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Particle Swarm Optimization (PSO), a population based technique for stochastic search
in a multidimensional space, has so far been employed successfully for solving a variety
of optimization problems including many multifaceted problems, where other popular
methods like steepest descent, gradient descent, conjugate gradient, Newton method,
etc. do not give satisfactory results. Herein, we propose a modified PSO algorithm for
unbiased global minima search by integrating with density functional theory which turns
out to be superior to the other evolutionary methods such as simulated annealing, basin
hopping and genetic algorithm. The present PSO code combines evolutionary algorithm
with a variational optimization technique through interfacing of PSO with the Gaussian
software, where the latter is used for single point energy calculation in each iteration
step of PSO. Pure carbon and carbon containing systems have been of great interest
for several decades due to their important role in the evolution of life as well as wide
applications in various research fields. Our study shows how arbitrary and randomly
generated small Cn clusters (n = 3–6, 10) can be transformed into the corresponding
global minimum structure. The detailed results signify that the proposed technique is
quite promising in finding the best global solution for small population size clusters.

Keywords: global minimum energy structures, density functional theory, carbon clusters, particle swarm

optimization, multi-threaded code, Metaheuristic Algorithm, Gaussian

INTRODUCTION

Over the past decades, studies on nature-inspired swarm intelligence based meta-heuristic
algorithms have become a topic of paramount interest in the allied research fields. To date, various
optimization problems have been addressed using these algorithms and these have turned out to be
an important tool in analyzing physical systems, in solving the complex problems and in searching
for the best solution from a set of all possible feasible solutions. Particularly, global optimization
(GO) has become very challenging in the development of computational fields. Search for the
globally optimal solution is more crucial than that for a local optima as the former corresponds
to the correct and desirable solution. Fundamentally, GO methods can be divided into two broad
classes, namely (i) deterministic algorithms and (ii) stochastic algorithms. Although deterministic
methods are capable of providing a guaranteed global optimum solution, the necessary properties
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of objective function and some constraints are required as well.
On the other hand, stochastic methods can provide successful
results in finding the global best solution without consideration
of any assumption of differentiability and continuity of objective
function. Until now, several stochastic methods such as genetic
algorithms (GA) (Holland, 1992; Grüninger and Wallace, 1996;
Ursem, 2000; Deb et al., 2002; Poli and Langdon, 2002; Dilettoso
and Salerno, 2006; Krug et al., 2010), simulated annealing (SA)
(Woodley et al., 1999; Abraham and Probert, 2006; Glass et al.,
2006; Oganov and Glass, 2006; Trimarchi and Zunger, 2007),
differential evolution (DE) (Storn, 1996; Storn and Price, 1997;
Price et al., 2006; Rocca et al., 2011), harmony search (HS) (Geem,
2000, 2001, 2006; Geem et al., 2001, 2005; Diao and Shen, 2012;
Gholizadeh and Barzegar, 2013; Hadwan et al., 2013; Manjarres
et al., 2013; Nekooei et al., 2013; Wang and Li, 2013; Hoang et al.,
2014; Fattahi et al., 2015; Weyland, 2015; Assad and Deep, 2016),
ant colony optimization (ACO) (Colorni et al., 1992; Dorigo,
1992; Dorigo and Di Caro, 1999; Zlochin et al., 2004; Dorigo
and Birattari, 2010; Korošec et al., 2012), cuckoo search (CS)
(Payne and Sorensen, 2005; Yang and Deb, 2009; Inderscience,
2010), bat algorithm (BA) (Altringham et al., 1996; Richardson,
2008; Yang, 2010a,b), artificial bee colony optimization (ABC)
(Karaboga and Basturk, 2007, 2008; Omkar et al., 2011; Fister and
Žumer, 2012; Li G. et al., 2012), honey bee mating optimization
(HBMO); (Pham et al., 2005; Haddad et al., 2006; Afshar et al.,
2007; Jahanshahi and Haddad, 2008; Marinakis and Marinaki,
2009; Pham and Castellani, 2009, 2014, 2015; Bitam et al.,
2010; Gavrilas et al., 2010; Marinaki et al., 2010; Chakaravarthy
and Kalyani, 2015; Nasrinpour et al., 2017; Rajasekhar et al.,
2017), and multi-colony bacteria foraging optimization (MC-
BFA) (Chen et al., 2010) have been developed and used in various
research fields including global optimization purpose. Moreover,
some advanced and more promising methods are continuously
being proposed including random sampling method (Pickard
and Needs, 2006, 2007, 2008), minima hopping (Kirkpatrick
et al., 1983; Pannetier et al., 1990), basin hopping (Nayeem
et al., 1991; Wales and Doye, 1997), meta-dynamics (Martonák
et al., 2003, 2005; Guangneng et al., 2005), data mining (Mujica
and Needs, 1997) and Particle Swarm Optimization (PSO)
(Kennedy and Eberhart, 1995, 1999; Kennedy, 1997; Shi and
Eberhart, 1998; Eberhart and Shi, 2001; Li, 2007; Özcan and
Yilmaz, 2007; Poli, 2007, 2008; Barrera and Coello, 2009; Li M.
et al., 2012; Qu et al., 2012; Bonyadi and Michalewicz, 2017),
modified PSO (Zheng et al., 2007), adaptive particle swarm
optimization (APSO) (Zhan et al., 2009), multi-dimensional PSO
for dynamic environments (Zhi-Jie et al., 2009; Kiranyaz et al.,
2011; Bhushan and Pillai, 2013), which indeed show different
numerical performances.

