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ABSTRACT Nelore is the most economically important cattle breed in Brazil, and the use of genetically
improved animals has contributed to increased beef production efficiency. The Brazilian beef feedlot
industry has grown considerably in the last decade, so the selection of animals with higher growth rates
on feedlot has become quite important. Genomic selection (GS) could be used to reduce generation
intervals and improve the rate of genetic gains. The aim of this study was to evaluate the prediction of
genomic-estimated breeding values (GEBV) for average daily weight gain (ADG) in 718 feedlot-finished
Nelore steers. Analyses of three Bayesian model specifications [Bayesian GBLUP (BGBLUP), BayesA,
and BayesCp] were performed with four genotype panels [Illumina BovineHD BeadChip, TagSNPs, and
GeneSeek High- and Low-density indicus (HDi and LDi, respectively)]. Estimates of Pearson correla-
tions, regression coefficients, and mean squared errors were used to assess accuracy and bias of
predictions. Overall, the BayesCp model resulted in less biased predictions. Accuracies ranged from
0.18 to 0.27, which are reasonable values given the heritability estimates (from 0.40 to 0.44) and sample
size (568 animals in the training population). Furthermore, results from Bos taurus indicus panels were
as informative as those from Illumina BovineHD, indicating that they could be used to implement GS at
lower costs.
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Brazil has the world’s second largest cattle herd with over 200 million
heads (Instituto Brasileiro de Geografia e Estatística 2013), with the
Nelore (Bos taurus indicus) being the most widespread and economi-
cally important breed. As the total pasture area in Brazil has decreased

over the decades, productivity gains have become an important factor
for beef production (Martha et al. 2012). The Nelore breed has been
selected for growth rate traits on pasture based on traditional pedigree
and phenotype analysis; however, the Brazilian beef feedlot industry
has grown about 50% in the last decade (Millen et al. 2011), and novel
breeding objectives and criteria are required.

In this context, the application of technologies to improve animal
performance and thus to supply genetically improved animals for both
pastureandfeedlot systemsareacritical factor toovercome thechallenge
of increasing Brazilian beef production efficiency. Nowadays, explor-
ing the availability of technology to genotype thousands of single
nucleotide polymorphisms (SNPs) distributed across the genome
allows the application of GS. Phenotypic and SNP data information
are then combined to predict GEBV earlier in the life of the animals
(Meuwissen et al. 2001). It has been argued that GS could lead to a
decrease in generation interval, an improvement of the rate of genetic
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gain (Schaeffer 2006), and also assist the better control of inbreeding

rates (Daetwyler et al. 2007).
Based on the importance of the Nelore cattle in Brazil and the

increasing use of feedlot systems, it is necessary to identify appro-
priate methodologies that allow GS of animals with higher growth
rates on feedlots. The aim of the current study was to compare
different regression models and SNP panels in terms of accuracy,
bias, and precision of GEBV for ADG in feedlot-finished Nelore
steers.

MATERIALS AND METHODS

Samples
During the mating seasons of 2006/07 through 2008/09, 804 steers,
offspring of 34 Nelore bulls from 17 lineages, chosen to represent the
genealogies of the Nelore breed in Brazil, were generated through fixed-
time artificial insemination infive farms. Theywere raised to 21months
of age and then moved to either the Embrapa Southeast Livestock (São
Carlos, SP, Brazil) or the Embrapa National Beef Cattle Center (Campo
Grande, MS, Brazil) during three seasons in feedlot experiment periods
(2009, 2010, and 2011). Animals were fed with a total mixed ration diet
with 13% crude protein and 71% total digestible nutrients (dry matter
basis, corn or sorghum, soybean meal, soybean hull, cotton seed,
limestone, mineral mixture, urea, and monensin). The diet was pro-
vided twice a day in which the feed offered (total mixture composed by
concentrate:silage, 40:60 ratio) was adjusted daily ad libitum. The an-
imals were weighed every 14 d without fasting, for an average period of
91 d. Steer rearing and sample collection protocols were approved by
the Animal Care and Use Committee from the Embrapa Southeast
Livestock.

