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The extracellular matrix (ECM) plays a central role in the formation of the tumor
microenvironment. The deposition of the ECM is associated with poor prognosis in a
variety of tumors. Aberrant ECM deposition could undermine the effect of chemotherapy
and immunotherapy. However, there is no systematic analysis on the relationship
between the ECM and prognosis or chemotherapy effect. In the present study, we
applied the gene set variation analysis (GSVA) algorithm to score 2199 canonical
pathways in 2125 cases of probe or sequencing data and identified the core
matrisome as the driving factor in gastric cancer progression. We classified gastric
cancer samples into three clusters according to the composition of the ECM and
evaluated clinical and multi-omics characterization of ECM phenotypes. The ECM score
was evaluated by GSVA score of core matrisome and a higher ECM score predicted poor
prognosis of gastric cancer [Hazard Ratio (HR), 2.084; p-value < 2 × 10−16]. In The Cancer
Genome Atlas (TCGA) cohort and KUGH, YUSH, and KUCM cohorts, we verified that
patients with a low ECM score could benefit from chemotherapy. By contrast, patients
with a high ECM score did not achieve satisfactory response from chemotherapy.
Determining the characteristics of the ECM microenvironment might help to predict the
prognosis and chemotherapy response of patients with gastric cancer, and help to
resolve the enigma of chemoresistance acquisition, as well as providing inspiration to
develop combination therapy.
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INTRODUCTION

Gastric cancer (GC) is the third leading cause of cancer-related
death and the fifth most common cancer diagnosed worldwide
(1). Surgical resection has always been the mandatory backbone
treatment for resectable stage II and III GC (1). However, the
significant benefit from surgical resection alone is confined to
early GC, while the rate of relapse remains high for advanced GC.

Multimodal therapies, including chemotherapy, chemoradiation,
and immunotherapy, have been established to prevent recurrence
and have improved the survival rates of patients after surgery (1).
Although the receipt of adjunctive therapies could improve
prognosis for some patients with GC patients to a certain extent,
variations in clinical outcome have been detected for patients who
received the same treatment (2–4). Multiple molecular subtypes and
ingenious prognostic models based on multi-omics data have been
established for patients with resectable GC. Stomach
adenocarcinoma in The Cancer Genome Atlas (TCGA) was
subdivided into five molecular subtypes on the basis of molecular
profiles: microsatellite instable (MSI), genomically stable (GS),
Epstein–Barr virus (EBV) associated, chromosomal instability
(CIN) and hypermutated-single-nucleotide variant predominant
(HM-SNV) (5, 6). And the Asian Cancer Research Group
(ACRG) defined four molecular subtypes, including microsatellite
stable (MSS)/epithelial–mesenchymal transition (EMT), MSI, MSS/
p53+, and MSS/p53− (7). Oh et al. (8)identified two distinct
molecular subtypes: mesenchymal phenotype(MP) and epithelial
phenotype (EP). These molecular subtypes show great tumor
heterogeneity, distinct clinical outcome and different response
to anti-tumor therapy. Additionally, Zeng et al. (9) depicted
the comprehensive landscape of tumor microenvironment
characteristics and established TMEscore based on tumor immune
infiltration patterns to predict immunotherapy response in gastric
cancer. Zhang et al. (10) characterized m6A modification patterns in
gastric cancer and constructed m6Ascore based on 21 m6A
regulators, which could also discriminate distinct TME and do
well in predicting benefits from immunotherapy for patients with
gastric cancer. Cheong et al. (11) developed and validated a model
with four classifier genes (GZMB, WARS, SFRP4, and CDX1) for
predicting adjuvant chemotherapy response in patients with
resectable, stage II–III gastric cancer. Benefited from these
classification and scoring system, the tumor heterogeneity could be
defined, evaluated and precisely targeted.