Out of these numerous techniques, PSO is a very renowned
iterative process which works intelligently by utilizing
the concept of exploring and exploiting together in the
multidimensional search space for finding optimal or near-
optimal solutions. The learning strategies of this technique for
the searching of structural information are very much suitable
and reliable in an active area of GO research. This evolutionary
computational method was first invented by Kennedy and
Eberhart (1995) and Kennedy (1997) in the mid 1990s on
graceful collaborative motion of biological populations rooted on

the concept of “information sharing and collective intelligence.”
This adaptive metahurestic technique emphasizes on overcoming
the energy barriers, particularly by the upgradation of positions
and velocities following the individual or personal best which
again follows the global best one. After several developments
(Reeves, 1983; Reynolds, 1987; Heppner and Grenander, 1990;
Millonas, 1993; Clerc, 1999; Eberhart and Shi, 2000; Banks et al.,
2007; Bui et al., 2007; Khan and Sadeequllah, 2010), adaptation
(Wang et al., 2011), modifications (like niching with PSO Brits
et al., 2002; Engelbrecht and Van Loggerenberg, 2007; Sun et al.,
2007; Nickabadi et al., 2008; Wang J. et al., 2009; Wang Y. et al.,
2009) single solution PSO (Liu and Wang, 2006; AlRashidi and
El-Hawary, 2007; Li and Li, 2007; Liu B. et al., 2007; Liu D.
et al., 2007; Petalas et al., 2007; Schutze et al., 2007; Zhang et al.,
2007; Zhang and Wang, 2008; Benameur et al., 2009) and multi-
objective optimization (Cai et al., 2004, 2009; Call et al., 2007;
Chandrasekaran et al., 2007; Abido, 2009; Alatas and Akin, 2009;
Dehuri and Cho, 2009; De Carvalho et al., 2010; Goh et al., 2010;
Briza and Naval, 2011; Chen et al., 2011), constraint optimization
with PSO (Cao et al., 2004; AlRashidi and El-Hawary, 2006;
Sun and Gao, 2008; Ma et al., 2009; Sivasubramani and Swarup,
2009), discrete PSO (Yin, 2004; Yeh, 2009; Yeh et al., 2009; Unler
and Murat, 2010), dynamic environment of PSO (Shao et al.,
2004, 2008; Zhang et al., 2006; Chen et al., 2007; Liu X. et al.,
2007; Yang et al., 2007; Du and Li, 2008; Wang and Xing, 2008;
Zhao et al., 2008; Cheng et al., 2009; Wang Y. et al., 2009; Bae
et al., 2010) and parameterization (Eberhart and Shi, 2001; Shi,
2001; Trelea, 2003; Li-Ping et al., 2005; Talbi, 2009; Pedersen,
2010; Bansal et al., 2011) on the original PSO, more recently
global optimization of small boron clusters (B5 and B6) using
a more advanced PSO approach has been reported with great
success (Mitikiri et al., 2018).

