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Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors:
rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and
the trend in the domain towards usingmultiple criteria for protein structures comparison (MCPSC) and combining results.We have
developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern
processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and
efficiency of the two parallel MCPSC implementations using Intel’s experimental many-core Single-Chip Cloud Computer (SCC)
as well as Intel’s Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7,
achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale
structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that
MCPSC outperforms its component methods in grouping related domains, achieving a high 𝐹-measure of 0.91 on the benchmark
CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC,
along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.

1. Introduction

Proteins are polypeptide chains that take complex shapes in
three-dimensional space. It is known that there is a strong
correlation between the structure of a protein and its function
[1]. Moreover, beyond evolutionary relationships encoded
in the sequence, proteins’ structure presents evidence of
homology even in sequentially divergent proteins. Compar-
ison of the structure of a given (query) protein with that of
many other proteins in a large database is a common task
in Structural Bioinformatics [2]. Its objective is to retrieve
proteins, with those of similar structure to the query being
ranked higher in the results list.

Protein Structure Comparison (PSC) is critical in homol-
ogy detection, drug design [3], and structure modeling [4].
In [5–7] the authors list several PSC methods varying in
terms of the algorithms and similarity metrics used, yielding
different, but biologically relevant results. There is currently
no agreement on a single method that is superior for protein

structures comparison [8–13]. Hence, the modern trend in
the field is to perform Multicriteria Protein Structure Com-
parison (MCPSC), that is, to integrate several PSC methods
into one application and provide consensus results [14]. The
approach banks on the idea that an ensemble of classifiers
can yield better performance than any one of the constituent
classifiers alone [15–17].

Pressing demand for computing power in the domain of
protein structures comparison is the result of three factors:
ever increasing size of structure databases [18], high com-
putational complexity of PSC operations [19], and the trend
towards applying multiple criteria PSC at a larger scale. So
far this demand has been met using distributed computing
platforms, such as clusters of workstations (COWs) and
computer grids [8, 14, 20]. While distributed computing is
popularly used in PSC, the parallel processing capabilities
of modern and emerging processor architectures, such as
Graphics Processing Units (GPUs), multi- and many-core
Central Processing Units (CPUs) have not been tapped.
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Figure 1: The Intel Single-Chip Cloud Computer. It is a network on chip processor architecture having a mesh of 4 by 6 = 24 routers (R)
connecting the 24 “tiles” with 2 cores per tile [28].

These parallel processing architectures have become more
readily available [21, 22] and instances of their use are
beginning to appear in the broader field of biocomputing
[23, 24]. These processor architectures can in principle be
used additively to meet the ever increasing computational
demands of MCPSC by complementing already in use dis-
tributed computing approaches [25].

Multicore and many-core CPUs, as opposed to GPUs,
retain backward compatibility to well-established program-
ming models [26] and offer the key advantage of using
programming methods, languages, and tools familiar to
most programmers. Many-core processors differ from their
multicore counterparts primarily on the communication
subsystem. Many-core CPUs use a Network-on-Chip (NoC)
while multicore CPUs use bus-based structures [27]. The
Single-Chip Cloud Computer (SCC) experimental processor
[28] is a 48-core NoC-based concept-vehicle created by Intel
Labs in 2009 as a platform for many-core software research.
While multicore CPUs are ubiquitous and easily available
for parallel processing, due to the drive from leading chip
manufacturers over the past several years [29], many-core
CPUs are not as deeply entrenched or commonly available
yet. However, due to architectural improvements many-core
processors have the potential to deliver scalable performance
by exploiting a larger number of cores at a lower cost
of intercore communication [30, 31]. Moreover, many-core
processors offer improved power efficiency (performance per
watt) due to the use of more “light-weight” cores [26, 32]. All
these factors makemodern CPUs (multicore andmany-core)
powerful technologies suitable for meeting the high com-
putational demands of MCPSC computations by employing
scalable parallel processing. Both multicore and many-core
processors have been used in bioinformatics [33] mainly for
pairwise or multiple sequence comparison [34, 35]. However,
NoC architectures have not yet been extensively employed
despite the flexibility and parallel processing capabilities they
offer [35].

In this work, we extend the framework presented in [36]
for MCPSC. We augment the software with implementa-
tions of two popularly used PSC methods—Combinatorial
Extension (CE) [37] and Universal Similarity Metric (USM)
[38]—in addition to TMalign [39], and then combine them

to create a scalable MCPSC application for the SCC. We also
develop an equivalent MCPSC software implementation for
a modern multicore CPU. We combine sequential processing
(for USMPSC tasks) and distributed processing (for TMalign
and CE PSC tasks), to obtain high speedup on a single
chip. Our solution highlights the flexibility offered by these
architectures in combining the parallel processing elements
based on the requirements of the problem. We analyze the
characteristics of the MCPSC software on the SCC with a
view of achieving high speedup (efficiency) and compare
the performance to that of the multicore implementation.
Contrasting the performance of multicore and many-core
processors, using multiple datasets of different sizes, high-
lights the advantages and disadvantages of each architecture
as applicable to MCPSC. To the best of our knowledge,
this is the first attempt in the literature to develop and
compare MCPSC implementations for multicore and many-
core CPUs.

2. Methods

2.1. Experimental Systems Used. The Single-Chip Cloud
Computer (SCC) is an experimental Intel microprocessor
architecture containing 48 cores integrated on a silicon CPU
chip. It has multiple dual ×86 core “tiles” arranged in a 4 ×
6 mesh, memory controllers, and a 24-router mesh network
as depicted in Figure 1. Although it is a “concept-vehicle”
[40] the technology it uses is scalable to more than 100
cores on a single chip [28]. The SCC resembles a cluster of
computer nodes capable of communicating with each other
in much the same way as a cluster of independent machines.
Salient features of the SCC hardware architecture relevant to
programming the chip are listed in Table 1.

