank of the approximation affects the resulting

embedding, the TCAM factors are pre-determined by the data (and M), up to a variance and dis-

tortion invariant multiplication by a unitary tensor. Thus, the configuration reflected by the

first i TCAM components remains unchanged when taking any q� i.

Results

TCAM reveals information beyond inter-individual variations

In this first experiment, we wish to exemplify the shortcomings of traditional, matrix-based,

dimensionality reduction methods when applied to longitudinal ’omics data. More often than

not, longitudinal ’omics data is characterized by high inter-individual differences, regardless of

time or state in which samples were taken. Traditional matrix-based dimensionality reduction

methods such as PCA (which attempt to find a representation in a reduced dimensional space

in which the variance is maximized) are prone to mask interesting temporal variations by

highlighting the prominent inter-individual differences. To demonstrate this point, we use

data from a work by Suez et. al. [14], investigating the reconstitution of the gut microbiome in

healthy individuals following antibiotics administration. In the original study, participants

were split into three study arms—21 day-long probiotics supplementation (PBX), autologous

fecal microbiome transplantation (aFMT) derived from a pre-antibiotics treated sample, or

spontaneous recovery (CTR). Stool samples were collected at baseline (BAS, days 0 to 6), dur-

ing antibiotics treatment (ABX, days 7 to 13) and the intervention phase (INT, days 14 to 42).

Indeed, PCA of all time-points resulted in a representation that mainly reflects inter-indi-

vidual differences (Fig 5a and S1(a) Fig), while temporal intra-individual variations remained

obscured. The high correlation between “baseline configuration” and “complete configura-

tion” (Pearson, ρ = 0.72, p< 10−10, Fig 5b) implies that the repeated samples add very little

information to the ordination. Similarly, a per-phase perspective of the data did not capture

changes in microbiome composition, but a mere snapshot of temporal trends (S1(b), S1(c), S1

(d) and S1(e) Fig). These results demonstrate that even in the presence of a temporal perturba-

tions as substantial as the effect of antibiotics treatment on the microbiome, PCA is unable to

utilize the longitudinal sampling for picking up signals, which were attainable in the case of

single timepoint study design. In contrast, application of TCAM to the data following log-folds

baseline normalization (LFB, S1 Text), generated a coherent representation of the data (Fig 5c)

where each point in the reduced space represents a complete temporal trajectory of a subject

throughout the entire experiment. Additionally, the TCAM scores approximate the true dis-

tances between input trajectories (S1 Text) providing clear and accurate interpretation of the

configuration in the resulting embedding and proportion of variation explained by each ordi-

nation axis. Multivariate hypothesis testing revealed significant differences between trajecto-

ries of the FMT group and those of PBX (Fig 5c; PERMANOVA, P< 0.05). In light of the

normalization scheme used, these result renders that courses of change in gut microbiome

composition of subjects supplemented with probiotics following antibiotics administration,

significantly differed from those of individuals who underwent autologous FMT—in agree-

ment with the findings of Suez et. al.

To further investigate the sources of variation between the groups, we considered the high-

est magnitude TCAM loadings associated with F1 (Fig 5d), which accounts for� 11% of the vari-

ation in the data by itself, and exhibits significant differences between groups (ANOVA,

P< 0.05). Inspection of the top 5% contributing features to the variation in F1, highlighted five

probiotic species of large-positive magnitude, namely B.breve, B.bifidum, L.acidophilus, L.
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Fig 5. Comparison of TCAM with existing matrix-based methods. a PCA of all timepoints, colored by participant. b

Regression line of mean distance between subjects at all timepoints (x) and at baseline (y). Distances computed using

PC1 and PC2. c Leading TCAM factors. d Bar graph showing top 2.5% features contributing to F1s variation. e

Comparison of discovery rates for univariate hypothesis testing (lmer), between naïve workflow (left) and TCAM-based

pruning (right) workflow. f Venn diagram and bar graphs. Bars denote per-subject iAUC for all detected bacteria

(q<0.05). Venn diagram relates each bacterium to the workflow it was detected in. Bars represent medians. Names of

microbial species which are included in the probiotics mix are highlighted in bold.

https://doi.org/10.1371/journal.pcbi.1010212.g005
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rhamnosus and L.lactis, meaning that higher values of these species in the LFB normalized data

are “pushing” F1 scores upwards (or, to the right-hand side of Fig 5c). Thus, we conclude that

these probiotic species which were in fact consumed by the PBX group [14], may play a major

role in separating the PBX group from the rest of the cohort, providing a strong demonstration

that results obtained using TCAM have meaningful biological interpretation.