On the other hand, the investigation on pure carbonmolecules
existing in various structural forms (chains/cyclic rings) has
been a matter of great interest in the research area of organic,
inorganic and physical chemistry (Weltner and Van Zee, 1989)
as the study and production of carbon-riched molecules in the
laboratory are notoriously difficult due to their high reactivity
and transient like behavior. They are also very important in
astrophysics, particularly in connection with the chemistry of
carbon stars (Bernath et al., 1989), comets (Douglas, 1951), and
interstellar molecular clouds (Bettens and Herbst, 1997). Long
carbon chains are also believed to act as carriers of diffuse
interstellar bands (Fulara et al., 1993). Moreover, carbon clusters
are also important constituents in hydrocarbon flames and
other soot-forming systems (Kroto and McKay, 1988) and they
play an important role in gas-phase carbon chemistry where
they serve as intermediates for the production of fullerenes,
carbon tubes, thin diamond and silicon carbide films (Koinuma
et al., 1996; Van Orden and Saykally, 1998). Therefore, the
study about the structures and stabilities of carbon clusters is
very important to thoroughly understand the complex chemical
environment of such systems and also to shed light into the
remarkable bonding capability of carbon which is able to form
single, double and triple bonds. They together make the study
on the structural information of carbon clusters in the field
of theoretical research a subject of immense interest and it
started before the development of fullerene chemistry (Pitzer and
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Clementi, 1959; Weltner and Van Zee, 1989; Martin et al., 1993;
Hutter et al., 1994).

Due to the reduction in angle strain, carbon clusters larger
than C10 are likely to exist as monocyclic rings, while smaller ones
possess low-energy linear structures. Moreover, it was reported
that for small clusters with even number of carbon atoms such as
C4, C6, and C8, the cyclic form is either the lowest energy isomer
or almost isoenergetic to their linear counterparts (Raghavachari
and Binkley, 1987; Watts et al., 1992; Hutter and Lüthi, 1994;
Pless et al., 1994; Martin and Taylor, 1996). In this study, we have
checked the efficiency of our newly developed multi-threaded
PSO code, written in python, and augmented by Gaussian 09
program package (Frisch et al., 2013) to locate global minimum
energy structures for Cn clusters (n= 3–6). Particularly, we want
to test our code for the system where two minima are located at
two deep well points on the PES as in the case of C6 cluster. We
kept the cluster size small in order to compare the performance
of our code to other popular evolutionary simulation techniques
such as SA, GA, and BH.

CURRENTLY PROPOSED AND
IMPLEMENTED PSO TECHNIQUE

Initially, random structures are generated within certain range
(−3, 3) in a multidimensional search space followed by
upgradation of velocity and position vectors through swarm
intelligence. After completion of every iteration, energy of each
particle is calculated and a convergence criterion is verified with
the help of the Gaussian 09 package interfaced with the present
PSO algorithm. Individual best and global best positions are
updated. If the energy values of successive 30 iterations remain
same, the program automatically terminates. Finally a new set of
initial structures are generated from the related output structures
and the process is continued till the self-consistency is achieved.

In order to check the efficiency of our proposed PSO method
over some most familiar GO methods like advanced BH, SA, and
GA methods, the results for C5 cluster have been analyzed, as a
reference system.

A COMPARATIVE ACCOUNT OF THE
CURRENT PSO METHOD WITH OTHER
EXISTING APPROACHES

We have made the computer experiment to compare our
proposed PSO with the other popular evolutionary simulation
techniques such as SA, GA and advanced BH.

Comparison of Performances of PSO and
GA
(a) The most important distinction between our proposed

DFT-PSO with GA is the sharing of information. In GA,
chromosomes share information with each other, whereas in
PSO the best particle informs the others and the information
of variables is stored in small memory. Again, PSO search for
the global best solution is unidirectional, while GA follows
the parallel searching process.

(b) In contrast to GA, PSO does not use any genetic kind
of operator, i.e., crossover and mutation, and the internal
velocity leads the particle to the next better place.

(c) PSO implementation is more simple and easier than GA as it
deals with few parameters (like position and velocity only).

(d) GA provides satisfactory results in case of combinatorial
problems, PSO being less suitable there.

(e) PSO takes much less time to execute and the convergence
rate is also faster than that of GA.

A previous study by Hassan et al. (2005) has been further
recommended for more clarity and reliability of the efficiency of
PSO over GA.