Further, each core of the SCC has L1 and L2 caches. In
the SCC architecture, the L1 caches (16 KB each) are on the
core while the L2 caches (256KB each) are on the tile next
to the core with each tile carrying 2 cores. Further, each tile
also has a small message passing buffer (MPB), of 16 KB,
and is shared among all the cores on the chip. Hence, with
24 tiles, the SCC provides a Message Passing Buffer Type
(MPBT) memory of size 384KB. The SCC therefore provides
a hierarchy of memories usable by application programs for
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Data:
𝑄: query protein structures,
𝐷: database of known protein structures
// Sequential processing
calc usm dist(𝑄,𝐷)
// Parallel processing
for 𝑚 in [CE, TMalign] do

for 𝑞 in 𝑄 do
for 𝑑 in𝐷 do

jobs.add(in PE 𝑛, using method𝑚, protein pair [𝑞, 𝑑])
end

end
end
Par calc psc dist(jobs)

Algorithm 1: A pseudo-code of the MCPSC computation implemented in this work. The USM jobs are processed sequentially, while CE
and TMalign pairwise structure comparison jobs are executed in parallel. Task par calc psc dist assigns each PSC job to a free PE (node in a
many-core and thread in multicore). If n is specified, the job’s assignment is fixed; otherwise the next free PE available is employed.

Table 1: Salient features of the SCC Chip by Intel.

Core
architecture

6 × 4 mesh, 2 Pentium P54c (×86) cores
per tile

Local cache 256KB L2 Cache, 16 KB shared MPB per
tile

Main memory 4 iMCs, 16–64GB total memory

different purposes including processing and communication.
A reserved bit in the page table of the cores is used to
mark MPBT data. Legacy software by default does not mark
memory as MPBT and runs without modifications. If the bit
is set, data is cached in L1 and bypasses L2.

To benchmark performance we run all-to-all PSC using
different methods on a single and on multiple cores of the
SCC. Each core is a P54C Intel Pentium (32-bit) running SCC
Linux. We have also used a PC, with a 3GHz AMD Athlon
II X2 250 64-bit processor and 3GB RAM running Debian
Sid, to analyze the characteristics of individual PSC methods
and develop PSC job partitioning schemes. Lastly, amulticore
baseline was established by running all-to-all MCPSC, using
the multithreaded version of MCPSC on a Intel Core i7-
4771 “Haswel” Quad-Core CPU running at 3.5 GHz with
8GB of RAM and a SSD running Debian Sid. The Core i7
CPU features highly optimized out-of-order execution and
HT (Hyper Threading) [41], Intels flavor of Simultaneous
Multithreading (SMT). All software developed was compiled
with the GNU C Compiler version 4.8.

2.2. Software Framework for Implementing PSC Methods. We
introduced in [36] a framework for porting a PSC method
to the SCC and have used it to implement a master-slaves
variant of the TMalign PSC method [39]. The framework
allows developing efficient parallel implementations using
basic functionality provided by our rckskel skeletons library
for a many-core processor. Algorithmic skeletons allow
sequential implementations to be parallelized easily without

specifying architecture dependent details [42]. By nesting
and combining skeletons the desired level of parallelism can
be introduced into different PSC methods. While several
algorithmic skeleton libraries have been developed [42, 43],
none of them has been targeted specifically for many-core
processor architectures. Using rckskel allowed efficient usage
of the SCC cores to speed up all-to-all PSC. In this work, we
extend the framework to handle MCPSC while allowing the
methods to be combined serially where required.

In Algorithm 1 we provide the pseudo-code of the Mul-
ticriteria PSC application for the general case of comparing
every element in a set of query proteins𝑄with every element
in a set of a reference database of proteins 𝐷 using three
PSC methods. It covers both the “all-to-all” comparison,
where the set of query proteins is the same as the set
of database proteins, and the “many-to-many” comparison,
where the query proteins are different from the database
proteins. We used the MCPSC application developed to
measure completion times of all-to-all PSC.The size of the job
list generated for parallel processing consists of𝐾𝑄×𝐾𝐷×𝑀
PSC jobs, where 𝐾𝑄 (𝐾𝐷) is the number of proteins in set
𝑄 (𝐷), respectively, and 𝑀 is the number of PSC methods
implemented using parallel processing (𝑀 = 2 currently).
This is the most fine grained job distribution that can be
obtained without parallelizing the pairwise PSC operation.

The rckskel library [36] was upgraded in this work to
C++ allowing for more flexibility in usage. The choice of the
programming language was motivated by two requirements:
seamless handling of communication data and type safety.
In order to perform parallel operations data must be passed
between the cores of the SCC. In addition to the control
structures built into the library this includes user data. Since
the user data can vary depending on the user application, the
library needs to provide support for any data structures to
be passed between the cores. This was achieved by using the
boost object serialization/deserialization construct, which
allows the library to accept any arbitrary data type from the
user as long as it can be serialized. By making use of the C++
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template extension the skeletons in rckskel are completely
type safe. This implies that any inconsistency in the data
flow described by the user while constructing the skeleton
hierarchy is caught at compile time instead of run time, which
significantly simplifies developing complex parallel programs
using the library.

2.3. MCPSC Application Development for Many-Core Proces-
sor. In order to perform Multicriteria PSC an application
was developed using our software framework incorporating
three PSC methods. For the CE and USM methods we
ported existing software to the SCC. The implementation of
CE builds on existing C++ sources which require a small
structure manipulation library as an external binary. This
library was modified in order to link it to the main CE
code and deprecate the need for the program to run as an
external binary. Further, the code was modified to compare
only the first chains of the domains as in TMalign. We
then generated amaster-slaves parallel implementation of the
C/C++ code, using rckskel, similar to the master-slaves port
we have developed for TMalign in [36]. We also developed
a C++ implementation of USM, based on the existing Java
sources [38], so that we could integrate it with the rest
of the software. As per the existing implementation, the
Kolmogorov complexity of the proteins was approximated
with the gzip of their contact maps. Therefore, we take
it that the normalized compression distance between the
contact maps of a pair of proteins expresses their USM
similarity. In the final implementation, the master process
executes the USM jobs sequentially, due to the fast processing
times for these jobs. Subsequently, the master distributes
the CE and TMalign PSC jobs to the available slaves to
be executed in parallel on different cores. Moreover, we
extended significantly the previous implementation [36] by
adding load balancing. The software framework supports
both dynamic round-robin [44] and static jobs partitioning,
thus allowing experimentation with different methods and
comparison in order to select the best approach for the given
many-core processor and dataset.

