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Understanding the precise mechanism of BMSC (bone marrow mesenchymal stem cell) osteogenesis is
critical for metabolic bone diseases and bone reconstruction. The histone-lysine N-methyltransferase 2D
(KMT2D) acts as an important methyltransferase related with congenital skeletal disorders, yet the
function of KMT2D in osteogenesis was unclear. Here we found that KMT2D expression was decreased in
BMSCs collected from ovariectomized mice. Moreover, during human BMSC differentiation under
mineralization induction, the mRNA level of KMT2D was gradually elevated. After KMT2D knockdown,
the in vitro osteogenic differentiation of BMSCs was inhibited, while the in vivo bone formation potential
of BMSCs was attenuated. Further, in BMSCs, KMT2D knockdown reduced the level of phosphorylated
protein kinase B (p-AKT). SC-79, a common activator of AKT signaling, reversed the suppressing influence
of KMT2D knockdown on BMSCs differentiation towards osteoblast. These results indicate that the
KMT2D-AKT pathway plays an essential role in the osteogenesis process of human BMSCs (hBMSCs),
which might provide new avenues for the molecular medicine of bone diseases and regeneration.

© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

As a kind of specific stromal cell, BMSCs possess multipotency
and can differentiate into osteoblasts, chondrocytes, adipocytes,
and other cell types [1,2]. It has beenwidely accepted that the BMSC
osteogenic differentiation plays a crucial part in the progress of
bone regeneration and metabolic bone diseases, such as osteopo-
rosis [3]. During the last decade, the therapeutic potential of BMSCs
has been well investigated and widely appreciated [4,5]. However,
the exact molecular mechanisms underlying BMSC differentiation
and osteogenesis still need to be clarified.

Recently, the function of epigenetic regulators has been
emerging in all kinds of life activities, including the cell-specific
differentiation of embryonic and adult stem cells [6,7]. As an
important epigenetic regulator, the lysine methyltransferase 2D
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(KMT2D) mainly acts as a histone methyltransferase on H3K4
methylation [8]. Mutation of the KMT2D gene has been closely
related with an autosomal dominant disease named Kabuki syn-
drome (OMIM #147920) [9,10]. The Kabuki patients are character-
ized with specific facial patterns, dental and skeletal abnormalities,
intellectual disabilities and postnatal growth defects [11,12]. Ho-
mozygous KMT2D knockout mice led to early embryonic lethality,
while heterozygous mice exhibited skeletal and neurological ab-
normalities similar to those of Kabuki patients [13e16]. The con-
ditional knockout of the KMT2D gene in mouse neural crest cells
could lead to disturbed osteoblast and chondrocyte differentiation
during craniofacial bone development [17]. Although the clinical
and mouse model features indicate the function of KMT2D in bone
development, whether KMT2D is involved in BMSC osteogenic
differentiation remains unclear.

For transcription regulation, it has been reported that KMT2D is
mainly responsible for the H3K4me catalyzation at the enhancers
or promoters of target genes [18]. The KMT2D protein is very large
with 5537 amino acids, and is highly conserved among eukaryote
animals (up to 90% identity between human andmouse) [19]. It has
been widely reported that KMT2D can play crucial roles during
iety for Regenerative Medicine. This is an open access article under the CC BY-NC-ND
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different biological processes of embryonic development and can-
cer diseases through epigenetically regulating gene expressions or
directly adjusting some signaling pathways [20]. During osteo-
genesis, numerous signaling pathways have been proved to take
part in the process of BMSC osteogenic differentiation [21,22].
Particularly, the PI3K/AKT pathway was reported to control many
critical biological processes, including but not limited to cell divi-
sion and differentiation [23,24]. During osteogenesis, the PI3K/AKT
pathway was suggested as a downstream target of TGF-b1 and
could induce the human osteoblast differentiation [25].

In our study, the role of the KMT2D gene in BMSC osteogenesis
was discovered. During BMSC osteogenic differentiation, the mRNA
expression of KMT2D was upregulated, consistent with the
expression trend of osteogenic marker genes. Moreover, KMT2D
deficiency disturbed the in vitro osteogenesis and in vivo mineral-
ization ability of BMSCs. The AKT signaling was further confirmed
to participate in the function of KMT2D during BMSC osteogenesis.
These results might shed new light on the molecular mechanisms
and therapies for bone diseases and repair.