Comparison of Performances of PSO and
SA
In SA technique, a small perturbation is given to cluster
entity at each successive step, and energy estimation is carried
out consecutively. Acceptance of perturbation depends on the
obtained energy value. If the obtained energy is better than the
previous one, the perturbation as well as the move with low cost
is accepted. Otherwise, the process excludes it and the Boltzmann
probability distribution is applied at a given temperature. The
particle (individual cluster) in SA takes much time to generate
different lower energy structures. The temperature decreases
during the whole course of the process very slowly and at the
end of the run it attains the least value. In contrast, such kind of
perturbation or temperature variable is not present in PSO. Both
exploitation and exploration techniques drive the particle in PSO,
while only exploitation is used in SA. So, there are more chances
to trap the particles in local minima in case of SA being a single-
based technique than PSO. On the other hand, PSO, being the
population based technique, is able to swarm wherever (different
places of mountain or lower point of valleys) be the particle in the
search space.

Comparison With Basin Hopping
Wales and Doye jointly described basin hopping algorithm (Berg
and Neuhaus, 1991; Wales and Doye, 1997; Doye et al., 1998)
which has become a popular stochastic search process to find
out the desired global best solution of an object function. This
method is basically a Monte Carlo technique, which works in a
perturbative and iterative manner. At first, a random coordinate
of a particle is considered. Then, random perturbation is applied
to the configuration considering the fact that the particle remains
in a local basin which is then followed by the minimization
of energy functional to get a better solution. Energy estimation
is again carried out and the process is repeated until the best
configuration or the lowest energy structure is achieved. The
most important thing is that the applied perturbation should be
large enough to get out of a local basin.

ALGORITHM AND COMPUTATIONAL
DETAILS

At the beginning, a set of random coordinates of Cn clusters
(particles) with random positions and velocities are considered.
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The newer sets of coordinates are updated through PSO run
to find out global best position or configuration. The local
best configuration (pbest) or that having the lowest energy value
obtained locally so far is stored in a small memory variable
which is then followed by the searching of global best (gbest)
configuration (among the set of pbest) through an exploration
technique. Ultimately, the best optimal solution is achieved.

The new velocities (vt+1
i ) and positions (xt+1

i ) of particles in
ith generation obey the following equations where xti and vti are
the current position and velocity.

vt+1
i = w ∗ vti + d1 ∗ ε1 ∗ (pbest − xti)+ d2 ∗ ε2 ∗ (gbest − xti) (1)

xt+1
i = xti + vt+1

i (2)

ε1 and ε2 are chosen randomly in between (0,1). The tendency
of a particle to remain in its current position is called inertia
coefficient denoted by w. d1 and d2 (which can be modified as
per requirement) which are referred to as individual coefficient

TABLE 1 | PSO Parameters.

Parameters Value

Population (Npop) 10

Inertia Coefficient (w) 0.4–0.8

Individual coefficient of acceleration (d1) 2

Global coefficient of acceleration (d2) 2

Random Coefficients (ε1; ε2) [0,1]

of acceleration and global coefficient of acceleration, respectively.
These two coefficients guide the particles to meet convergence so
that all the candidate solutions in the problem space efficiently
achieve the global minimum (see Table 1).

After the completion of each PSO run, optimization of global
best structural units of Cn clusters (n = 3–6) are performed at
the B3LYP (Lee et al., 1988; Becke, 1993)/6-311+G∗ level in the
Gaussian 09 program.

Each randomly generated cluster unit is considered as a
particle. In Figure 1 (x0, x1, x2,. . . x3n−1), particle comprises n
atoms. Here, the coordinates of ith atom are (x3i, x3i+1, x3i+2).

PARALLEL IMPLEMENTATION

One of the major advantages of using PSO as proposed in
this paper over some of the classical optimization techniques is
its parallelizability. The same implementation of the algorithm
can be executed on machines having single core (serial
implementation) or ones with multiple cores (laboratory grade
clusters) or high performance computing (HPC) systems.
Changing a couple of header parameters in the program is
sufficient tomake it portable across a wide range of platforms.We
have tested both a serial as well as a parallel implementation of
our programs. Results on parallel implementation are reported.
It may be noted that our PSO algorithm implemented in
Python invokes the Gaussian software as a system call. Each
such parallel call, one for each particle of the PSO algorithm,
causes a new instance of Gaussian to be executed. The number
of cores on which each Gaussian instance runs is dependent
on the available number of processor cores. However, at the

FIGURE 1 | A schematic representation of a cluster in multidimensional search space.
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TABLE 2 | The randomly chosen 10 different molecular frameworks of Cn (n = 3–6, 10) with singlet and triplet spin multiplicity converge to the global minimum energy
structures (Bond lengths are given in Å unit and the relative energies, 1E w.r.t the global minimum energy structures in brackets are given in kcal/mol).