2.4. MCPSC Application Development for Multicore Processor.
In addition to implementing the MCPSC framework for the
SCCwe also developed an implementation formulticore pro-
cessors. Intercore communication calls handled in the NoC
implementation by rckskel are replaced by reference passing
between multiple-threads implemented using OpenMP. The
resulting software combines the three methods, USM, CE,
and TMalign, in the same way as the NoC implementation.
The USM jobs are, therefore, processed serially while CE and
TMalign are processed in parallel. Since the three methods
are combined into one executable, the structure data for each
protein domain is loaded only once and reused whenever the
domain appears in a pairwise comparison being performed.
This reduces the overall processing time as compared to
running each method currently available software, where
only pairs are accepted thereby requiring multiple reloads of
each protein domain to perform all-to-all analysis (𝑁 + 1
times for each domain if the dataset contains 𝑁 domains).

Further, the software allows direct comparison between the
performance of many-core and multicore processors for the
MCPSC problem because all other factors, algorithms and
data, remain constant.

2.5. MCPSC Consensus Score Calculation. In both imple-
mentations, for each protein pair, a total of 𝑀 comparison
scores are returned, where𝑀 is the number of PSC methods
employed. These results are stored in a 𝑃 ×𝑀matrix, where
𝑃 is the total number of protein pairs in a dataset. Individual
method comparison scores may, or may not, be normalized,
depending on the PSC method used; therefore, we normalize
all scores in the matrix between 0 and 1 along each column
(feature scaling [45]) that is along each PSM method used.
The normalization process proceeds as follows. First themin-
imum and maximum values for each column of the matrix,
containing the dissimilarity values, are determined. Then,
the matrix is scaled by dividing the difference of column
elements and the column minimum value by the difference
of the columnmaximum andminimum value as shown in (1)
(where 𝑖 is the row index and 𝑗 is the column index). Note
that the minimum value of any column cannot be less than
zero because these are PSC scores with a minimum value of
zero. Once the columns have been normalized, a consensus
MCPSC score is calculated for each protein pair by taking the
average of the 𝑀 values corresponding to that protein pair.
It must be noted that the smaller the pairwise PSC score the
higher the similarity between the pair proteins:

𝑋


𝑖,𝑗 =

𝑋𝑖,𝑗 −min (𝑋𝑗)

max (𝑋𝑗) −min (𝑋𝑗)
. (1)

2.6. Datasets Used. Several datasets, listed in Table 2, were
used in this work. The table includes statistics about the
length of the protein domains and the distribution of the
SCOP [46] classifications in each dataset. It can be seen that
there is significant variation in the sizes of the datasets, the
lengths of protein domains they contain, and the distribution
of the SCOP classifications. For each dataset we retained
domains where the PDB file could be downloaded and a
classification could be found for the domain in SCOP v1.75.
Further, the scripts available for download with the USM
sources were used to extract the contact maps from the PDB
files. The Chew-Kedem (CK34) and the Rost-Sander (RS119)
datasets were used to develop the load balancing schemes
for the SCC and to study the speedup (throughput) on the
i7 processor. Further, all the datasets were used to compare
the performance of the SCC with that of the i7 on all-to-all
MCPCS processing.

2.7. F-Measure Analysis for the Chew-Kedem Dataset. We
obtained all-against-all comparison scores for all comparison
methods, and based on these scores we performed pairwise
hierarchical clustering for each method, using hclust from
the stats package in 𝑅 [47]. We calculated the 𝐹-measure
of the hierarchical clustering for each PSC methods (TMa-
lign, USM, CE, and MCPSC). The 𝐹-measure is calculated
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Table 2: Basic statistics of the domains in the datasets used in this work. The table includes the number of SCOP families, superfamilies
(SpFams), and folds as well as the total number of domains (No.), the Minimum (Min), Maximum (Max), Median, and Mean and Standard
Deviation (Std) of the domain lengths in each dataset.

Dataset No. Domain lengths SCOP classifications
Min Max Median Mean Std Families SpFams Folds

Skolnick [57] 33 97 255 158 167.7 62.7 5 5 5
Chew-Kedem [58] 34 90 497 147 179.5 100.1 10 9 9
Fischer [59] 68 62 581 181 220.6 125.6 56 44 40
Rost-Sander [60] 114 21 753 167 193.2 123.4 93 85 71
Lancia [61] 269 64 72 68 67.9 2.4 79 72 57
Proteus [62] 277 64 728 239 247.6 116.7 53 47 41

Table 3: Time required for the baseline all-to-all PSC task using the TMalign, CE, and USM PSC methods on the PC and a single core of the
SCC. The table also shows the time required for the all-to-all MCPSC task (where all three PSC methods are used). All times are in seconds.

Method
Ported software on PC Ported software on SCC 1 core

CK34 RS119 CK34 RS119
Load Processing Load Processing Load Processing Load Processing

TMalign 0.01 127 0.05 1725 0.30 2514 1 33452
CE 0.80 374 3 6459 14 7152 50 132205
USM 0.01 0.60 0.04 7 0.70 30 2 345
All 0.80 502 3 8191 15 9697 53 166000

using (2), where 𝐶 is the number of clusters (𝐶 = 5 in this
work) as described in [48]

True Positives (TP)

=

𝐶

∑

𝑖=1

number of correctly assigned domains,

False Positives (FP)

=

𝐶

∑

𝑖=1

number of incorrectly assigned domains,

False Negatives (FN)

=

𝐶

∑

𝑖=1

number of missing domains,

Precision (P) = TP
TP + FP

,

Recall (R) = TP
TP + FN

,

F-measure (F) = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅
.