2. Materials and methods

2.1. Establishment and analysis of ovariectomized mice

The 8 weeks old BALB/c female mice weighed 18e20 g were
provided by Vital Co. (Beijing, China). In order to establish an effi-
cient osteoporosis model, the bilateral ovariectomy surgery was
carried out onto the experimental group mice (the ovariectomized
group, OVX). For the non-OVX control group mice (SHAM), merely
the adipose tissue adjacent to the ovaries was removed. Six weeks
later, the femurs fromOVXor SHAM groupwere scanned by aMicro
CT system with fixed parameters. Three-dimensional reconstruc-
tion and analyses were finished with multimodal 3D visualization
software (Inveon, Germany). The paraffin slices of the femurs were
prepared, and then visualized under microscopy after the hema-
toxylin and eosin (H&E) staining. As described previously, the
mouse BMSCs were collected from mouse tibias (SHAM and OVX)
and cultured in Dulbecco's Modified Eagle's Medium (DMEM;
Invitrogen, USA) at 37�C with a 5% CO2 atmosphere. Cells positive
for CD44 and CD29 but negative for CD45 were then screened by
flow cytometry analysis sorting, and evaluated via differentiation
experiments [26].

2.2. BMSC culture and osteogenic induction

The human BMSCs were collected and provided by the Sci-
enCell Research Laboratories (Carlsbad, USA). Cells of passage 3
to 6 were cultured in proliferation medium (PM). The PM is
consisted of Dulbecco's Modified Eagle Medium (DMEM)
(Gibco, USA) supplemented with 10% fetal bovine serum (Gibco)
and 1% antibiotics (Gibco). Cells were cultured in a 37 �C
humidified incubator containing 5% CO2. In order to induce the
osteogenic differentiation, the osteogenic medium (OM) was
used for hBMSC culture, which is consisted of standard PM
supplemented with 10 nM dexamethasone, 100 mM/mL ascorbic
acid, and 2 mM b-glycerophosphate. The hBMSCs were treated
with 4 mg/mL SC79 (Calbiochem, Germany) so as to activate AKT
phosphorylation.

2.3. Construction and infection of shRNA lentivirus

For KMT2D gene knockdown in hBMSCs, the specific shRNA
lentiviral vectors were constructed using pGLV3-GFP vector back-
bone, and then packaged into viral particles by GenePharma
(Shanghai, China). The sequence for green fluorescent protein (GFP)
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expression was inserted into the lentiviral plasmids, so that the
infection efficiency could be easily tracked by fluorescence in-
tensity. The KMT2D shRNAs were designed and synthesized. Then,
hBMSCs were infected by adding the viral supernatant dilutions
with polybrene (5 mg/mL) into culture medium for 1 day. After 3
days of viral infection, the hBMSCs were selected by application of
puromycin (5 mg/mL) for stably transfected cells. The shRNA virus
showing best knockdown efficiency for KMT2D gene was selected
for subsequent experiments. The sequence of the chosen shKMT2D
is 50-GCTCCTACACTGACCCATATG-30, and the sequence of the non-
targeting control shRNA (shNC) is 50-TTCTCCGAACGTGTCACGT-3’.

2.4. Alkaline phosphatase (ALP) analysis

The hBMSCs were cultured under osteogenic induction for
seven days, and then fixed with 4% paraformaldehyde. After that,
the samples were incubated with ALP substrate solution using
the NBT/BCIP staining kit (CoWin Biotech, China). At last, the
staining image was scanned and recorded by Image Scanner III (GE
Healthcare Bio-Sciences Corp., USA). For ALP activity quantification,
cells were harvested and treated by 1% Triton X-100 (Sigma-
eAldrich, USA) after 7 days of culture, and then assayed using
the ALP Activity Kit (Biovision, USA). Absorbance at 520 nm
was recorded and normalized to the total protein concentration of
each sample that determined by the Pierce protein assay kit
(Thermo Fisher Scientific, USA).

2.5. Cell staining with Alizarin Red-S

After fourteen days of culture with PM in six-well plates, cells
were fixed with 4% paraformaldehyde for 30min. Then, the samples
were immersed in 1% Alizarin red-S (SigmaeAldrich) at pH 4.2 for
20 min, and imaged under an Inverted Microscope (Nikon, Japan).
After that,10% cetylpyridinium chloride (SigmaeAldrich) was added
to the samples for 1 h, and the quantification of Alizarin Red-S
concentration was performed by spectrophotometry at 570 nm.