Clusters Initial structure Final structure using PSO Final optimized energy (bond lengths)

C3 cluster

D∞h, S
(E = −114.0769 a.u.)

C4 cluster

D∞h, T
E = −152.1320 a.u.

[0.0]

D∞h, S
E = −152.1036 a.u.

[17.8]

D2h, S
E = −152.1062 a.u.

[16.2]

(Continued)
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TABLE 2 | Continued

Clusters Initial structure Final structure using PSO Final optimized energy (bond lengths)

C5 cluster

D∞h, S
E = −190.2546 a.u.

[0.0]

C2v, S
E = −190.1350 a.u.

[75.1]

C6 cluster

D∞h, T
E = −228.3181 a.u.

[0.0]

D∞h, S
E = −228.2969 a.u.

[13.3]

D3h, S
E = −228.3071 a.u.

[6.9]

(Continued)
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TABLE 2 | Continued

Clusters Initial structure Final structure using PSO Final optimized energy (bond lengths)

C10 cluster

D10h, S
(E = −380.7543 a.u.)

All coordinates are provided in Supporting Information. (Experimental bond lengths and angles are provided within the parenthesis in the final optimized structure).

end of every iteration, PSO has to recompute the best and
global best positions of individual particle before updating the
velocity values from which the new positions of the particles
are determined. These are done by reading the output log files
generated by Gaussian for each particle. This implies that the
results of all the parallel invocations of Gaussian need to be
completed before the iteration-end processing can be done. We
have implemented appropriate synchronization mechanisms to
enable such parallel implementation and hence, the code base is
portable across multiple platforms.

COMPUTATIONAL SETUP

All our computations were carried out on a single server having
two Intel 2.70 GHz Xeon E5-2697 v2 processors and 256 GB of
RAM. Each processor has 12 cores. Leaving aside a few cores for
operating system and other housekeeping processes, wemade use
of 30 threads for executing our PSO algorithm. A PSO population
size of 15 particles implies that 2 threads could be used for
each instance of Gaussian. Also, 8 GB of RAM was dedicated
to each such instance. As mentioned before, the number of PSO
particles, RAM assignment and the number of threads for each
Gaussian call are set as input hyper parameters. The completely
parameterized implementation of PSO has been done in Python

invoking Gaussian for energy calculation in a multi-threaded
environment. This is one of the unique features of our work,
which has not yet been reported in the literature for stable
structure prediction of Cn, to the best of our knowledge.

RESULTS AND DISCUSSION

In our study, each Cn cluster unit (each individual unit) is
considered to be a swarm particle in amultidimensional potential
energy surface (PES) where the stationary points (maxima,
minima, and higher order saddle points) are connected. The
randomly generated individual particle is governed by a position
vector and a velocity vector. Again, each position vector
representing a candidate solution in the hyperspace starts
searching for the optima of a given function of several variables
by updating generations in iterative process without much of
any assumption leading to a minimum energy structure. After
iteration the particle driven by a velocity vector changes its
search direction. The position and velocity vectors together
store the information regarding its own best position or the
local best position (called pbest) seen so far and a global best
position (called gbest) which is obtained by communicating with
its nearest neighbors. Further, the advancement of particles
toward the global best position is attained via particle swarm
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optimizer ideology and they gravitate toward the global best
solution with the help of the best variable memory values. Our
proposed PSO implementation explores rapidly without being
entrapped in local optima and executes extensively, followed
by immediate convergence to the desired objective value, the
global optima.

The results of global optimization of Cn clusters (n= 3–6, 10)
considering a maximum of 1,000 runs starting from the random
choices of input configuration are shown in Table 2. The global
stable structure (best solution) can be obtained by fulfilling the
termination criteria along the convex function of the information
matrix when one of the particles reaches the target. Initially,
10 different random configurations have been chosen by setting
random initial positions and velocities of all particles followed by
the Gaussian interfaced PSO driven operation to get the global
optimum structure (see Table 2).