(2)

3. Results and Discussion

3.1. Baseline All-to-All PSC. Table 3 provides the times taken
to perform all-to-all comparison on the PC and on a single
core of the SCC, with the CK34 and RS119 datasets. The
software took longer to load data and process jobs on a single
core of the SCC as compared to the PC. The longer data

loading times are due to the need for network I/O, since the
data is stored on the Management Console PC (MCPC) and
accessed by the SCC via NFS. In long running services, how-
ever, data is loaded once and used when needed; therefore,
this time is disregarded in our performance comparisons.The
differences in processing times are due to the architecture
difference of the processor cores (×86-64 versus ×86) and
their operating frequencies (3GHz versus 533MHz) on the
PC and a single SCC core, respectively.

We performed a statistical analysis, using SecStAnT [49],
of the proteins participating in the 10 slowest and the 10 fastest
pairwise PSC tasks (using TMalign and CE) using the CK34
and RS119 datasets.The parameters on which SecStAnT com-
pares proteins are their secondary structure characteristics:
Bond Angle, Dihedral Angle, Theta, and Psi. Results of the 1-
parameter and 2-parameter statistical analysis, distributions,
and correlations did not show any significant statistical differ-
ence between the slowest and fastest PSC domains. However,
the slowest pairs contain the Hlx310Alpha supersecondary
structure which is absent from the fastest pairs. The 310-helix
occurs rarely in protein domains, because the tight packing
of the backbone atoms makes it energetically unstable. This
structure might be responsible for the increased alignment
times in certain domains. Further, we compared the proteins
using their UniPort entries and observed that most proteins
in the slowest set are Cytoplasmic, while most members in
the fastest set are membrane proteins.

3.2. Relation of Expected PSC Times to the Lengths of the
Proteins underComparison. Comparison of the pairwise PSC
processing with respect to the protein lengths, as shown in
Figure 2, reveals some interesting facts: the time required
for completing a pairwise PSC task is clearly a function of
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Table 4: Sum of squares of residuals after curve fitting for the different PSC methods. The table shows that the sum of residuals is lower with
quadratic fit (square) as compared to linear fit. All values are multiplied with 1𝑒 + 06.

PSC method
Residuals (sum of lengths) Residuals (product of lengths)

CK34 RS119 CK34 RS119
Linear Square Linear Square Linear Square Linear Square

TMalign 4 1 100 90 1 1 40 30
CE 200 100 4000 1000 100 50 2000 800
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Figure 2: Comparison of pairwise PSCprocessing times usingTMalign andCE,with respect to the normalized sumof lengths andnormalized
product of lengths of pair proteins. The dotted lines show the quadratic best fit for the data.

the lengths of the proteins forming the pair. USM requires
extremely small pairwise comparison times, as shown in
Table 1, and was thus excluded from this analysis. The best
fit is achieved when using the product of lengths of the pair
proteins as an attribute and is better than the fit achieved
when using the sum of the lengths. Moreover, the quadratic
curve fitting results are better than the linear as shown in
Table 4. For a given PSC method the relative times required
for completing a pairwise PSC task depend on the proper-
ties of the pairs participating. However, the absolute time
required for completing a pairwise PSC task depends also on
the complexity of the method used. Since the complexity of
one pairwise PSC method as compared to another cannot be

known a priori, it cannot be used as a factor for a generic jobs
partitioning scheme for load balancing purposes.

3.3. Speedup and Efficiency Analysis of Multiple Criteria PSC
on the SCC NoC CPU. In this work, we experimented with
both round-robin and job partitioning schemes for load
balancing. Given the close correlation between lengths of pair
proteins and processing timeswe used this as criteria for both.
Round-robin [44] is a dynamic load balancing method in
which the master process maintains a list of jobs and hands
the next job in the list to the next free slave process. It is
worth noting that if the list is presorted based on attributes
that are known to be proportional to the processing times this
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Table 5: Comparison of speedup and efficiency achieved by the load balancing schemes in processing the all-to-all MCPSC task vis-a-vie the
single core (SCC) processing times. The efficiency is calculated assuming 47 processing elements (one PE serves as master). All times are in
seconds.

Load balancing scheme Dataset CK34 Dataset RS119
Time Speedup Efficiency Time Speedup Efficiency

Serial (1 SCC core) 9698 — — 166000 — —
Random 479 20 0.43 4765 35 0.74
Greedy partitioning (sum) 409 24 0.50 4300 39 0.82
Greedy partitioning (product) 396 28 0.59 4433 38 0.80
Round-robin (sum sorted) 239 41 0.86 3930 42 0.90
Round-robin (product sorted) 238 41 0.86 3930 42 0.90

would naturally result in little to no idle times for the slave
processes. For static job partitioning, determining job-to-
coremapping is equivalent to constructing𝑁 equal partitions
for a list of elements, which is an NP-hard problem [50].
In our case 𝑁 is the number of cores and is equal to 47
when all SCC cores are used. We investigated methods for
PSC jobs partitioning based on the sum and the product of
the lengths of the two proteins to be compared. We have
statically partitioned the PSC jobs using as attribute the sum
of lengths (product of lengths) of the paired proteins to be
compared. The partitions are generated using the Longest
Processing Time (LPT) algorithm: the jobs are sorted in
descending order by sum of lengths (product of lengths)
and then assigned to the partition with the smallest total
running sum.These partitions will be referred to as “Greedy”
partitions fromnow on. Since the job partitions are processed
on different cores this strategy is expected to balance the
processing times by reducing idle times.

Figure 3 shows the partitions generated using a random
partitioning and a greedy partitioning scheme based on the
sum of lengths and the product of lengths as attributes. Parti-
tions created with the random scheme, with equal number of
pair proteins per partition, vary greatly in terms of the total
normalized sum of the sum (or product) of the pair protein
lengths. The size of this normalized sum is expected to be
proportional to the overall processing time each partitionwill
require when assigned to a core. Therefore, if each partition
of PSC tasks created with the random scheme is processed
on a different core, several cores will have significant idle
times at the end. On the contrary, partitions created with the
greedy scheme are almost equal as to the normalized sum of
the sum (or product) of the pair protein lengths. Hence, if
each partition of PSC tasks created by the greedy scheme is
processed on a different processing element (PE), idle times
are expected to be minimized.