Phenotype and genotype datasets
The initial dataset consisted of 7236 weight records from the 804 steers,
but only those from the 15th up to 77th d in feedlot were considered to
estimate ADG, to disregard the first weight, and also because after this
period .30% of the animals had already been slaughtered. A linear
regression analysis of live weight over time was performed using the
remained 3523 records from 803 steers, using the lm function of the R
software (R Development Core Team 2014). The slope was used as the
ADG during the feedlot period for the purpose of considering only the
linear weight gain and avoiding comparison with different feedlot pe-
riod lengths.

Steers were assigned to 39 contemporary groups (CG) containing
from 5 to 42 animals, which combined information on mating season
(three levels), experimental feedlot (two levels), and slaughter group
(32 levels of animals slaughtered in the same week). After that, the
phenotype and genotype datasets were merged to ensure that they had
the same individuals. The summary of age at feedlot entry, starting
weight,ADG,anddays infeedlotonthe remaininganimalsarepresented
in Table 1.

In total, 780 steers and 34 bulls were genotyped with the Illumina
BovineHD BeadChip (Illumina, San Diego, CA). The initial dataset
contained 742,906 markers, in which unplaced, mitochondrial, and
sex-linked SNPs were first discarded, as well as duplicated markers
(e.g., two different names and positions for the same SNP). SNPs
were also filtered based on two other panels: GeneSeek Genomic
Profiler (GGP) HDi 80K and GGP LDi 20K (Gene Seek Inc., Lin-
coln, NE). The panels were built specifically for B. taurus indicus
breeds. Originally, the GGP HDi 80k/LDi 20k contained 74,085/
19,721 markers, of which 69,942/18,464 were available in the pri-
mary dataset.

Paternity correction and quality control (QC) were performed to
improveresults.TodealwithSNPspresentingsignificantdeviation from
the Hardy–Weinberg Proportions (HWP) deviation, we checked plots
of HWP vs. percentage of heterozygous, and 17 SNPs with .80% of
heterozygous were excluded from the three datasets because they could
reflect an error during the genotyping procedure (Ziegler 2009). QC
was performed using the R package SNPtats (Clayton 2015). SNPs
were kept for further analysis only if they had call rate .98%
and minor allele frequency (MAF) .1%. The MAF filter excluded
20.0, 1.9, and 7.3% of the total SNPs from the 770k, HDi, and LDi
panels, respectively.

After QC, the Beagle v.3.3.2 (Browning and Browning 2009) soft-
ware was used for phase inference and imputation of missing genotypes
for each SNP panel. Finally, to constitute a fourth SNP panel scenario,
Tagger (Bakker et al. 2005), which is based on linkage disequilibrium
(LD) betweenmarkers (r2), was used. This tool estimates the r2 between
all SNP pairs and then selects a minimal set (TagSNPs) of markers with
a r2 $ 0.3 with at least one another marker on the same chromosome.
We have chosen this threshold because it is the overall average r2 at the
distance of 10–25 kb, obtained in a previous analysis of the same
animals (Mudadu et al. 2016). The final number of SNP was 15,863,
63,945, 82,933, and 534,787 for the LDi, HDi, TagSNP, and 770k pan-
els, respectively.

Fixed effects modeling and adjusted phenotypes
The adjusted phenotype (ŷ) was represented as ŷ ¼ y2 1m̂2Wâ;
in which y is the vector of observations, m̂ is the overall mean,W is an
incidence matrix for fixed effects (CG and animal age at feedlot entry),
and â is the vector of fixed effects estimates. A residual analysis was
performed at this point and animals with the normalized residuals with
absolute values .3.5 were removed, thus 718 steers remained in the
dataset.

Models for genomic-enabled prediction
Three specifications were considered for building genome-enabled
prediction models: BayesA, BayesCp, and BGBLUP. The R package
BGLR (de los Campos and Rodriguez 2016) was used to fit the models,
a flat (noninformative) prior was assigned to the intercept. For the
BayesA method, a normal distribution was assigned to the marker
effects, bj � Nð0;s2

bjÞ; where j ¼ ð1; . . . ; pÞ; p is the number of
SNPs, and s2

bj is the individual variance for the SNP effect. In a second
level of hierarchy, each s2

bj was assigned independent and identically
distributed (iid) Scaled-inverse x2 density, with degrees of freedom
(dfb) set to 5 and scale parameter (Sb) treated as unknown, following
a g distribution with shape (s) and rate (r) parameters. The parameter s
was set to s = 1.1 and r was solved so that 80% of proportion of the
variance of the response was attributed the linear predictor. On this
model, the prior marginal distribution of marker effects is a scaled-t
density, with parameters dfb and Sb (Rosa et al. 2003).