Routine exploration for features exhibiting differential trends between groups across time

typically involves univariate time-series hypothesis testing such as repeated measures ANOVA

and linear mixed effect model (lmer), followed by false discovery rate correction necessitated

by the number of features being tested. Considering the typically large number of features in

’omics data, combined with the assumption that only a few of these features actually differ

between the groups, this strategy may prove too stringent, discarding true signals due to an

arbitrary large initial number of features. Indeed, applying lmer to each species in the initial

dataset (482 features), resulted in 128 taxa showing different temporal trends between groups,

reflected by the statistically significant estimation of the interaction term (S1 Text), with only

11 bacteria maintaining statistically significant values after correction for multiple testing,

none of which is a probiotic species (S2(a) and S2(b) Fig). In contrast, when TCAM was used as

a pruning strategy, by considering only top TCAM loadings (S1 Text) to reduce the number of

initial features being tested, the final set of species presenting significantly different temporal

trends between groups contained twenty-three new bacteria (two of these are probiotic species,

Fig 5e and 5f and S3 Fig), and an overlap of eight species discovered with and without pruning

(S2(a) Fig). The TCAM-based pruning strategy failed in the detection of three species, that

would otherwise have been discovered (S2(b) Fig).

To demonstrate the application of TCAM to the exploratory analysis of dense longitudinal

time-series, we used the ECAM dataset [15], which contains stool microbiome collected in

high frequency during the first two years of life for 43 infants. In this example, we put our

focus on the well characterized differences between development course of microbiomes of

infants that were vaginally delivered (V), and those of infants delivered by cesarean section

(C). Observing the leading TCAM factors of the data, we notice significant differences between

microbiome trajectories of the two modes, highlighted both by univariate test and a (linear

kernel) support vector machine classifier (SVC) (S4(a) Fig; PERMANOVA; P< 0.01). To find

the bacteria of highest contribution to the separation between the temporal trajectories of the

two modes of birth, we computed the magnitude of the feature loadings when projected onto

the normal direction to the boundary of decision (S4(b) Fig). Indeed, among the top 1% con-

tributing features, we were able to identify bacteria such as Bacteroides, Bifidobacterium and

Enterobacteriaceae that were previously found to exhibit differential behavior across time

between the birth modes. Applying univariate tests following the same pruning strategy as in

the post-antibiotics reconstitution example, resulted in a fine-grained, coherent view of the

discriminatory features (S4(c) and S4(d) Fig).

Comparison with existing tensor-based methods

Next, we evaluated TCAM’s performance in comparison to a state-of-the-art tensor factorization

method: Context-aware Tensor Factorization (CTF) [6]. Unlike TCAM, CTF is designed specifi-

cally for 16S metagenomic sequencing data, and substantially utilizes the compositionality and

sparsity of the data by finding a CP decomposition which best approximates the non-zero val-

ues. For this demonstration, we chose the resistant starch type 4 (RS4) interventional dataset,

comparing the effect of four different types of RS4 fiber administration (tapioca, maize, corn

and potato) on the microbiome composition measured using 16S sequencing of stool samples

collected each week during a five weeks long trial [16]. The four arms of this experiment were
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defined by the source of fibers: tapioca and maize groups represent sources of fermentable

fibers, while potato and corn groups mostly contain fibers that are inaccessible for microbiome

degradation, thus they are considered control groups. In the original paper, the authors

noticed significant differences in specific time-points in the tapioca and maize groups, but did

not report any results of time-series analysis.