We extended the framework introduced in [36] by incor-
porating more PSC methods (CE and USM) in addition
to TMalign and computing consensus scores in order to
perform Multicriteria PSC. We retain the master-slaves pro-
cessing model in the extended framework; the first available
core runs the master process and all other cores run slave
processes. The master loads the data and generates a list of
jobs, each one involving a single pairwise Protein Structure
Comparison operation to be performed using a specified
PSC method. Due to the vastly different processing times
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Figure 3: The 47 partitions created from list of PSC tasks sorted
randomly or by the sum (product) of lengths of pair proteins. Each
horizontal line represents the sum of the normalized lengths of the
protein pairs assigned to that partition.

of PSC operations when using different methods, we allow
the master process: (a) to make a choice between sequential
versus parallel job processing and (b) implement a load
balancing scheme for the slaves.The first allows the master to
sequentially process jobs of a PSC method when distributing
them which would actually result in an increased processing
time. The second allows the master to reduce idle times in
slave processes which perform PSC continuously, receiving
jobs from and returning the results to the master, till they
receive a terminate signal.

The consensus value for a protein pair is calculated using
the scores from the three PSC methods: (a) the USM-metric
from USM, (b) the TM-score from TMalign, and (c) the Root
Mean Square Distance (RMSD) from CE. The USM-metric
and RMSD are distances and have a zero value for identical
structures. The TM-score is therefore inverted since it is the
only one of the three which is a similarity metric. At the end
the average of the three normalized dissimilarity scores is
taken as the MCPSC score for the protein pair.

In Table 5 we compare the performance of the master-
slaves setup, with one master and 47 slaves, to that of a single
core of the SCC and show the speedup and the efficiency
achieved using the CK34 and RS119 datasets. TMalign and
CE jobs were run under the master-slaves model, while USM
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Table 6: Speedup, efficiency, and throughput in pairwise-PSC tasks per second for performing MCPSC on an Intel Core i7 multicore CPU
using the CK34 and RS119 datasets.

Threads Dataset CK34 Dataset RS119
Speedup Efficiency Throughput Speedup Efficiency Throughput

1 1.00 1.00 4.92 1.00 1.00 3.49
2 1.88 0.94 9.27 1.46 0.73 5.09
3 2.04 0.68 10.01 1.98 0.66 6.90
4 2.54 0.63 12.47 2.60 0.65 9.08
5 2.70 0.54 13.25 2.70 0.54 9.42
6 2.71 0.45 13.32 2.71 0.45 9.45
7 2.74 0.39 13.47 2.69 0.38 9.38
8 2.64 0.33 12.98 2.67 0.33 9.31

jobs were processed by the master due to the negligible time
required by these jobs.

The greedy static partitioning scheme improves on the
performance of the random partitioning scheme, but it is
inadequate for the SCC where the cost of data transfer
between cores is low. This scheme would be of interest
in clusters of workstations where interconnection networks
are slow. The greedy partitioning scheme could also be
beneficial on larger many-core processors, where the master
may become a bottleneck, making off-line creation of batches
of PSC tasks essential. In such a scenario however, other
techniques, such as work-stealing, would need to be assessed
before selecting the most appropriate method.

The round-robin dynamic job assignment strategy out-
performs the best offline partitioning scheme. Furthermore,
the sorted round-robin flawlessly balances out the cores pro-
cessing times on both datasets, making it the best approach
for distributing jobs to the cores of the SCC. In this approach,
the protein pairs are presorted in descending order of product
(or sum) of pair protein lengths. Specifically, for the one-to-
many PSC case, we simply retrieve the database proteins in
descending order of length and create pairwise PSC taskswith
the query protein. For the many-to-many PSC case however,
we need to determine the correct order of the proteins when
the query proteins are received.

The sorted round-robin strategy distributes the jobs most
efficiently for the proposed master-slaves setup on the Intel
SCC with 47 slaves. This setup achieves a 42-fold (40-fold)
speedup for the RS119 (CK34) dataset as compared to a single
core of the SCC.The speedup is almost linear, which suggests
that high efficiency can be achieved evenwhen themany-core
processor has more nodes. A bigger many-core processor,
however, may require using a hierarchy of masters to avoid
a bottleneck on a single master node. In such a scenario,
a combination of partitioning schemes and round-robin
job assignment could be used to distribute and minimize
idle times. For instance, on larger NoC processors a well-
balanced solution may require the use of clusters of process-
ing elements, concurrently processing PSC jobs with different
methods. All PEs computing jobs of a PSC method would
receive jobs from a specific submaster. All such submasters
would in turn receive jobs from a common global master.

3.4. Comparison of Multicriteria PSC Performance on Multi-
core and Many-Core CPUs. In order to perform this exper-
iment the MCPSC software framework was retargeted to
the Intel Core i7 multicore processor, using openmp [51] to
implement multithreading. This experiment allowed us to
assess how the MCPSC problem scales with increasing num-
ber of cores on a modern multicore CPU readily available
for scientists and engineers. This multicore software version
uses shared memory to replace the RCCE based message
passing (recv and send) calls used in the many-core version
developed for the Intel SCC. As shown in Table 6 we observe
speedup on this multicore processor when running all-to-all
MCPSCwith the CK34 and RS119 datasets up to the 4 threads
configurations. Thereafter a steep speedup drop (efficiency
loss) is observed.