For the BayesCp model, the prior for each marker effect was an iid
mixture of point of mass (1 2 p) at zero (spike) and a slab that

n Table 1 Summary of age and weight at feedlot entry, ADG, and
days in feedlot for the 718 Nelore steers

Age (d) Weight (kg) ADG (kg/d) Days in Feedlot

Minimum 542 226 0.193 48
Mean (6 SD) 649 (45) 361 (51) 1.235 (0.407) 92 (20)
Maximum 745 510 2.457 119

ADG, average daily weight gain.
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follows a Gaussian distribution, bj � Nð0;s2
bÞp; where s2

b is the
common variance for the SNP effects. The additional parameter p
represents the prior proportion of nonzero effects and was treated
as an unknown, with a b prior distribution p � bðp0;p0Þ;
with p0 . 0  and  p0 2½0; 1�: The parameters were set to p0 ¼ 2 and
p0 ¼ 0:5; which gave a uniform prior in the interval ½0; 1�: Thus,
differently from BayesA, BayesCp sets some SNP effects to zero, within
a variable selection framework.

The BGBLUP model was implemented as a Bayesian Reproducing
Kernel Hilbert Spaces regression (de los Campos et al. 2009), using
a single kernel, user-defined (co)variance matrix K: The vectors of
additive random effects were assigned multivariate normal priors,
u � Nð0;Ks2

uÞ; in which s2
u � x22ðS; dfÞ and K was set as a

marker-derived relationship matrix G; built as the first method pro-
posed by VanRaden (2008). Briefly, letMnxm be a genotypematrix with
n (number of samples) rows andm (number of SNPs) columns,Znxm be
the centered M matrix, and G ¼ ZZ9=½2P pjð12 pjÞ�; where the
denominator is the total variance across loci. The degrees of freedom
(df) was set to 5 and the scale parameter ðSÞ was solved so that 80% of
proportion of the variance of the response was attributed the linear
predictor.

The number of iterations, burn-in, and thinning interval param-
eters were graphically evaluated and were different for each model
(Table 2), and the length of the chain used to compute posterior
statistics was 25,000, 20,000, and 10,000 for BayesA, BayesCp; and
BGBLUP, respectively. For BayesA and BayesCp; the marker-based
genetic variance ðs2

gÞ was computed as the sum of the variance
explained by each SNP marker ðs2

bjÞ; while for BGBLUP the genetic
variance was equal to s2

u: For the three models, the narrow sense
heritability was estimated as: h2 ¼ s2

g=ðs2
g þ s2

e Þ; where s2
e is the

residual variance.

Validation
Thedatasetwasdivided into training (animals fromseasons1and2)and
testing (animals from season 3) subgroups, which contained 568 and
150 animals, respectively. For the BayesA and BayesCp models, the
GEBV on the testing set was defined as GEBViðtstÞ ¼

Pp
j¼1gijb̂trn;

where gij is the genotype of the jth SNP on the ith animal and b̂trn

is the vector of the SNPmarker effect estimated on the training set. For
BGBLUP, phenotypes of the testing subgroup were set as missing and
samples of u were obtained in each iteration from the posterior distri-
bution ½u;s2

u;s
2
e

�
�ŷ�:

The correlation between GEBV and the adjusted phenotype of
animals on testing subgroup, rðGEBViðtstÞ; ŷiðtstÞÞ; was used as an
estimation of prediction accuracy. The slopes of regressing ad-
justed phenotypes on GEBV for animals in the testing subgroup
ðb̂ytst ;GEBVtst ;Þ were evaluated as a measure of bias, which can be
used to verify whether genomic predictions are inflated or de-
flated. The last comparison criterion was the mean square error,

MSE ¼ Pntst
1 ðGEBVi2 ŷiÞ2=ðntstÞ;where ntst is the size of testing

dataset, that was used as a measure of precision and bias of the
point estimator.

Data availability
The phenotypic and genotypic data are available at the figshare re-
pository and their description and accession numbers are listed in
Supplemental Material, File S1. File S2 contains a custom R script used
in the analysis.