CTF was applied to the count data while considering five components (S1 Text), resulting

in significant differences noted between trajectories of participants in the maize group from

those of individuals supplemented with corn and potato (PERMANOVA; P< 0.05, Fig 6a),

with significantly different factor scores between the groups obtained for the fourth CTF com-

ponent (accounting for 0.11% of the squared sum of singular values, ANOVA; P = 0.005).

However, when considering the features of highest contribution to variability of the scores on

the fourth factor for downstream—univariate time-series analysis, none of the selected features

have shown a significantly different temporal pattern between groups. In contrast to CTF, in

which the factorization is inseparable from the robust centered log-ratio (rclr) normalization

scheme, TCAM makes very few assumptions regarding the data and its generative model, thus

allowing higher degree of flexibility when normalizing the data. First, on top of (matrix) rclr

normalization [17] (S1 Text), we further employed deviation from baseline transformation

(DFB, S1 Text) before applying TCAM to the data, in order to have a view of the data that is cen-

tered at each individual’s deviation from their personal baseline. Indeed, truncated TCAM

resulted in significant differences between maize group to the remaining study groups, in addi-

tion to observed differences between the corn and tapioca groups (PERMANOVA; S5(a) Fig).

Leading TCAM loadings associated with the factors differentiating between groups were consid-

ered for time-series analysis (S1 Text), which highlighted the differences in the relative abun-

dance levels of P.distasonis and Enterobacteriaceae between the groups (lmer; P< 0.05,

Q< 0.1, S5(b) and S5(c) Fig). To further demonstrate TCAM’s flexibility, we applied the factori-

zation to the same dataset following LFB normalization (S1 Text). The alternative normaliza-

tion uncovered significantly different temporal trends between the maize group to all of the

remaining groups in the cohort (PERMANOVA; P< 0.05, Fig 6b), and the pruning strategy

revealed seven bacteria, including the above mentioned taxa, featuring a statistically significant

trend throughout time (lmer; P< 0.05, Q< 0.05, Fig 6c and 6d S5(c) Fig). Moreover, using

the top loadings associated with F3, we highlighted additional features demonstrating patterns

of increasing bacteria in the form of Lachnospiraceae in the maize group and P. distasonis in

the tapioca group (Fig 6e).

Universal applicability to ’omics data

To assess TCAM’s applicability to ’omics data other than metagenomics, we use the proteomics

data set from Sailani et. al. [18] concerning seasonal patterns of the human microbiome, tran-

scriptome, metabolome and proteome. The original study cohort contains data collected from

105 individuals, where each participant donated about twelve samples during a three-year

period (one sample every three months). Here, we set the focus on a subset of the data which

contains proteomics samples of individuals featuring insulin sensitivity (IS) or insulin resis-

tance (IR), and addressed the differences between proteomic trajectories of these two groups

throughout time.

Using TCAM following DFB normalization of the data (see S1 Text), we detected a significant

separation between IR and IS groups based on first factor’s scores (t-test; P< 0.05), suggesting

that a considerable portion of the data’s variability is explained by differences between these

groups (Fig 7a). Similar to our analysis framework above, we turned to the top loadings associ-

ated with the first factor (Fig 7b). Among the top ranked proteins, we could easily notice
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angiotensinogen (AGT), which was previously associated with IS condition [19]; paraoxonase-

1 (PON1), that has been found to down-regulate insulin resistance in mice [20]; apolipopro-

tein-3 (APOC3), highly associated with IR [21]; and increasing a2-HS-glycoprotein (AHSG),

which is indeed tightly associated with IS [22]. The high level of consistency between these

Fig 6. Comparison of TCAM with existing tensor-based methods. a Scatter plot of the data from [16] obtained using

CTF; Inset: pairwise PERMANOVA. b TCAM Scatter plot for data of [16] using TCAM; Inset: Pairwise PERMANOVA c

Funnel comparing discovery rates of CTF and TCAM based pruning strategies. d Time series describing significant

bacteria (lmer) found using TCAM based pruning strategy on top of LFB normalization. e Barplot with top and bottom

2.5% loadings for F3. Heatmap representing per-subject AUC (log scale) for the same features; Color bar indicates z-

score normalized value.

https://doi.org/10.1371/journal.pcbi.1010212.g006

PLOS COMPUTATIONAL BIOLOGY TCAM; modern analysis of longitudinal ’omics data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010212 July 15, 2022 11 / 18

https://doi.org/10.1371/journal.pcbi.1010212.g006
https://doi.org/10.1371/journal.pcbi.1010212


TCAM-produced findings and the existing literature convinces that our method is generally

applicable to ’omics data.