This is attributed to the fact that this is a quad-core
processor that implements Hyper Threading (HT) [41]. Since
all threads operate on exactly the same type of instruc-
tions workload (SPMD) it cannot take advantage of each
core’s super scalar architecture that needs varied workload
placement (e.g., integer and floating point arithmetic at the
same time) to show performance advantages when utilizing
more threads than cores. Further, an SMP Operating System
(O/S), like the one we run on our test system, uses all
system cores as resources for swapping threads in and out.
A thread executing on core 𝑃𝐸1 for some number of cycles
may get swapped out and later resume execution on core
𝑃𝐸2. Thus, the thread cache on core 𝑃𝐸1 becomes useless and
it gets a lot of cache misses when restarting on 𝑃𝐸2. This
O/S behavior impacts cache performance and reduces the
overall application performance. In terms of pairwise-PSC
tasks per second (pps) the Intel Core i7 achieves a through-
put of 13.47 pps (9.45 pps) on the CK34 (RS119) dataset as
compared to 5.53 pps (3.63 pps) achieved by the SCC. This
is due to the fact that the multicore CPU contains latest
generation cores, featuring a highly superior, out-of-order
microarchitecture and clocked at almost 7.5x the frequency
of the SCC. We believe that even more performance can be
exploited from next generation multicore processors, should
they start introducing hardware memory structures like the
Message Passing Buffer (MPB) of the SCC NoC processor
alongside their cores, for increased communication efficiency
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Table 7: Comparison of the SCC and i7 CPU in terms of throughput
delivered on all-to-all MCPSC.

Dataset Pairs SCC
throughput

i7
throughput Ratio

Skolnick 1089 6.05 27.92 4.62
Chew-Kedem 1156 5.03 13.29 2.64
Fischer 4624 1.98 9.37 4.74
Rost-Sander 12996 3.30 9.38 2.85
Lancia 72361 — 222.65 —
Proteus 76729 — 6.77 —

among them, without resorting to shared memory and its
unavoidable locks or cache-coherency protocol overheads.

Finally, Table 7 shows the comparative performance of
the SCC (with 48 cores) and the i7 (running 7 threads)
on all-to-all MCPSC using several datasets. It can be seen
that the i7 outperforms the SCC consistently in terms of
throughput. The two larger datasets, Lancia and Proteus,
were not processed on the SCC because of the limited per-
core memory (512MB) which was not sufficient to load the
domain structure data for the full dataset. A decrease in
throughput was observed as the size of the dataset increases
with some exceptions. Both the SCC and the i7 deliver lower
than expected throughput (based on its size) on the Fischer
dataset which we believe is due to the higher complexity of
the dataset. As evidenced by Table 2 the Fischer dataset has
domains belonging to 5 times more SCOP Super Families as
compared to CK34 and also has the second highest median
length of protein domains among all the datasets used in this
work. Conversely, the throughput delivered by the i7 on the
Lancia dataset is significantly higher than that delivered for
the similar size (in terms of number of domains) Proteus
dataset. We attribute this difference to the large difference
between themean lengths of domains in each dataset as noted
in Table 2.

3.5. Qualitative Analysis of MCPSC Results Based on the
Chew-Kedem Dataset. The acceleration capabilities offered
by modern processors (many-core and multicore) enables
performing all-to-all PSC using different methods on large-
scale datasets and compare results. For example, it becomes
easy to perform a qualitative analysis on a set of protein
domains and use consensus score (GP’S) to explore relation
between the protein domains, categorize them into bio-
logically relevant clusters [48], and automate generation of
databases such as Structural Classification of Proteins (SCOP)
[46].

The MCPSC comparison method outperforms the com-
ponent PSCmethods (TMalign, CE, andUSM) and groups 34
representative proteins fromfivefold families into biologically
significant clusters. In Figure 4 each protein domain is using
the format “domainName foldFamilies.” The tags of the
“foldFamilies” belong to one of (i) tb: TIM barrel, (ii) g:
globins, (iii) ab: alpha beta, (iv) b: all beta, and (v) a: all alpha
protein families. The clusters obtained from the MCPSC
method show that most domains are grouped correctly

according to their structural fold. In comparison all the
component PSCmethods produce clusters in which there are
many wrongly grouped domains. Details of domain cluster
allocation of all four methods are included in the Supple-
mentary Materials file (see Supplementary Material available
online at http://dx.doi.org/10.1155/2015/563674) dom clust.xls
with clusters generated by USM containing the highest
number of errors. The quantitative analysis evaluating the
Recall versus Precision tradeoff based on the 𝐹-measure [52]
results in a value of 𝐹 = 0.91 for the MCPSC method, which
is higher than TMalign (𝐹 = 0.82), CE (𝐹 = 0.71), and
USM (𝐹 = 0.62). Finally in the Supplementary Material
file supplementary material.pdf weprovide clusters generated
by hclust [47], for the four PSC methods (see Figures S1,
S2, and S3). PSC scores generated for all the datasets for all
PSCmethods are included in the SupplementaryMaterial file
psc scores.zip.

4. Conclusions and Future Work

In the near future, we will see a continued increase in
the amount of cores integrated on a single chip as well as
increased availability of commodity many-core processors.
This trend is already visible today in that off-the-shelf PCs
contain processors with up to 8 cores, server grade machines
often contain multiple processors with up to 32 cores, and
multicore processors are even appearing in average grade
mobile devices. Further, the success of GPUs, Tilera’s archi-
tecture, and Intel’s initiative for integrating more and more
cores on a single chip also attest to this trend. The ubiquity
and the advanced core architectures employed by multicore
CPUsmake it imperative to build software that can efficiently
utilize their processing power. Our experiments show that a
modern Core i7 is able to deliver high throughput for all-to-
all MCPSC. Utilizing the performance gain delivered bymul-
ticoreCPUbecomes especially importantwhen considered in
combination with distributed setups, such as clusters, which
may already contain nodes with multiple cores.