RESULTS AND DISCUSSION

Accuracy of GEBV
Pearson correlation coefficients between adjusted phenotypes and
GEBVwere used as a proxy of genome-enabled prediction accuracies
(Table 3). All estimates were quite similar, ranging from 0.24 to 0.27.
Bolormaa et al. (2013) reported even lower accuracies (from 0.13
to 0.24) of GEBV for ADG in feedlot using GBLUP estimates in
B. taurus taurus and B. taurus indicus animals. When analyzing
ADG of almost 4000 Nelore young bulls in pasture using traditional
BLUP, Fragomeni et al. (2013) reported an EBV accuracy of 0.56,
which suggests that we could achieve higher accuracies than we
found in the present study.

It is known that the success of GS depends on the accuracy of GEBV,
which in turn is a functionofheritability, size of trainingpopulation, and
effective population size (Ne) (Goddard and Hayes 2009). Based on the
simulation presented by van der Werf (2013), who considered a pop-
ulation with Ne = 250 (estimated Ne of Nelore cattle = 214 (Mudadu
et al. 2016)) and a trait with h2 = 0.5, a training population of 500 an-
imals would reach an accuracy of 0.2, similar to our results. Moreover,
the authors showed that a training population of .2000 individuals
would be required to achieve an accuracy of 0.4. Another key factor is
the level of relationship among animals in the training and testing sets.
The present study evaluated half-sib families and, according to Hayes
et al. (2009), this structure only allows estimation of the effects of
paternal alleles with high accuracy, decreasing the reliability of the
GEBVs.

Taking into account the above-mentioned factors, we point out that
the crucial points would be to increase the number of reference animals
and to include animalswith different levels of relationship, thus the SNP
marker effects could be better estimated. Since ADG in feedlot-finished
steers could be viewed as a new selection criterion for Nelore cattle, it is
important to estimate theGEBVswith high accuracy in order to allow the
selection of young animals and genetic gains at reduced genotyping costs.

Bias and precision measures of GEBVs
Regression coefficients of adjusted phenotypes on GEBV (Table 4)
were used to measure the extent of prediction bias, since values

n Table 3 Pearson correlation coefficients used as proxy estimates
of prediction accuracies of GEBV for ADG of the 150 animals in the
testing subgroup

Model
SNP Panela

770k TagSNP HDi LDi

BGBLUP 0.26 0.24 0.25 0.26
BayesA 0.26 0.25 0.26 0.27
BayesCp 0.26 0.25 0.25 0.26

SNP, single nucleotide polymorphism; HDi, high-density indicus; LDi, low-
density indicus; BGBLUP, Bayesian genomic best linear unbiased prediction.
a
Actual number of SNPs included in the analysis: 770k, 534,787; TagSNP,
82,933; HDi, 63,945; and LDi, 15,863.

n Table 2 Parameters of Gibbs sampler for each model

MCMC Samples
Model

BayesA BayesCp BGBLUP

Total 400,000 600,000 160,000
Burn-in 150,000 200,000 60,000
Thinning 10 20 10
Posteriora 25,000 20,000 10,000

MCMC, Markov chain Monte Carlo; BGBLUP, Bayesian genomic best linear
unbiased prediction.
a
Final number of samples used to calculate features of posterior distributions.
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greater or lower than one are related to deflated or inflated GEBV,
respectively. For the 770k panel, only the results from BayesCpmod-
els were not considered to be biased. Also, it is clear that estimates
from BayesAmodels (except for TagSNP) were deflated, whichmeans
that the GEBVs were not in the same scale as the adjusted phenotypes.
The opposite was observed for all models applied to the TagSNP
dataset, thus it seems that selecting markers based only on their
pairwise r2 resulted in overestimated predictors.

Differences among prediction accuracies were negligible, thus in-
formation on slopes and mean squared errors (MSE) (Table 4) were
combined and the models resulting in less biased GEBV were 770k-
BayesCp; HDi-BayesCp, and LDi-BayesCp: The current average cost
of genotyping can easily reach $150.00, $100.00, and $50.00 per animal
for 770k, HDi, and LDi, respectively. Therefore, if it was possible to
predict accurate GEBV using less dense panels of SNPs at lower cost,
the implementation and application of GS would be better accepted by
the beef cattle industry.