Application to supervised ML

In the context of standard supervised-ML, classification or regression models are trained using

a labeled training set, and are expected to generally apply to (unlabeled) inputs. Note that TCAM

is essentially an unsupervised dimensionality reduction method, unlike label aware methods

such as Avocado [8], which takes into account phenotypic information for computation of the

embedding. Thanks to its natural out-of-sample extension (Eq 3), TCAM is amenable for seam-

less integration as a feature engineering step in supervised-ML workflows. To demonstrate this

ability, we utilized a 16S rRNA metagenomics dataset from a study by Schirmer et al., which

contains stool samples collected from pediatric UC patients monitored for 52 weeks under

three different treatments. The original study characterized microbial dynamics along disease

course, in light of host response to each of the applied treatments [23]. Here, we constructed a

supervised ML model which uses longitudinal metagenomics data to classify disease status

labeled by flare (FLR) and remission (REM).

Fig 7. TCAM’s applicability to proteomics datasets. a Scatterplot of leading TCAM factors significantly correlated with

insulin resistance or sensitivity. Points are colored according to insulin resistant (IR) and insulin sensitive (IS)

information. b Heatmap showing the sum of top and bottom 25 features contributing to the variation on F1 according

to their loadings; Color bar indicates z-score normalized value.

https://doi.org/10.1371/journal.pcbi.1010212.g007

PLOS COMPUTATIONAL BIOLOGY TCAM; modern analysis of longitudinal ’omics data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010212 July 15, 2022 12 / 18

https://doi.org/10.1371/journal.pcbi.1010212.g007
https://doi.org/10.1371/journal.pcbi.1010212


We constructed an ML pipeline which, consisted of filtration, baseline normalization, TCAM

based feature engineering step, followed by Multi Layer Perceptron (MLP) classifier (S1 Text).

First, an inspection of the complete dataset using TCAM, as well as PCA for the inspection of

each time-point separately, failed to reveal differences between microbiome trajectories of FLR

and REM groups (PERMANOVA; P> 0.05, S6(a), S6(b) and S6(c) Fig). This lack of clear

structures in the data with respect to the labels, suggests that the task of modelling remission

status using temporal microbiome data is highly challenging. Yet, remarkably, the TCAM based

MLP classifier managed to achieve noticeable scores for the prediction (AUROC = 0.79, Fig

8a) when evaluated in five-fold cross-validation iterations (S1 Text). For the sake of compari-

son, equivalent classifiers, which take a single time-point as input (S1 Text), obtained consider-

ably lower scores (AUROC; W12 = 0.61, W52 = 0.68, S6(d) and S6(e) Fig), similarly to the

performance of a time-series classification model based on random convolutional kernel trans-

form (Rocket [24] AUROC = 0.66, S6(f) Fig).

In addition, the straightforward out-of-sample extension of TCAM enabled downstream

analysis of the classification model’s decision making process. Using standard feature impor-

tance utilities, we were able to evaluate the contribution of features in the original space

(OTUs) to the model’s performance (Fig 8b). For example, we were able to pinpoint Anaero-
coccus and B.fragilis whose trajectories contribution to the decision making process were

among the highest of all taxa, and additional OTUs annotated with F.prausnitzii, which was

linked to the differences between the groups in the original paper.

To further validate the TCAM-based feature importance results, we re-applied TCAM to a

reduced dataset containing features whose importance score is in the top 5%. Focusing on

Fig 8. TCAM enables new discoveries and is amenable for ML application. a ROC curve for MLP model trained to

classify remission/flare based on TCAM transformed data of all timepoints. b Bar plot showing importance scores of top

5% ranked features. c Scatterplot of TCAM scores computed on top 5% most important features.

https://doi.org/10.1371/journal.pcbi.1010212.g008
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these top ranked features, we were able to identify clustering according to disease states (Fig

8c), confirming that TCAM-based feature engineering truthfully preserves existing structures in

the data (S6(g) Fig).