Both multicore and many-core architectures lend them-
selves to the popular and powerful MapReduce parallel
programming model [53]. If the underlying communication
libraries—typically built on top of Message Passing Interface
(MPI) [54]—are available, this highly popular approach
can be applied to large-scale MCPSC in a manner similar
to its application in other domains of bioinformatics [55].
While some implementation of MapReduce is available for
multicore machines, it must be noted that no MapReduce
framework implementations are available for the SCC. One
possible approach for using MapReduce in MCPSC would
be to (a) determine pairwise PSC to be performed on each
PE (pre-Map), (b) run all PSC methods on all pairs on each
PE in parallel (Map), (c) collect PSC scores from all PEs
to a designated PE (shuffle), and (d) combine and generate
final MCPSC scores (Reduce). Movement of data for task
distribution (pre-Map), intermediate data transfer performed
by the “shuffle” mechanism, and collection of results if
required by the Reduce step would benefit from low cost of
inter-PE communication. Load balancing methods similar to
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Figure 4: Hierarchical clustering result using the Chew-Kedem dataset and MCPSC score as distance metric between domains. Each box
represents a cluster and the domains belonging to it. The average linkage method was used to build the dendrogram.

those discussed in this work could be useful in determining
effective strategies for the distribution of PSC tasks (pre-
Map). Analysis of MCPSC performance on multicore and
many-core processors withMapReduce would be required to
understand the design trade-offs that would lead to efficient
designs.

Scalability limitation of the bus-based architecture cou-
pled with the greater potential of Network-on-Chip based
processors to deliver efficiency and high performance implies
that NoCs are likely to be used extensively in future many-
core processors. It is therefore important to start developing
software frameworks and solutions that capitalize on this
parallel architecture to meet the increasing computational
demands in structural proteomics and bioinformatics in
general. Comparison of many-core and multicore processors
in this work shows that the former can deliver higher
efficiency than the latter processor architectures. Further,
our experimental results make it clear that Intel’s SCC NoC
matches the speedup and efficiency achieved by a cluster
of faster workstations [14]. However, a market ready NoC
CPU will have a much better per watt performance as
compared to a cluster while also saving in space and infras-
tructuremanagement costs. Additionally any savings in watts
consumed also reflect in savings in cooling infrastructure
required for the hardware. Furthermore, with the per watt
performance being in focus for processor manufacturers,
such as Intel and Tilera, this gap is set to expand even
further. Finally many-core processors when used as the

CPUs of near-future clusters of workstations will provide
an additional level of local parallelism to applications where
performance scalability is essential to tackle ever increasing
computational demands. As this study demonstrates, the
likely increase in the availability and ubiquitousness of many-
core processors, the near linear speedup in tackling the
MCPSC scenario, and the ease of porting new PSC methods
to NoC based processors make many-core processors be of
great interest for the high performance structural proteomics
and bioinformatics communities in general.

Incorporating additional PSC methods to a many-core
NoC processor is straightforward due to the familiar pro-
gramming model and architecture of the individual cores.
Our rckskel library [36] offers convenience and parallel pro-
gramming functions to further accelerate development on the
NoC. On future larger NoC processors optimal solutionsmay
require the use of clusters of cores, concurrently processing
PSC jobs with different methods. Using the rckskel library
would facilitate the software development, for such more
complicated scenarios, hiding low level details from the users.
The advantages offered by an algorithmic skeletons library
like the rckskel make it of interest to further develop the
library. To this end we intend to introduce communication
controls that will allow true blocking implementations of
“send” and “recv” regardless of the communication backend
library used (RCCE, e.g., provides busy-wait loops for block-
ing). Such an implementation would increase the energy effi-
ciency of applications built using the library. Further work on
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the librarywould involve separating the algorithmic skeletons
code from the communication subsystem so that it can be
retargeted to other processors. This would essentially require
sand-boxing the RCCE calls behindwell-structuredAPIs that
can allow a different communication library to be plugged in.

Further, we would like to investigate the performance
characteristics of all-to-all MCPSC on multicore and many-
core processors with very large datasets. Experimenting with
such large datasets, like the one used in [56] with more than
6000 domains, is likely to provide higher granularity and
assist in more accurate assessment of the impact of different
load balancing schemes in terms of speedup delivered. Addi-
tionally, cluster analysis on the results of such a large dataset
will provide a better measure of the biological relevance of
clusters generated by MCPSC. A dataset of that size would
generate more than 3.2 million pairwise comparison tasks
per PSC method and keeping the number of methods to
3 (as is the case in this work) would result in nearly 10
million tasks. Due to these large numbers, processing such
a dataset specifically on a many-core processor would be
feasible only with a larger NoC that is one which supports
more memory and uses cores of newer architectures than
the SCC. Showing that such a large computation can be
completed in reasonable time would however further justify
the drive towards leveraging parallel processing capabilities
of multicore and many-core processors.
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Krasnogor, “ProCKSI: a decision support system for protein
(structure) comparison, knowledge, similarity and informa-
tion,” BMC Bioinformatics, vol. 8, article 416, 2007.

[9] M. Arriagada and A. Poleksic, “On the difference in quality
between current heuristic and optimal solutions to the protein
structure alignment problem,” BioMed Research International,
vol. 2013, Article ID 459248, 8 pages, 2013.

[10] D. E. Robillard, P. T. Mpangase, S. Hazelhurst, and F. Dehne,
“SpeeDB: fast structural protein searches,” Bioinformatics, vol.
31, no. 18, pp. 3027–3034, 2015.

[11] M. Veeramalai, D. Gilbert, and G. Valiente, “An optimized
TOPS+ comparisonmethod for enhanced TOPSmodels,” BMC
Bioinformatics, vol. 11, no. 1, article 138, 2010.

[12] S. B. Pandit and J. Skolnick, “Fr-TM-align: a new protein
structural alignment method based on fragment alignments
and the TM-score,” BMC Bioinformatics, vol. 9, no. 1, article 531,
2008.

[13] L. Mavridis and D. Ritchie, “3D-blast: 3D protein structure
alignment, comparison, and classification using spherical polar
Fourier correlations,” in Proceedings of the Pacific Symposium on
Biocomputing, pp. 281–292, World Scientific Publishing,
Kamuela, Hawaii, USA, January 2010, http://hal.inria.fr/inria-
00434263/en/.

[14] A. A. Shah, G. Folino, and N. Krasnogor, “Toward high-
throughput, multicriteria protein-structure comparison and
analysis,” IEEE Transactions on Nanobioscience, vol. 9, no. 2, pp.
144–155, 2010.

[15] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in
classifier ensembles and their relationship with the ensemble
accuracy,” Machine Learning, vol. 51, no. 2, pp. 181–207, 2003.