2.6. Quantitative reverse transcription polymerase chain reaction
(qRT-PCR) analysis

Total RNA was extracted from the hBMSCs or mouse BMSCs
(collected from the OVX or SHAM group) using the TRIzol® Reagent
(Invitrogen, USA). Then, the cDNAwas synthesized by application of
the PrimeScript RT Reagent Kit (Takara, Japan), according to the
manufacturer's instructions. Finally, the amplification reaction was
carried out with SYBR Green Master Mix (Roche Applied Science,
Germany) and appropriate primers that listed in Table 1. Then,
relative mRNA abundance was determined by the deltaedelta cycle
threshold method (2�DDCt) and reported as fold induction. GAPDH
abundance was used for normalization, and data from three inde-
pendent experiments were analyzed.

2.7. Western blot

The hBMSCs were collected and lysed using radio-
immunoprecipitation assay (RIPA) lysis buffer (Roche Applied Sci-
ence). Aliquots of 50 mg protein in the lysate sample were separated
by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), and then transferred onto polyvinylidene fluoride
(PVDF) membrane. The membrane was blocked with 5% skimmed
milk, and the primary antibodies were then added and incubated
overnight at 4 �C. The following antibodies were used: anti-OCN
(1:200; Abcam, USA), anti-total AKT (1:1000; Abcam, USA) and
anti-tyrosine-phosphorylated AKT (1:1000; Abcam, USA). The
GAPDH antibody (1:500; HuaxingBio Science, China) served as an



Fig. 1. Expression of KMT2D was decreased in the established ovariectomized mice. (A) Upper images: Micro CT scanning of the femurs harvested from control mice (SHAM) and
ovariectomized mice (OVX), scale bar ¼ 1 mm; nether images: HE staining of the corresponding femur slides, scale bar ¼ 200 mm. (B) Left graph: analysis of bone volume fraction
(bone volume vs. total volume, BV/TV) of the mouse femurs; Right graph: analysis of trabecular number (Tb.N) of the femurs. (C) Relative mRNA expression of the KMT2D gene in
BMSCs from OVX mice.

Table 1
Sequences of the primers that used in qRT-PCR.

Name Primer sequence GenBank accession number PCR product size (bp)

KMT2D S 50- AATTAAACTGGAGGGCCCCG -30 NM_003482 210
AS 50- GCAGGTATCACCTCGTCGG -30

RUNX2 S 50- CCGCCTCAGTGATTTAGGGC-30 NM_001015051 132
AS 50- GGGTCTGTAATCTGACTCTGTCC -30

ALP S 50- ATGGGATGGGTGTCTCCACA -30 NM_001127501 108
AS 50- CCACGAAGGGGAACTTGTC -30

OCN S 50- CACTCCTCGCCCTATTGGC -30 NM_199173 112
AS 50- CCCTCCTGCTTGGACACAAAG -30

GAPDH S 50- GGTCACCAGGGCTGCTTTTA -30 NM_001357943 114
AS 50- GGATCTCGCTCCTGGAAGATG -30
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internal control. After that, the membranes were incubated with
secondary horseradish peroxidase-conjugated linked antibodies
(Santa Cruz, USA) for 1 h. The immunoreactive bands were visu-
alized with the ECL Western Blot Kit (CoWin Biotech), and the
grayscale images from 3 independent experiments were quantified
with ImageJ analysis software (https://imagej./ij/).

2.8. Transplantation surgical procedure

The 8-week-old BALB/c homozygous nude (nu/nu) male mice
were purchased from Vital Co. (Beijing, China), and all the experi-
ment procedures were approved by the Peking University Animal
Care and Use Committee. Firstly, the hBMSCs were infected with
lentivirus (shNC or shKMT2D) and induced in the OM for 7 days.
Then, cells were mixed with Bio-Oss Collagen scaffolds (Geistlich,
Germany) at 37 �C. After 1 h, themixtureswere implanted under the
dorsal surface of nude mice. Finally, 8 weeks after the operation, the
animals were sacrificed and the implants were dissected, decalcified
and embedded in paraffin. Slides with thickness of 5 mm were pre-
pared, and then stained with H&E orMasson's trichrome separately.