Collectively, these demonstrations highlight TCAM’s ability to uncover predictive aspects

underlying longitudinal data, while enabling seamless integration as a drop-in feature-engi-

neering step in supervised ML workflows. These capacities enable to extend the transformation

to samples outside the training dataset, and maintain traceable and meaningful relationships

with the original features space. While it may be that other pre-processing schemes would

result in better performances, especially for the Rocket based classifier, which is considered

state-of-the-art, this case highlights that TCAM based classifier requires minimal pre-processing

of the data in order to perform reasonably well, thus putting TCAM as a powerful method for

feature engineering.

Discussion

In this work, we present TCAM, a dimensionality reduction method for longitudinal ’omics data

analysis, constructed on the premise of recent tensor-tensor algebra innovations. We demon-

strate that TCAM outperforms traditional and state-of-the-art methods for longitudinal analysis

dimensionality reduction, both in terms of signature detection and by pruning for meaningful

features. In addition, we show that TCAM is applicable to diverse ’omics types, including ampli-

con and shotgun sequencing as well as proteomics. Furthermore, unlike other tensor factoriza-

tion methods, TCAM entertains a natural out-of-sample extension formula, making it suitable

for prediction tasks in complex experimental designs as a drop-in feature engineering utility

within ML workflows. We demonstrate that we can preserve the feature importance contribu-

tion of the original features, even when TCAM is applied.

To our knowledge, TCAM is the first tensor component analysis framework that is guaran-

teed, within the specific choice of domain transformation, to maximize the variance of the

latent representation while keeping the distortion minimal. While distinct choices of M would

generally result in different TCAM embeddings (and transformations), the explicit rank-q trun-

cation of each resulting TCAM makes the q dimensional transform maximizing the variance and

minimizing distortion in the algebraic framework defined by each M. One possible way to

define the ‘best’ M for a given dataset, is the M for which the implicit rank of the (un-truncated)

decomposition of the data is minimized. We consider this choice as the ‘best’ option as it surely

provides the representation of the data that is the most possibly compressed. Alternatively, con-

sidering that any TSVDM (thus, any TCAM) may be written as approximation in CP form [12, Sec-

tion 6.C], we get that the implicit rank under ?M of the data equals, by definition, to its tensor-

rank, making the task of finding the ‘best’ M equivalent to finding the tensor-rank of the data.

Since tensor-rank computation constitutes a difficult problem in general [25], we conclude

that our definition for the ‘best’ M is unhelpful as it is generally impossible to lay one’s hands

on. Yet, we have shown that when dealing with time-series data, taking M as the discrete cosine

transformation, TCAM is amenable for traditional downstream applications often used in bio-

logical data analysis, such as multivariate hypothesis testing and ML workflows.

While TCAM proves to constitute a useful tool for the analysis of longitudinal experimental

designs, it relies on fully sampled cohorts, i.e., where all participants provide the same number

of samples corresponding to similar time points. Even though missing data imputation is a

classic use-case for low-rank approximations in general [6, 9] and the recent progress made in

the applications of TSVDM to incomplete data [26], the accuracy and reliability of reconstructed

data generally depend on assumptions regarding the generative process of the data, the fre-

quency of observed values or their distribution across subjects, features and timepoints.
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Maintaining TCAM’s universality to all kinds of ’omics data necessitates a detachment of the fac-

torization from imputation and normalization of the data. Currently, prior to applying TCAM, it

is up to the user to impute missing samples and normalize the data by any method that is

appropriate to the data of interest. In this work, we have demonstrated TCAM’s power in longi-

tudinal ’omics data analysis while considering naïve and straight-forward schemes for normal-

ization and imputation (S1 Text).