The extracellular matrix (ECM) regulates tissue development
and homeostasis (12). It consists of biochemically and
biomechanically distinct macromolecules, including glycoproteins,
collagens, and proteoglycans, which assemble into a three-
dimensional supramolecular network that regulates cell growth,
survival, motility, and differentiation (13). As a major component of
the tumor microenvironment, the ECM could affect the hallmarks
of cancer and is involved in all the cellular processes contributing to
cancer initiation, progression, and dissemination (14, 15).
Researchers found that increased ECM stiffness is required for
the transformation of normal cells into tumor through YAP/TAZ
mechanotransduction (16), and could also drive EMT, invasion and
metastasis via TWIST1–G3BP2 mechanotransduction (17). In
gastric cancer, the stiffness of the ECM could induce
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hypomethylation of the promoter region of mechanosensitive
Yes-associated protein (YAP) and activate the oncogenic activity
of YAP (18). Clinical observations also confirmed that an increased
ECM content correlates with more aggressive tumors and poorer
prognosis (Socovich and Naba 2019). Intriguingly, in pancreatic
ductal adenocarcinoma, decreasing ECMwith an anti–lysyl oxidase
like-2 (anti-LOXL2) antibody in syngeneic orthotopic PDA mouse
models accelerated tumor growth, resulting in diminished overall
survival, which suggested a protective role of ECM (20). In addition,
tumor ECM is also an affecting factor of cancer therapy. A pan-
cancer analysis showed that ECM deposition induced by TGF-b
signalling could predict failure of PD-1 blockade (21). On the
contrary, inhibiting ECM deposition could soften metastases of
colorectal cancer and increase the anti-angiogenic effects
of bevacizumab (22). However, until recently, we were not aware
of the whole picture of the complexity of the tumor ECM, nor had
we determined, to what extent, the ECM is involved in cancer
progression. Rapidly developing high throughput sequencing and
bioinformatic technologies are of great help to precisely characterize
the ECM composition in tumor microenvironments. In this study,
we are going to characterize the landscape of ECM in gastric cancer
and discuss its clinical implications.
MATERIALS AND METHODS
Gene Expression Data Gathering
and Processing
We searched in The Cancer Genome Atlas (TCGA) database and
Gene-ExpressionOmnibus (GEO) for opensourcegene-expression
datawith full clinical annotationof gastric cancer.Only thosewith a
sample size greater than 50 and available survival informationwere
included for further analysis. In total, 2125 gastric cancer samples
were integrated, including 7 cohorts from the GEO database
(https://www.ncbi.nlm.nih.gov/; geo accession numbers:
GSE13861 [Yonsei University Severance Hospital (YUSH)
cohort], GSE15459, GSE26253, GSE26942, GSE29272, GSE66229,
GSE84437 [Asian Cancer Research Group (ACRG) cohort] and
TCGA-STAD cohort (Supplementary Table S1). The GSE26942
cohort was merged with GSE26899 for the Korea University Guro
Hospital (KUGH) cohort and with GSE26901 for the Kosin
University College of Medicine (KUCM) cohort. In brief, primary
microarray data sets downloaded from GEO were analyzed with
background adjustment and normalized using the microarray data
package in the R language environment (23). For the TCGA-STAD
cohort, latest RNA-sequencingdata (HTSeq-FPKM)were retrieved
through the R package TCGAbiolinks 2.16.4, which was further
transformed into transcripts per kilobase million (TPM) tomake it
more comparable with themicroarray data. All the gene expression
data sets were transformed into a log2 base before further analysis.
Tomergemultiple gene expression data sets, a batch normalization
algorithm was employed to remove batch effects using the R
package sva 3.36.0.

Clinical and Genomic Data Collection
Up to date clinical information for the TCGA-STAD cohort was
downloaded and prepared using the R package TCGAbiolinks
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2.16.4 and that of other cohorts was directly downloaded as
attached files from GEO database or from the Supplementary
Materials in the related literature. Multi-omics data of the
TCGA-STAD cohort, including somatic mutation, copy
number variation (CNV), and DNA methylation (Illumina
Human Methylation 450K), were obtained from UCSC Xena
(https://xenabrowser.net/). All the multi-omics data analysis was
limited to samples with available mRNA data; therefore, we
analyzed 366 samples for somatic mutation, 374 samples for
CNVs, and 336 samples for DNA methylation.

Gene Set Variation Analysis
We downloaded 2922 canonical pathways gene sets integrated
from authoritative pathway databases, including the BioCarta
pathway database, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database, the PID pathway database,
the Reactome pathway database, and the WikiPathways pathway
database, from the Molecular Signatures Database (MSigDB,
https://www.gsea-msigdb.org/gsea/index.jsp) (24). The
normalized GSVA score of each canonical pathway gene set was
measured for each gastric cancer sample using the GSVA
algorithm in the R package GSVA 1.36.2 (25). The ECM score
was measured as the GSVA score of the core matrisome gene set
downloaded from MatrisomeDB (http://www.pepchem.org/
matrisomedb), an updated version with slight changes (26).

Gene Set Enrichment Analysis
The GSEA algorithm was used to analyze the enriched biological
processes between different groups. In brief, the differential genes
between two groups were measured with the R package limma
3.44.3, and were subsequently pre-ranked by log2 fold-change
and submitted to the R package clusterProfiler 3.16.1 to run the
GSEA. Results with a p-value < 0.05 and a q-value < 0.05 were
considered statistically significant.

