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ABSTRACT

Single-walled carbon nanotubes (SWNTs) have
been considered as the leading candidate for nano-
device applications ranging from gene therapy
and novel drug delivery to membrane separations.
The miniaturization of DNA-nanotube devices for
biological applications requires fully understanding
DNA-nanotube interaction mechanism. We report
here, for the first time, that DNA destabilization
and conformational transition induced by SWNTs
are sequence-dependent. Contrasting changes for
SWNTs binding to poly[dGdC]:poly[dGdC] and
poly[dAdT]:poly[dAdT] were observed. For GC
homopolymer, DNA melting temperature was
decreased 40�C by SWNTs but no change for
AT-DNA. SWNTs can induce B–A transition for GC-
DNA but AT-DNA resisted the transition. Our circular
dichroism, competitive binding assay and triplex
destabilization studies provide direct evidence that
SWNTs induce DNA B–A transition in solution and
they bind to the DNA major groove with GC
preference.

INTRODUCTION

Single-walled carbon nanotubes (SWNTs) have been con-
sidered as the leading candidate for nanodevice applications
because of their one-dimensional electronic band structure,
molecular size, biocompatibility, controllable property of
conducting electrical current and reversible response to bio-
chemical reagents (1–6). These potential applications range
from gene therapy and drug delivery to membrane separa-
tions (4–16). Among the molecules that can non-covalently
bind to the surface of SWNTs, DNA has been the research
focus (7–16), which adsorbs as a single-strand or double-
strand complexes. By screening a library of oligonucleotides,
previous reports have shown that a particular sequence of

single stranded DNA self-assembles into a helical structure
around individual carbon nanotubes. Since carbon nanotube–
DNA hybrids have different electrostatic properties that
depend on the diameter of the nanotubes and electronic prop-
erties, they can be separated and sorted using anion exchange
chromatography (11,12). Carbon nanotubes are able to con-
dense double stranded plasmid DNA to varying degree and
exhibit upregulation of marker gene expression over naked
DNA using a mammalian (human) cell line, a nanotube-
based gene-delivery vector has been reported (16). In a recent
report, a piece of double-stranded DNA wrapped on the sur-
face of a single-walled carbon nanotube can serve as sensors
in living cells (17) and the heart of the new optical detection
system is based on the transition of DNA secondary structure
from the native, right-handed ‘B’ form to the alternate, left-
handed ‘Z’ form which was modulated by metal ions.
Therefore, it is important and fundamental to understand
the interaction mechanism of SWNT with double-stranded
DNA for nanodevice application.

In this report, SWNTs DNA binding mode, binding
preference and the impact on DNA stability and conformation
were studied. Contrasting changes for SWNTs binding to
poly[dGdC]:poly[dGdC] and poly[dAdT]:poly[dAdT] were
observed. We report here, for the first time, that DNA
condensation, destabilization and conformational transition
induced by SWNTs are sequence-dependent. Our circular
dichroism (CD), competitive binding assay and triplex
destabilization studies provide direct evidence that SWNTs
induce DNA B–A transition in solution and they bind to
the DNA major groove with GC preference. The sequence-
dependent condensation and B–A transition by SWNTs
shed light on the design of miniature of optical devices and
label-free detection of specific genes.

MATERIALS AND METHODS

SWNTs (f ¼ 1.1nm, purity >90%) were purchased from
Aldrich and purified as described previously by sonicating
SWNTs in a 3:1 v/v solution of concentrated sulfuric acid
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(98%) and concentrated nitric acid (70%) for 24h at 35–40�C
and washed with water, leaving an open hole in the tube side
and functionalized the open end of SWNTs with carboxyl
group to increase their solubility in aqueous solution (2).
The stock solution of SWNTs (0.15 mg mL�1) was obtained
by sonicating the SWNTs for 8 h in pH 7.0 aqueous solution.
Calf thymus DNA (ct-DNA) was obtained from Sigma and
purified as described earlier (18). Poly[dGdC]:poly[dGdC]
(GC-DNA), poly[dAdT]:poly[dAdT] (AT-DNA), polydA,
and polydT were purchased from Pharmacia. The concentra-
tion of ct-DNA, GC-DNA and AT-DNA were determined by
ultraviolet absorbance measurements using the extinction
coefficient: e260 ¼ 12 824 M�1 cm�1, e262 ¼ 16 800 M�1

cm�1, e254 ¼ 13200 M�1 cm�1, respectively (18). Triplex
DNA (polydA:[polydT]2) was prepared as described previ-
ously (19–21). Ethidium bromide (EB), hoechst 33258 and
daunomycin (DM) were purchased from Sigma, methylene
green was purchased from Aldrich and were used without fur-
ther purification. Their concentrations were determined by
absorbance measurements using the extinction coefficient:
e480 ¼ 5600 M�1 cm�1, e338 ¼ 42 000 M�1 cm�1,
e480 ¼ 11 500 M�1 cm�1 for EB, Hoechst 33 258 and DM,
respectively (22). All the experiments were carried out in
Tris buffer (10 mM Tris, pH ¼ 7.1) unless stated otherwise.
In sodium iodide fluorescence quenching experiments, the
ionic strength was kept constant.