It is a very fascinating aspect that Gaussian optimization
technique works in such a way that the guess structure
can be stuck at local minima which may or may not be
the global minimum. But, it is obvious that our proposed
modified PSO implementation converges to the most stable
structure where all the particles exist in a given range in the
multidimensional hyperspace. However, sometimes atoms of
the randomly generated particles (each individual cluster unit)
are not in the limit of bonding perception and they might

overlap on each other. In order to understand whether the
atoms remain in the same molecular framework or not, we
have connected the randomly deployed particles with solid lines
in the following figures and they do not necessarily imply
true bonds (see Table 2). In case of C3 cluster, the structure
obtained after the end of the PSO run (linear, D∞h point group)
exactly matches with the structure obtained after the final G09
optimization in terms of bond length and energy. C5 cluster
also shows linear geometry with D∞h point group and singlet
electronic state after final optimization step. A significantly
higher energy cyclic isomer is also found in this case. On
the other hand, C4 and C6 clusters (containing even number
of C atoms) give both linear (D∞h) and ring structures (D2h
for C4 and D3h for C6). Corresponding energies and bond
lengths are provided in Table 2. The computed geometrical
parameters and minimum energy structures match excellently
with the previously reported experimental results (Raghavachari
and Binkley, 1987; Watts et al., 1992; Hutter and Lüthi, 1994;
Pless et al., 1994; Martin and Taylor, 1996; Van Orden and
Saykally, 1998). For both C4 and C6 clusters, the lowest energy
isomer has linear form in triplet state, whereas the linear singlet
state is 17.8 (C4) and 13.3 (C6) kcal/mol higher in energy
than the corresponding triplet forms. In addition to the small
cluster systems, we have also checked the efficiency and the
robustness of our implemented PSO code to find the global

TABLE 3 | Comparison of PSO results with other more popular evolutionary GO techniques as applied to the C5 cluster starting from the corresponding local minima
structures.

Comparison in terms of Advanced basin

hopping (BH)

Simulated annealing

(SA)

Modified PSO

Execution time to locate the global minimum (GM) 305,140 s 12,959 s 8,898 s

Energy of the global minimum
(Energy after completion of iterations)

−190.2546 a.u.
(−190.2460 a.u.)

−190.2546 a.u.
(−189.5141 a.u.)

−190.2546 a.u.
(−190.2436 a.u.)

Number of iterations needed to get a structure close to GM 1,703
(converged)

92
(not converged)

331
(converged)

FIGURE 2 | Single point energy evolution landscape of C5 cluster during each generation of convergence at the B3LYP/6-311+G* level.
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minimum for a relatively larger sized cluster, C10. The results
show that the present code can successfully locate the desired
D10h symmetric ring structure which is the most stable isomer
in this case.

In the present context, we have also carried out DFT-SA and
DFT-BH methods considering same object energy function as
in our proposed PSO method to compare the obtained results
(see Table 3). The tabulated values clearly reflect that the present
PSO method is superior to other methods based on the time to
locate the GM, energy values after completion of all runs of the
studied methods and the number of iteration steps needed to get
the final structure.

A representative plot of C5 cluster (as reference) is given
below to ensure the fulfillment of convergence criteria up to 600
iteration steps (see Figure 2).

CONCLUSION

This systematic study for the searching of the most stable
carbon based small clusters describes the effectiveness of the
application of our proposed PSO technique. Currently employed
less expensive and relatively less complicated computational
method generates a vast potential search space depending only
on the position and velocity variables. Our proposed method
opens a new vista to find out global minimum energy structures
effectively and accurately within a given multidimensional
configuration search space. PSO implementation without much
of any assumption like constraints of symmetry and externally
imposed factors like temperature, pressure, etc. performs suitably
and converges to a single configuration that presumably is
a global minimum energy structure or may exactly fit it
after Gaussian optimization. PSO can be used as a fast post-
processing technique to get a global minimum or close to
global minimum structure. In fact, in this study we have
introduced a new easy implementation and computationally less
expensive approach for the reduction of iteration steps to obtain
global best configurations of small carbon clusters with exact
energy values.
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