Looking forward, the mathematical properties of TCAM may enable to not only perform a

trajectory analysis across time, but to also harness spatial patterns of data collected across dif-

ferent body sites. Future TCAM versions would enable the factorization of higher order tensors,

allowing for better understanding of even more complex experimental designs, such as con-

comitant incorporation of space and time. A probabilistic formulation for TCAM, i.e., as a

model for generating high dimensional time-series data that is subjected to some prior

assumptions imposed by the type of data, may also be useful in order to handle missing data

and determination of uncertainty in estimates and predictions. Moreover, the tensor-tensor M

product framework [12], which is the theoretical foundation underlying TCAM, may be further

utilized to produce additional factorization schemes, such as the decomposition of dissimilar-

ity tensors for microbiome applications, non-negative factorizations intended for count data

and more.

To conclude, the presented approach may address an important, previously unmet need for

longitudinal ’omics data analysis by introducing a toolkit that enables trajectory analysis,

which we make available to the wide community as a simple, one-stop-shop Python imple-

mentation (https://github.com/UriaMorP/mprod_package), that is compatible with the highly

popular scikit-learn package. We believe that the application of TCAM would help derive deep

insights from large-scale, longitudinal and multi-omics data, while facilitating personalized

medicine-based data mining and interpretation, thereby leading to the development of tailored

treatments and preventive strategies for human diseases.

Supporting information

S1 Text. Supplementary discussion containing proofs of main results and prepossessing

details.

(PDF)

S1 Fig. Comparison of TCAM with existing matrix based methods for exploratory analysis. a

PCA plot of baseline timepoints, 1–2 samples per each subject. Points are colored according to

participant. b PCA plot of all timepoints. Points are colored according to group. c, d and e

PCA plot of baseline, antibiotics, and intervention phases respectively. Points are colored

according to group.

(TIF)

S2 Fig. Detailed view of the statistically significant features discovered using TCAM as prun-

ing strategy (continued). Time series of relative abundance levels for statistically significant

taxa (q < 0.05, lmer), which were found using both TCAM-based pruning and without any

pruning strategy a, or when no pruning scheme was employed b.

(TIF)

S3 Fig. Detailed view of the statistically significant features discovered using TCAM as prun-

ing strategy. Time series of relative abundance levels for statistically significant taxa (q< 0.05,

lmer), which were uniquely discovered when TCAM based pruning of the features was used.

(TIF)
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S4 Fig. Exploratory analysis of the dense ECAM dataset using TCAM. a Scatter plot of the

first two TCAM factors computed for the ECAM dataset [15]. Orange line and colored back-

grounds show the boundary of decision and class domains computed using linear SVC; Inset;

PERMANOVA. b Barplot showing the top 20 contributing features to the variation in orthog-

onal direction to the decision boundary. c Heatmap representing the cumulative change

(iAUC) of the top 1% contributing features to the variation in orthogonal direction to the deci-

sion boundary; Color bar indicates z-score normalized value. d Time series describing relative

abundances of bacteria with smallest adjusted p-value (lmer) and highest bacterial abundance

after pruning strategy.

(TIF)

S5 Fig. Application of TCAM following domain specific normalization. a Scatterplot showing

the first factors acquired by employing TCAM to the data of [16] following rclr normalization

and DFB; Inset: Pairwise PERMANOVA. b Funnel showing the comparison between CTF

(left) and TCAM + rclr (right) as pruning strategies for univariate statistical hypothesis testing.

c Time series describing all significant bacteria (lmer) found using rclr TCAM based pruning

strategy.

(TIF)

S6 Fig. TCAM analysis on pediatric UC patients. a, b, c Scatter plots for 2 leading factors of

TCAM for the whole dataset a PCA computed for log2 ratio of week 12 and baseline b PCA com-

puted for log2 ratio of week 52 and baseline c Points are colored according to remission

(REM) and flare (FLR) status. d and e ROC curve for MLP model trained to classify remis-

sion/flare based on PCA transformed log fold change between week 12 and baseline (d), log

fold change between week 52 and baseline (e). f ROC curve for ridge-regression-classifier

model trained to classify remission/flare given random kernel transformation (Rocket [24]) of

the complete time-series. g Time series of relative abundance levels, highlighting the differ-

ences in trajectories of the features contributing to the remission status classification model.

(TIF)
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