An AFM (Nanoscope IIIa, Digital Instruments, Santa Bar-
bara, CA) was used to image all DNAs in the presence or
absence of SWNTs. The sample solution was deposited
onto a piece of freshly cleaved mica and rinsed with water
and dried before measurements (23). Tapping mode was
used to acquire the images under ambient condition. CD
spectra were measured at 20�C on a JASCO J-810 spectro-
polarimeter with a computer-controlled water bath (24).
The optical chamber of CD spectrometer was deoxygenated
with dry purified nitrogen (99.99%) for 45 min before use
and kept the nitrogen atmosphere during experiments.
Three scans were accumulated and automatically averaged.
Absorbance measurements and melting experiments were
made on a Cary 300 UV/Vis spectrophotometer, equipped
with a Peltier temperature control accessory (25). All UV/
Vis spectra were measured in 1.0 cm path length quartz
cuvettes with the same concentration of SWNTs aqueous
solution as the reference. Absorbance changes at 260 nm
versus temperature were collected at a heating rate of
0.5�C min�1 for DNA melting experiments. Primary data
were transferred to the graphics program Origin for plotting
and analysis. Fluorescence experiments were carried out on
a JASCO FP-6500 spectrofluorometer at 20�C (24).

RESULTS AND DISCUSSION

SWNT inducing sequence-dependent
DNA condensation

AFM studies showed that DNA condensed when they bound
to carboxyl-modified SWNTs (2) and the condensation was
dependent on DNA composition. In the absence of SWNTs,
linear GC-DNA, AT-DNA and natural DNA, purified calf
thymus DNA (ct-DNA) were observed (Figure 1A–C).
When they bound with carboxyl-modified SWNTs, however,

striking differences were observed among these DNA
molecules (Figure 1D–F). SWNTs condense DNA depending
on DNA GC content: GC homopolymer, GC-DNA was con-
densed (23) as a network (Figure 1D). For calf thymus
DNA (ct-DNA) and AT-DNA, they looked like forming
DNA-wrapped complexes and condensed slightly
(Figure 1E and F) showing that GC-DNA was more easily
condensed than AT-DNA and ct-DNA. Premilat et al. have
measured the major groove width of GC-DNA (�1.35 nm)
and AT-DNA (�1.75 nm) through fiber X-ray diffraction
(26,27). SWNTs (f ¼ 1.1nm) we used were modified with
carboxyl group. Carboxyl groups at the open end of
SWNTs greatly increased their water solubility and may
impact DNA binding to the modified nanotube surface.
Based on SWNTs size, hydrophobic property and their
improved solubility, SWNTs should not bind to DNA
minor grooves due to the narrower groove width. Alternat-
ively, SWNTs may bind to the major groove and would fit
better to GC-DNA major groove because AT-DNA major
groove is too wide for SWNTs binding. Hansma and Kankia
have reported that condensation of DNA by metal ions is
sequence dependent owing to the difference of GC and AT
sequence in their extent of dehydration (23,28,29). GC-rich
regions are being more heavily dehydrated than AT-rich
regions, this can be the reason why GC-DNA was easily con-
densed by SWNTs and this will be further discussed in our
CD studies. SWNTs, as gene-delivery vector (16), can take
advantage to select highly GC-content gene for delivery
and this needs to be verified in various gene expression
systems.