2.9. Statistical analysis

All data are presented as mean ± SEM, and analyzed using the
GraphPad scientific software. For comparisons between two
groups, the unpaired two-tailed Student's t tests were applied.
Analyses of variance (ANOVA) followed by Bonferroni post-test
were used for the comparisons of more than two groups. Values
of p < 0.05 were considered statistically significant.
Fig. 2. Expression of KMT2D was upregulated during hBMSC osteogenic differentiation. (A)
medium. (BeD) Relative mRNA levels of RUNX2, ALP and OCN in hBMSCs after culture in o
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3. Results

3.1. The mRNA level of KMT2D in OVX mice was decreased

Imbalanced endogenous BMSC differentiation was involved in
the formation of osteoporosis. The osteoporotic model was con-
structed by ovariectomy in our study. Compared with the control
group (SHAM), the results of Micro CT analyses and HE staining
suggested that bone density of the femur trabeculae in OVX mice
was decreased significantly (Fig. 1AeB). Then, BMSCs were sepa-
rated from mouse femurs of each group and sorted by flow
cytometry. By qRT-PCR, the gene expression of KMT2D was shown
to be remarkably decreased in mouse BMSCs from OVX mice
(Fig. 1C). Normally, the mRNA expression level of KMT2D in the
bone marrow tissue is very high according to the human protein
atlas (Supplementary Fig. 1). We inferred that the downregulation
of KMT2D in BMSCs underlay the osteoporosis for the OVX mice,
and KMT2D might be potentially involved in osteogenesis.

3.2. KMT2D expression is increased during hBMSC osteogenic
differentiation

The expression trend of the KMT2D gene during the in vitro
induced osteogenic differentiation of cultured hBMSCs was firstly
assessed. Using qRT-PCR, the mRNA expression of KMT2D in
hBMSCs was monitored after 1, 4, 12, 21 days of culture with OM or
PM. In themeantime, the mRNA levels of related osteogenic makers
(RUNX2, ALP and OCN) were also assessed. The results showed that
the KMT2D expression was gradually increased over time (Fig. 2A),
Relative mRNA level of KMT2D in hBMSCs after 1, 4, 12, 21 days of culture in osteogenic
steogenic medium.

https://imagej./ij/
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along with ascending expression levels of the RUNX2, ALP and OCN
genes (Fig. 2BeD).
3.3. KMT2D knockdown inhibits the in vitro BMSC osteogenesis

The hBMSC lines that stably expressed the KMT2D shRNA or
scramble shRNA were generated using lentiviruses. The GFP fluo-
rescence signals observed in hBMSCs showed high shRNA gene
integration efficiency in both groups (Supplementary Fig. 2A). Then,
by qRT-PCR, the knockdown efficiency of KMT2D was analyzed and
the most effective shRNA lentivirus was selected for the following
experiments (Supplementary Fig. 2B). The stable cell lines were
cultured with PM or OM, and seven days later, the degree of ALP
staining was shown to be reduced (Fig. 3A) in KMT2D-knockdown
cells. Consistently, the ALP activity of the KMT2D-knockdown
group was also decreased (Fig. 3B). Using ARS staining, the
Fig. 3. Knockdown of KMT2D expression interferes the in vitro BMSC osteogenesis. (A) The
induction. (B) A histogram presents the quantification of ALP activity after 7 days of osteogen
14 of osteogenic induction. (D) The quantification analysis of the staining images in (C). (E
osteogenic induction (shKMT2D versus shNC). Results are presented as the mean ± SD (n ¼
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mineralized nodules of each sample were detected after 14 days of
osteogenic induction. The results showed an apparent reduction in
the formation of mineralized nodules in KMT2D-knockdown cells
(Fig. 3C&D). Particularly, by qRT-PCR, the mRNA level of two
osteogenesis-related genes were both downregulated in hBMSCs
after KMT2D knockdown, including ALP and OCN (Fig. 3E). By
Westernblot, theOCNexpression at theprotein levelwas also shown
to be reduced with KMT2D knockdown (Supplementary Fig. 3A&B).
3.4. KMT2D knockdown interferes the in vivo BMSC osteogenesis

For investigating the in vivo effect of KMT2D on osteogenesis,
the transplantation experiment in nude mice was carried out. The
hBMSCs were stably transfected and embedded into the subcu-
taneous region of nude mice, with application of collagen scaffolds.
Eight weeks later, each sample was dissected, and then assessed by
scanning image of hBMSCs stained by ALP substrate solution after 7 days of osteogenic
ic induction. (C) The scanning image of hBMSCs stained by Alizarin red-S staining at day
) Relative mRNA level of RUNX2, ALP, and OCN was assessed by qRT-PCR at day 7 of
3). *P < 0.05.
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HE and Masson's trichrome staining. Both results suggested that
KMT2D deficiency remarkably impaired the formation efficiency of
new bones (Fig. 4).