[16] P. Sollich and A. Krogh, “Learning with ensembles: how
overfitting can be useful,” in Proceedings of the Advances in
Neural Information Processing Systems (NIPS ’96), vol. 8, pp.
190–196, 1996.



12 BioMed Research International

[17] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation
methods: a survey and categorisation,” Information Fusion, vol.
6, no. 1, pp. 5–20, 2005.

[18] P. Chi, Efficient protein tertiary structure retrievals and clas-
sifications using content based comparison algorithms [Ph.D.
dissertation], University of Missouri at Columbia, Columbia,
Mo, USA, 2007.

[19] A. Poleksic, “Algorithms for optimal protein structure align-
ment,” Bioinformatics, vol. 25, no. 21, pp. 2751–2756, 2009.

[20] A. A. Shah, Studies on distributed approaches for large scale
multi-criteria protein structure comparison and analysis [Ph.D.
thesis], University of Nottingham, Nottingham, UK, 2011,
http://eprints.nottingham.ac.uk/11735/.

[21] M. Pharr and R. Fernando, GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and General-Purpose
Computation, Pearson Eduction, Addison-Wesley Professional,
2005.

[22] M. Azimi, N. Cherukuri, D. Jayashima et al., “Integration
challenges and tradeoffs for tera-scale architectures,” Intel Tech-
nology Journal, vol. 11, pp. 173–184, 2007.

[23] S. Sarkar, T. Majumder, A. Kalyanaraman, and P. P. Pande,
“Hardware accelerators for biocomputing: a survey,” in Pro-
ceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS ’10), pp. 3789–3792, IEEE, Paris, France, June
2010.

[24] E. Kouskoumvekakis, D. Soudris, and E. S. Manolakos, “Many-
core CPUs can deliver scalable performance to stochastic
simulations of large-scale biochemical reaction networks,” in
Proceedings of the International Conference onHigh Performance
Computing & Simulation (HPCS ’15), pp. 517–524, IEEE, Ams-
terdam, The Netherlands, July 2015.

[25] A. A. Shah, D. Barthel, and N. Krasnogor, “Grid and distributed
public computing schemes for structural proteomics: a short
overview,” in Frontiers of High Performance Computing and
Networking ISPA 2007 Workshops, vol. 4743, pp. 424–434,
Springer, Berlin, Germany, 2007.

[26] E. Totoni, B. Behzad, S. Ghike, and J. Torrellas, “Comparing the
power and performance of Intel’s SCC to state-of-the-art CPUs
and GPUs,” in Proceedings of the IEEE International Symposium
on Performance Analysis of Systems & Software (ISPASS ’12), pp.
78–87, IEEE Computer Society, New Brunswick, NJ, USA, April
2012.

[27] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,”ACMComputing Surveys, vol. 38,
no. 1, article 1, Article ID 1132953, 2006.

[28] B. Marker, E. Chan, J. Poulson et al., “Programming many-core
architectures—a case study: dense matrix computations on the
Intel single-chip cloud computer processor,” Concurrency and
Computation: Practice and Experience, 2011.

[29] G. Blake, R. G. Dreslinski, and T.Mudge, “A survey of multicore
processors,” IEEE Signal Processing Magazine, vol. 26, no. 6, pp.
26–37, 2009.

[30] P. Guerrier and A. Greiner, “A generic architecture for on-
chip packet-switched interconnections,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE
’00), pp. 250–256, ACM, Paris, France, 2000.

[31] D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, and G.
De Micheli, “Network-on-chip design and synthesis outlook,”
Integration, vol. 41, no. 2, pp. 1–35, 2008.

[32] R. P. Mohanty, A. K. Turuk, and B. Sahoo, “Performance
evaluation of multi-core processors with varied interconnect
networks,” in Proceedings of the 2nd International Conference on
Advanced Computing, Networking and Security (ADCONS ’13),
pp. 7–11, IEEE Computer Society, Mangalore, India, December
2013.

[33] S. Isaza, Multicore architectures for bioinformatics applications
[Ph.D. thesis], University of Lugano, Lugano, Switzerland, 2011.

[34] S. B. Needleman and C. D. Wunsch, “A general method appli-
cable to the search for similarities in the amino acid sequence
of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp.
443–453, 1970.

[35] S. Sarkar, G. R. Kulkarni, P. P. Pande, and A. Kalyanara-
man, “Network-on-chip hardware accelerators for biological
sequence alignment,” IEEE Transactions on Computers, vol. 59,
no. 1, pp. 29–41, 2010.

[36] A. Sharma, A. Papanikolaou, and E. S.Manolakos, “Accelerating
all-to-all protein structures comparison with TMalign using
a NoC many-cores processor architecture,” in Proceedings of
the 27th IEEE International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW ’13), pp. 510–
519, IEEE, Cambridge, Mass, USA, May 2013.

[37] I. N. Shindyalov and P. E. Bourne, “Protein structure alignment
by incremental combinatorial extension (CE) of the optimal
path,” Protein Engineering, vol. 11, no. 9, pp. 739–747, 1998.

[38] N. Krasnogor and D. A. Pelta, “Measuring the similarity of
protein structures by means of the universal similarity metric,”
Bioinformatics, vol. 20, no. 7, pp. 1015–1021, 2004.

[39] Y. Zhang and J. Skolnick, “TM-align: a protein structure
alignment algorithm based on the TM-score,” Nucleic Acids
Research, vol. 33, no. 7, pp. 2302–2309, 2005.

[40] N. Melot, K. Avdic, C. Kessler, and J. Keller, “Investigation
of main memory bandwidth on Intel Single-Chip Cloud
computer,” in Proceedings of the 3rd Many-Core Applications
Research Community Symposium (MARC ’11), pp. 107–110,
Ettlingen, Germany, July 2011.

[41] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, and R.
Biswas, “The impact of hyper-threading on processor resource
utilization in production applications,” in Proceedings of the
18th International Conference on High Performance Computing
(HiPC ’11), pp. 1–10, Bangalore, India, December 2011.
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