SWNTs selective destabilization of DNA

Figure 2 shows DNA UV melting profiles in the absence or
presence of SWNTs. Contrasting changes for SWNTs binding
to GC-DNA and AT-DNA were observed. It is obvious that
GC-DNA and ct-DNA became unstable in the presence of
SWNTs. Melting temperature Tm decreased 40�C for GC-
DNA when SWNTs at 25 mg/ml (Figure 2A). The absorption
after 80�C decreased showing the strong interaction of single-
strand DNA with SWNTs (11,12). Since the melting temper-
ature of GC-DNA in the presence of 15 mg ml�1 or higher
SWNTs concnentration was much lower than 60�C, it
seems unlikely that the destabilization was due to pH change
with temperature. On the contrary to GC-DNA and ct-DNA,
SWNTs did not influence AT-DNA stability even at high
concentration of SWNTs (Figure 2C). At 20 mM NaCl,
similar trend for SWNTs bound to DNA was observed
(data not shown). We also studied SWNTs bound to triplex
DNA at high salt conditions which will be addressed in
triplex destabilization section. These results showed that the
binding preference of SWNTs was: GC-DNA>ct-DNA>AT-
DNA, consistent with the AFM and CD results which will
be addressed next.

SWNTs making DNA B–A transition in solution

As DNA bound to carboxyl-modified SWNTs, various inter-
actions of DNA bases and backbone with SWNTs, such as
hydrophobic interactions, van der Waals, electrostatic inter-
actions, can take place (15). The strong interactions between
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SWNTs and DNA can disturb DNA hydration layer, even
DNA structure (22,29).

CD spectra showed these DNA molecules were in B-form
(Figure 3) with a positive band near 270 nm and a negative
band near 250 nm in the absence of SWNTs (18,24). Upon
addition of SWNTs (Figure 3A), the canonical B form of
GC-DNA altered with a positive band near 258 nm and a
negative band near 242 nm indicating that B–A transition
(28–33) occurred. The transition was cooperative and the
transition midpoint was at 10 mg/ml SWNTs (Figure 4). CD
spectroscopy provided the direct evidence that SWNTs could

make DNA B–A transition in solution, consistent with
previous molecular dynamics simulation results which show
B–A transition when DNA encapsulated in carbon nanotube
or on gold surface (7,9). The induced B to A transition was
due to SWNTs bound to the major groove resulting in deep-
ening and narrowing the major groove while widening the
minor groove, which was coincident with the previous simu-
lation results (33).

Calf thymus DNA (ct-DNA, 42% GC and 58%AT) was
induced to A-form by SWNTs but not as easily as GC-DNA
while AT-DNA persisted in B-form (Figure 3B and C),

Figure 1. DNA AFM images in the absence or presence of SWNTs: (A) GC-DNA alone; (B) ct-DNA alone; (C) AT-DNA alone; (D) GC-DNA + 40 mg ml�1

SWNTs; (E) ct-DNA + 40 mg ml�1 SWNTs; (F) AT-DNA + 40 mg ml�1 SWNTs. The DNA concentration used in all experiments was 19.5 mg ml�1. All the
AFM images are captured on freshly cleaved mica. The image for (A–C) is 500 nm · 500 nm and the same scale bar. The image for (D–F) is 1 mm · 1 mm and
with the same scale bar.
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showing that B–A transition was dependent on the G-C con-
tent of the DNA helix (28–33). Ivanov and Krylov (34) have
reviewed the cooperative character of B–A transition and
determined the cooperative width of B–A transition with
three different methods, and confirm that the cooperative
width of B–A transition for DNA with mixed sequence is
in the range of 10–30 bp. Since GC-DNA was more easily
condensed by SWNTs, the width of the transition for GC
homopolymer should be lower than that for the DNA with
mixed sequence (31), such as ct-DNA. Since the water activ-
ity is an apparent driving force for B–A transition and the
water activity (31) of GC-rich region (81.2) is lower than
AT-rich region (81.5), GC-DNA undergoes the B to A trans-
ition most easily, whereas AT-DNA resists the B to A trans-
ition. Previous studies show that GC homopolymer have a
stronger tendency for aggregation than AT homopolymer,
and GC homopolymer can undergo B–Z–A transition by
reducing water activity (35). Under the usual experimental
conditions for B–A transition, GC homopolymer will aggreg-
ate (36) while AT homopolymer would remain in the B-form
even at conditions which normally favors the A-form (36,37).
These results further support that GC homopolymer was more
easily condensed by SWNTs than AT homopolymer as shown
in our AFM studies.

A-DNA is biologically relevant and has 11 bp per helical
turn, base pairs are tilted to �20�C with respect to the helical
axis (38), the grooves are not as deep as those in B-DNA, the
sugar pucker is C30 endo compared with C20 endo for B-DNA.
Like B–Z DNA transition (17,18,24,39,40), the transition
from the B-DNA double helix to the A-form is essential
for biological function (28–33), as shown by the existence of
the A-form in many protein–DNA complexes, increasing the
fidelity of DNA and RNA synthesis and protection from
DNA damage.