Estimates of variance components
The divergences in the variance components (Table 5) were expected,
since the markers included in eachmodel capture different proportions

of the genetic variance. For example, the marker-based genetic variance
estimated using BGBLUP was the lowest (about 0.02) in this study. For
BayesA and BayesCp, the genetic variance is a function of SNP effects
and their uncertainty variances and allelic frequencies (Gianola et al.
2009). Results from BayesA models were not consistent among SNP
panels and we hypothesized that, by fitting a larger number of markers,
the captured marker-based genetic variance is greater (Table 5).

BayesCp models resulted in less biased GEBVs, and its coeffi-
cients of heritability ranged from 0.41 to 0.44 (Table 5). This was
similar to the coefficient reported by Olivieri et al. (2016) for ADG
in Nelore cattle in a postweaning feedlot performance test
ðh2 ¼ 0:43Þ: Although heritability is a population parameter, it is
known that magnitudes of heritability estimates of similar traits are
often similar across populations.

Conclusions
For the purpose of comparing GEBV estimates using different SNP
panels and Bayesian models, we considered some of the most common
criteria used to evaluate the quality of the genome-enabled predictions.
Overall, all SNP panels and models provided similar accuracies; how-
ever, B. taurus indicus SNP chips (HDi and LDi) andmethods that zero
a proportion of the SNP effects, such as BayesCp; seem to result in less
biased predictions. Furthermore, results from less dense marker panels
based on B. taurus indicus were as good as the high-density panel, and
at lower genotyping costs.
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n Table 5 Estimates of residual (s2
e ) and genetic (s2

g ) variance components, heritability (h2), and proportion of nonzero effects (p) for all
models

SNP Panela Parameter BGBLUPb BayesAb,c BayesCpb,c

770k s2
e 0.05 (0.04–0.06) 0.06 (0.05–0.07) 0.05 (0.04–0.06)

s2
g 0.02 (0.01–0.04) 0.06 0.03

h2 0.31 (0.19–0.45) 0.53 (0.49–0.58) 0.41 (0.36–0.47)
p ― ― 0.98 (0.96–1.00)

TagSNP s2
e 0.05 (0.04–0.06) 0.06 (0.05–0.07) 0.05 (0.04–0.06)

s2
g 0.02 (0.01–0.04) 0.04 0.03

h2 0.32 (0.19–0.46) 0.40 (0.36–0.45) 0.42 (0.37–0.48)
p ― ― 0.98 (0.96–1.00)

HDi s2
e 0.05 (0.04–0.06) 0.06 (0.05–0.07) 0.05 (0.04–0.06)

s2
g 0.02 (0.01–0.04) 0.03 0.03

h2 0.32 (0.19–0.46) 0.31 (0.28–0.35) 0.42 (0.37–0.48)
p ― ― 0.98 (0.96–1.00)

LDi s2
e 0.05 (0.04–0.06) 0.06 (0.05–0.07) 0.05 (0.03–0.06)

s2
g 0.02 (0.01–0.04) 0.02 0.04

h2 0.32 (0.19–0.45) 0.28 (0.25–0.32) 0.44 (0.36–0.47)
p ― ― 0.98 (0.96–1.00)

SNP, single nucleotide polymorphism; HDi, high-density indicus; LDi, low-density indicus; BGBLUP, Bayesian genomic best linear unbiased prediction; HPD, highest
posterior density intervals.
a
Actual number of SNPs included in the analysis: 770k, 534,787; TagSNP, 82,933; HDi, 63,945; and LDi, 15,863.

b
Numbers in brackets refers to the HPD at 95% (lower bound–upper bound).

c
HPD for s2

g for models BayesA and BayesCp could not be estimated.

n Table 4 Regression coefficients (b) of GEBV on adjusted
phenotype and MSE of predictions for the 150 animals in testing
subgroup

Model

SNP Panela

770k TagSNP HDi LDi

b MSE b MSE b MSE b MSE

BGBLUP 1.15 1.58 0.46 1.59 1.10 1.58 1.11 1.59
BayesA 1.29 1.09 0.69 1.24 1.68 1.32 1.99 1.37
BayesCp 0.98 1.12 0.45 1.12 0.94 0.94 0.93 0.94

SNP, single nucleotide polymorphism; HDi, high-density indicus; LDi, low-
density indicus; b, regression coefficient; MSE, mean squared errors; BGBLUP,
Bayesian genomic best linear unbiased prediction.
a
Actual number of SNPs included in the analysis: 770k, 534,787; TagSNP,
82,933; HDi, 63,945; and LDi, 15,863.
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