3.5. AKT signaling is involved in the inhibition effect of KMT2D
deficiency on osteogenesis

As reported, the AKT signaling plays a critical role in osteogenesis
and bone formation, while KMT2D has been proved to be related
with PI3K/AKT pathway in recent studies. In our experiments, the
results ofWestern blot (Fig. 5 A&B) showed that the expression of p-
AKT was decreased by KMT2D knockdown in BMSCs, indicating the
effect of KMT2D on AKT signaling. After KMT2D knockdown,
hBMSCs were treated with SC79, a specific activator of AKT
signaling. By ALP staining, it was shown that SC79 partially reversed
the suppressive effects of KMT2D deficiency on the activity of ALP
(Fig. 5C). In the meantime, as detected by ARS staining, SC79
partially reversed the inhibiting effect of KMT2D deficiency on
production of mineralized nodules (Fig. 5D&E). Expression of the
ALP gene was elevated by the addition of SC79, as compared to the
KMT2D-knockdown group (Fig. 5F). Considering all the above re-
sults, we propose that the inhibiting effect of KMT2D knockdown on
BMSC osteogenesis may depend at least partially on AKT signaling.

4. Discussion

As a metabolically active tissue, the mammalian bone un-
dergoes a balance of resorption and formation during the lifespan.
It has been well proved that the process of osteogenesis is
regulated by networks of signaling pathways and transcription
factors [27]. In recent years, effects of epigenetic factors in osteo-
genesis have gained more and more attention [28,29]. Here in
our study, the influence of KMT2D on BMSC differentiation was
demonstrated, which provides new clues for the molecular
mechanisms of bone development and regeneration.

As a major H3K4 methyltransferase, KMT2D is highly conserved
throughout eukaryotes, with some functional redundancy with
KMT2C [30]. Mutation of the KMT2D gene is responsible for a rare
dominant hereditary disease named the Kabuki syndrome, which is
characterizedby facial dysmorphologyandgrowth defects of various
tissues, including skeletal abnormality [31e33]. In order to
Fig. 4. Knockdown of KMT2D expression interferes the in vivo BMSC osteogenesis. Upper im
mice for 8 weeks. Nether images: Masson's trichrome staining (Masson) of the hBMSC sam
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determine the potential effect of KMT2D in skeletal bone develop-
ment, we searched the expression level of KMT2D from the human
protein atlas. A relative abundant content of KMT2D mRNA was
shown in human bonemarrow tissue. Then, using theOVXmice that
modeled osteoporosis disease, we found that the KMT2D expression
appeared to decrease in mouse BMSCs from the OVX group. Collec-
tively, the expression stasis of the KMT2D gene implied that KMT2D
may function in bone development and BMSC differentiation.

Previous studies have suggested the essential functions of
KMT2D in multiple developmental processes and cellular differ-
entiation events, including embryonic stem cell, adipocyte and
myogenic differentiation [13,18,34,35]. In our results, during the
in vitro osteogenic differentiation of hBMSCs, the dynamic expres-
sion level of KMT2D displayed an increasing trend, in consistent
with the expressions of osteogenic-related genes such as ALP,
RUNX2, and OCN [36,37]. Since the KMT2D protein have 5537
amino acids and is too large to manipulate the gene overexpression
using cell transfection, we utilized shRNAs for KMT2D knockdown
to investigate the influence of KMT2D in BMSC differentiation. Our
results suggested that KMT2D knockdown inhibited the osteogenic
differentiation of BMSCs, through both the decreased expressions
of osteogenic-related genes (ALP, OCN) and the impaired formation
of calcified nodules (ARS staining). Furthermore, the in vivo bone
formation of the stably transfected hBMSCs was also attenuated in
the KMT2D-knockdown group. Taken together, KMT2Dmay act as a
positive factor in BMSC osteogenic differentiation.