Consensus Clustering for the Extracellular
Matrix Composition
To identify different ECM composition patterns and classify
patients into distinct groups for further analysis, Unsupervised
clustering analysis (based on the Euclidean distance and Ward’s
linkage) was carried out based on the expression of 274 kinds of
ECM in the merged data set and the ACRG cohort. The R
package ConsensuClusterPlus 1.52.0 was used to perform the
clustering procedure and to determine the optimal number of
clusters, which was repeated 1000 times to guarantee the stability
of classification.

Estimation Tumor Microenvironment
Cell Infiltration
To explore the immune cell infiltration composition of different
ECM clusters, the CIBERSORT algorithm was used to analyze
the proportions of 22 types of immune cells in each sample of the
ACRG cohort using the R package CIBERSORT (27).
CIBERSORT employed a deconvolution algorithm, along
with support vector regression, to work on 547 specific
immune cell-related genes and deconstructed 22 main types of
immune cells, including CD8+ T cells, regulatory T cells (Tregs),
Frontiers in Oncology | www.frontiersin.org 3
M0macrophages, M1 macrophages, and M2 macrophages. 1,000
permutations were performed to achieve robust quantification of
the relative abundance of each infiltrated immune cell.

Gene Silencing by Small Interfering
RNA Transfection
AGS and Hs746T cells were seeded in 6-well plates at 2 × 105 cell
per well overnight, and then treated with 2 µg of negative control
small interfering RNA (siRNA), FBN1-siRNA (targeting FBN1
encoding fibrillin 1) and LAMC1-siRNA (targeting LAMC1
encoding laminin subunit gamma 1) constructed by Shanghai
GenePharma Company (Shanghai, China) along with 5 mL
siRNA interferin reagent (Polyplus, New York, NY, USA).
After incubation at 37°C with 5% CO2 for 48 h, the efficiency
of gene silencing was determined using qRT-PCR.

Apoptosis Assay
For the apoptosis assay, cells were seeded into a six-well plate and
subjected to different treatments. The cell apoptosis assay was
operated according to the manual of the fluorescein
isothiocyanate (FITC) Annexin V Apoptosis Detection Kit (BD
Biosciences, San Jose, CA, USA). The results were analyzed using
FlowJo 10 software (FlowJo, Ashland, OR, USA).

Transwell Invasion Assay
For the Transwell invasion assay, 5 × 104 cells in a volume of
200 mL of serum-free medium were added into a Transwell
chamber containing a polycarbonate membrane with 8.0 mm
pores (353097; BD Falcon) and covered with a layer of
Matrigel matrix (56234; Corning Inc., Corning, NY, USA). The
chamber was then placed in a 24-well plate containing 600 mL of
medium with 10% fetal bovine serum and incubated at 37°C with
5% CO2. After 24 h of incubation, non-migrated cells were wiped
away and the remaining cells that had migrated through the
bottom of the chamber were fixed in 4% paraformaldehyde
followed by crystal violet staining and counting under
a microscope.

Statistical Analysis
Unpaired Student t tests and Wilcoxon rank-sum tests were used
to evaluate the statistical significance of normally distributed and
non-normally distributed variables, respectively, when comparing
two groups. Kruskal-Wallis tests and One-way analysis of variance
(ANOVA) was used to conduct difference comparisons of more
than two groups (28). Spearman and distance correlational
analyses were conducted using the R package Hmisc 4.4.1.
Objects with a Spearman correlation coefficient greater than 0.5
were deemed strongly correlated (29). The hazard ratios (HR) of
all prognostic factors was calculated using a univariate Cox
proportional hazards regression model. The “surv_cutpoint”
function of the R package survminer 0.4.8 was used to estimate
the best cut off point for prognostic factors according to their
relationship with the patients’ survival probability with the
maximum rank statistic. For the ECM score, patients were then
divided into ECM score low and ECM high groups according to
the best cut off point. Then, survival curves were drawn using the
Kaplan–Meier method. The statistical significance of the difference
September 2021 | Volume 11 | Article 753330
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in survival probability was estimated using the log-rank test. The R
package forestplot 1.10 was used to show the univariate prognosis
analyses of different groups of prognostic factors. The visualization
of ECM clusters was facilitated by the R package umap 0.2.6., to
perform dimensionality reduction. The networks of canonical
signaling pathways were constructed using the software Cytoscape
3.7.2 and the hub pathway was estimated by the Cytoscape plug-in
CytoHubba. The R package ComplexHeatmap 2.4.3 generated all
the heat maps. A Waterfall Chart was used to exhibit the overview
of gene mutation landscape, which was generated the R package
maftools 2.4.12. The statistical difference of CNVs between the ECM
low and ECM high group was determined using the R package
cnvaq 0.1.3. Then, the IGV 2.8.2 software was employed to visualize
the CNV landscape of the two groups.