Fluorescence competitive binding assay and triplex
DNA destabilization by SWNTs

It is well known that EB and DM can intercalate into DNA
through the minor groove and Hoechst 33 258 is a classical
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DNA minor groove binder. When bound to DNA, the fluores-
cence of EB or Hoechst is greatly enhanced, and DM fluores-
cence is strongly quenched. With this in mind, if SWNTs
competitively bind to the same sites of DNA as EB, Hoechst
and DM, the fluorescence of EB and Hoechst would decrease
and the fluorescence of DM would increase because the
strong binding of SWNTs with DNA should exclude
these DNA binders out of their binding sites. The fluores-
cence competitive binding assay has been widely used
to establish DNA binding mode (41–43). As shown
in Figure 5A–C, their fluorescence hardly changed, even
titrated by SWNTs (Figure 5D), showing that SWNTs do

not competitively bind to the same sites. To further identify
their different binding sites, we carried out NaI quenching
experiments. Iodide ions cannot quench the fluorescence of
these dye molecules when they are bound to DNA (43). If
SWNTs could replace these molecules, their fluorescence
should be quenched. Figure 6 showed that the fluorescence
was not quenched by iodide at all. However, we found that
SWNTs could exclude methylene green, a proven DNA
major groove binder (44,45), out of DNA. Figure 7 showed
CD spectral changes in the presence of SWNTs. For methyl-
ene green, there was no CD signal in our experimental condi-
tions. When methylene green bound to DNA, three induced
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CD signals characteristic of bound methylene green around
310 nm, 430 nm, 650 nm were observed (44,45). With addi-
tion of SWNTs, the induced CD intensity was decreased and
even disappeared, typical data was shown in Figure 7 which
was consistent with previous reports that methylene green can
be excluded out of DNA major groove (44,45). DNA CD sig-
nals were also changed in the presence of SWNTs (Figure 7).
When methylene green was out of DNA major groove, DNA
CD spectrum was like the one for DNA–SWNTs in the
absence of methylene green (Figure 3B), further supporting
that SWNTs bound to DNA in the major groove by replace-
ment of methylene green molecules. In combination with CD
data, thermal denaturation, competitive binding assay and
condensation results, SWNTs bound to the DNA major
groove but not the minor groove, in agreement with
SWNT–DNA simulation results which show that SWNTs
bind to DNA in the major groove in the vacuum (14).
Another evidence of SWNTs bound to the major groove
was from the competitive binding between SWNTs and the
third strand to duplex DNA in the major groove.

Triplex DNA used was polydT:polydA:polydT (19–21).
PolydT can bind to the major groove of polydA:polydT
duplex by forming triplex DNA polydA(polydT)2 (19–21).
The thermal denaturation profile of free triplex in Tris buffer
(10 mM Tris, 200 mM NaCl, pH ¼ 7.1) showed two trans-
itions (Figure 8), the first transition, Tm1 at 46�C and the
second transition, Tm2 at 77�C. For TAT triplex DNA, the
first transition (Tm1) was attributed to the dissociation of
the third strand of polydT with Hoogsteen base pairs from
the major groove and the second transition (Tm2) was attrib-
uted to the dissociation of Watson–Crick base pairs of
duplex polydA:polydT (19–21). Figure 8 showed that Tm1

was decreased in the presence of SWNTs but Tm2 did not
change, indicating that SWNTs competed with the third
strand binding to the duplex major groove of polydA:polydT,
thus decrease the stability of Hoogsteen base pairs but not
influence the duplex stability of polydA:polydT, further
supporting that SWNTs bound to the duplex major groove
with GC preference as shown in duplex melting data of
poly[dGdC]:poly[dGdC], calf thymus DNA and poly[dAdT]:
poly[dAdT] (Figure 2). Triplex DNA has been the focus
of considerable interest because of possible applications
in developing new molecular biology tools as well as

therapeutic agents, and because of the possible relevance of
H-DNA structures in biology system (19–21). However,
SWNTs selective destabilization of triplex DNA has not
been reported. Based on previous computer simulation results
of SWNTs binding to duplex DNA in the major groove (14)
and our melting, CD, and competitive binding data, SWNTs
probably bound to duplex DNA major groove and had GC
preference.

CONCLUSIONS

SWNTs can cause sequence-dependent DNA condensation
and strongly destabilize GC-DNA. Contrasting changes for
SWNTs binding to GC-DNA and AT-DNA were observed.
Our CD, competitive binding and triplex destabilization stud-
ies provide direct evidence that SWNTs induce DNA B–A
transition in solution and they bind to the DNA major groove
with GC preference.
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