As reported, KMT2D was related with certain signaling path-
ways during various cancer types or development processes,
including WNT, AKT and Notch pathway [38,39]. In particular, the
AKT pathway has been proved to stimulate osteoblast differentia-
tion in bone development [40]. Recent study found that KMT2D
regulated PIK3IP1 and affect the PI3K-AKT signaling pathway in
lung carcinogenesis [20]. Corresponding with the function of
KMT2D on AKT signaling, our results demonstrated that KMT2D
knockdown decreased the p-AKT level, and the AKT activator
(SC79) could reverse the inhibiting effect of KMT2D knockdown on
hBMSC differentiation to some extent. Meanwhile, as reported in
breast cancers, AKT signaling could suppress the methyltransferase
activity of KMT2D by direct phosphorylation of the KMT2D protein
[41]. Whether there exists a feedback regulation between KMT2D
and AKT signaling still needs future investigations.
ages: HE staining (HE) of the hBMSC samples after subcutaneous implantation in nude
ples after subcutaneous implantation in nude mice for 8 weeks.



Fig. 5. Activating AKT signaling with SC-79 partially reversed the inhibitive influence of KMT2D knockdown in hBMSC osteogenesis. (A) Relative protein level of phosphorylated
AKT(p-AKT) and AKT in shKMT2D and shNC group. (B) Quantitative analysis of the image data in (A). (C) Images of hBMSCs stained by ALP substrate solution, after incubation with
SC79 or DMSO in osteogenic medium for 7 days. (D) Images of hBMSCs stained by Alizarin red-S, after incubated with SC79 or DMSO in osteogenic medium for 14 days. (E)
Quantitative analysis of the image data in (D). (F) Relative mRNA level of ALP gene in hBMSCs incubated with SC79 or DMSO and cultured with osteogenic medium for 7 days.
Results are presented as the mean ± SD. **P < 0.01.
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The methylation of histone 3 on cis-acting elements (promoters
or enchancers) of osteogenic-related genes has been proved to play
critical roles in osteogenesis. For instance, it has been reported that
WHSC1 suppressed the overactivation of osteogenic-related genes
including osteopontin and collagen type Ia via fine-tuning the
H3K36 trimethylation on promoters [42]. Additionally, EZH2 could
inhibit SOCS3 gene expression and enhance osteogenesis via
H3K27me3 on the promoters of SOCS3 [43,44]. KMT2D has been
proved to enrich at enhancers (H3K4me1) or promoters (H3K4me3)
ofmultiple target genes so as to epigenetically regulate cell activities.
Besides, it has been increasingly recognized that KMT2Dhasnot only
methyltransferase activity, but also direct regulating functions on a
range of signaling pathways to influence biological contexts in
different cell types [45,46]. Whether KMT2D is responsible for H3K4
methylation in BMSC osteogenesis needsmore experiments. Further
781
studies would be carried out to figure out if the function of KMT2D
on AKT signaling is enzymatic activity dependent.

It is a general concept that epigenetic enzymes including
KMT2D play roles in genome-wide regulation of chromatin [47].
Correspondingly, it has been reported that KMT2D is required for
different cell differentiation and proliferation processes in culture.
In particular, Lee et al. found that KMT2D and KMT2C regulated the
expression of cell-type specific genes during the adipogenesis and
myogenesis of immortalized brown preadipocytes [48]. In cultured
dental epithelial cell line, KMT2D deficiency was reported to
disturb the specific cell proliferation and cell cycle activity [39].
Thus, it would be interesting and meaningful to explore whether or
not KMT2D is involved in other hBMSC activities (eg. adipogenic
differentiation and cell proliferation) under different microenvi-
ronment or culture condition.



Z. Zhang, Y. Guo, X. Gao et al. Regenerative Therapy 26 (2024) 775e782
In conclusion,wepresent for thefirst time that KMT2Ddeficiency
would inhibitBMSCosteogenesis, and theAKTsignalingwaspartially
involved in this process. Our analysis suggests that the KMT2D/AKT
pathwaymight act as a novel potential target in thebioengineeringof
bone regeneration and bone-related diseases. Last but not least, the
specific manner of KMT2D regulation on H3K4methylation and AKT
factors should still be focused in the future work.
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