All the above analyses were performed using the R 4.0.0
software. All the statistical analyses were two-sided and a
p-value < 0.05 was considered statistically significant.
RESULTS

Identification of the Core Matrisome as
the Major Factor Involved in Gastric
Cancer Progression
In total, eight eligible GC cohorts (GSE13861, GSE15459,
GSE26253, GSE26942, GSE29272, ACRG/GSE66229, GSE84437,
and TCGA-STAD) were used in our study. Six cohorts with
microarray data (GSE13861, GSE15459, GSE26942, GSE29272,
ACRG/GSE66229, and GSE84437) were merged into a meta-
cohort (n = 1323). GSE26253 was not merged because of its
limited number of gene probes and the sequence data of TCGA-
STAD cohort was dismissed because it was being incompatible
with the microarray data for technical reasons. Then, we calculated
the GSVA score of 2199 canonical pathways for all the cohorts
engaged in our study. First, the hazard ratio (HR) of the canonical
pathways for overall survival (OS) of patients with gastric cancer
were calculated in the meta-cohort (Figure 1A). The Wnt
signaling pathway, the common pathway of fibrin clot
formation, and autophagy were among the top risk pathways,
and the caspase pathway, tumor necrosis factor receptor 1
(TNFR1) pathway, and Fas signaling pathway were among the
top favorable pathways (Supplementary Figure S1B).

Then, we computed the HR of all the canonical pathways for
four cohorts with more than 300 tumor samples (TCGA-STAD,
ACRG/GSE66229, GSE84437, and meta-cohort; GSE26253 was
not engaged because of its limited number gene probes). The
intersection of those pathways, 147 in total, were considered to
correlate stably with patients’ prognosis (Figure 1B and
Supplementary Table S2). These 147 common pathways were
further used to perform unsupervised hierarchical clustering for
1323 tumor samples in the meta-cohort. The result showed that
these samples could be divided into three distinct subclusters,
which displayed significant differences in survival (log-rank test,
p-value < 0.001; Figure 1D).

To depict the biological processes that characterized the three
pathway clusters, we performed GSEA for each cluster against
Frontiers in Oncology | www.frontiersin.org 4
the whole meta-cohort. The results showed that the top 10 gene
ontology (GO) biological processes enriched in pathway cluster
A primarily correlated with extracellular matrix organization and
those of pathway cluster C were primarily correlated with mitosis
and DNA replication (Supplementary Figures S1C, D),
suggesting the importance of these pathways in gastric cancer
progression. No pathway was enriched in pathway cluster B,
implying it was intermediate between pathway cluster A and C.

To identify the core pathway involved in the OS of patients with
gastric cancer, we calculated the Spearman correlation coefficient
among the 147 common pathways in the four cohorts that had
more than 300 tumor samples (Supplementary Table S3). Only
those pathways with absolute value of the Spearman correlation
coefficient greater than 0.5 were considered strongly correlated. The
connectivity of each pathway in the correlation network was
estimated for the four cohorts. Then, we constructed the
clustering network of prognostic pathways for the meta cohort
according to the intersection of these gene sets (Figure 1C). It
showed that the most enriched pathways were extracellular matrix
remodeling related pathways and glycosaminoglycan metabolism
related pathways with higher degree and more closely related to
prognosis followed by apoptosis related pathways. Moreover, the
top 10 pathways ranked by degree for each cohort were estimated
(Supplementary Figures S1E–H). The top four pathways with
highest mean degree among the four cohorts were the core
matrisome, ECM glycoproteins, ECM proteoglycans, and elastic
fiber formation, all of which were included in the top 10 pathways in
each of the four chosen cohorts, again indicating the key role of the
ECM in gastric cancer progression.

Considering the striking performance of the ECM among all
the prognostic pathways, we extracted the gene set of “core
matrisome” from MatrisomeDB, consisting of all the ECM-
related genes, including those encoding 195 ECM glycoproteins,
44 ECM collagens, and 35 proteoglycans (Supplementary Table
S4). These ECM-related genes were then used to cluster the meta-
cohort into three groups named ECM cluster A, ECM cluster B,
and ECM cluster C (Figure 1F); the ECM clustering shared great
similarity with the pathway clusters (Supplementary Table S5;
Kappa value = 0.69, p-value < 0.0001). As expected, the three ECM
clusters displayed significant differences in survival (Figure 1E;
log-rank test, p-value < 0.001). In summary, this evidence strongly
supported the core matrisome as the major pathway in gastric
cancer progression.

Clinical and Different Biological Progress
Traits of ECM Phenotypes in ACRG Cohort
To explore the clinical and transcriptomic characterization of
ECM phenotypes, we chose the ACRG cohort for further study.
Similarly, we clustered the 300 samples into three pathway clusters
with 147 common prognostic pathways and three ECM clusters
with 274 ECM genes (Figures 2A, B and Supplementary Figures
S2A–E). There was high consistency between the pathway clusters
and the ECM clusters (Supplementary Table S6; kappa value = 0.68,
p-value < 0.0001), and different ECM clusters showed great
differences in OS and relapse free survival (RFS) (Figure 2C, log-
rank test, p-value = 7.4 × 10−7; Supplementary Figure S2H, log-rank
test, p-value = 7 × 10−7). The most enriched biological processes still
September 2021 | Volume 11 | Article 753330
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shared great similarity with those in themeta-cohort (Supplementary
Figures S2F, G).

The GSVA score of the “core matrisome” was used as the
ECM score for the gene set that consisted of all the ECM genes
and could reflect the ECM deposition status. We also tried to
shorten this list to obtain a more precise list of ECM-related
genes by taking the intersection of differential genes between
ECM score high and the ECM score low group in the above four
cohorts (Supplementary Table S7). However, the shortened
Frontiers in Oncology | www.frontiersin.org 5
gene list was less competent in predicting prognosis. The three
ECM clusters had distinct ECM scores (Supplementary Figure
S2I). As expected, the ECM score could predict OS (Figure 2D;
HR = 2.19, log-rank test, p-value = 2.8 × 10−6) and RFS
(Supplementary Figure S2J; HR = 2.47, log-rank test,
p-value = 5.6 × 10−7). Tumors at stage III/IV had higher ECM
scores than those of tumors at stage I/II (Figure 2E). Molecular
subtypes analysis showed that most of ECM cluster C overlapped
with the EMT subtype and none of ECM cluster A belonged to
A

B

C F

D E

FIGURE 1 | The core matrisome is major pathway involved in gastric cancer progression. (A) Volcano plot of prognostic pathways. The x-axis shows the log2
transformed hazard ratio and the y-axis shows −log10 transformed log rank p-values. Red dots indicate risk pathways; green dots indicate favorable pathways; and
Grey dots indicate non-prognostic pathways. (B) Venn plot of the prognostic pathways in the TCGA-STAD cohort, ACRG cohort, GSE84437 cohort, and the meta-
cohort. (C) Network of prognostic pathways in the meta-cohort. Each dot represents a prognostic pathway in gastric cancer. A line connecting two pathways means
the Jaccard’s index between gene sets of the two pathways. The size of the dot represents the degree of the pathway in correlation network of these pathways. The
color filling the dot shows the −log10 transformed p-value of univariate cox regression for the GSVA score of the corresponding gene set. (D) Kaplan–Meier curves
for the overall survival of 1323 patients in the meta-cohort with 3 distinct pathway clusters. The sample size of pathway clusters A, B, and C were n = 397, n = 620,
and n = 306, respectively. Log-rank test, p -value = 8.7 × 10−13. (E) Kaplan–Meier curves for overall survival of 1323 patients in the meta-cohort with 3 distinct ECM
clusters. The sample size of ECM clusters A, B, and C were n = 511, n = 521, and n = 291, respectively. Log-rank test, p-value = 3.4 × 10−11. (F) Heat map
showing the unsupervised clustering of 274 types of ECM for 1323 patients in the meta-cohort. The ECM clustering resembled the pathway clustering to a great
extent. The hazard ratio and subtypes of ECM in the meta cohort are also shown in annotation on the right.
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FIGURE 2 | Clinical and transcriptome characteristics of ECM clusters in the ACRG cohort. (A) Heat map showing unsupervised clustering of 274 types of ECM for
300 patients in the ACRG cohort. Tumor stage, Lauren subtype, ACRG subtype I, ACRG subtype II, Pathway cluster, ECM level, and ECM score are shown as patient
annotation. The hazard ratio and subtypes of ECM in the ACRG cohort are also shown in the ECM annotation. (B) A UMAP plot of 300 patients by dimensionality
reduction of 274 types of ECM showing 3 distinct ECM clusters. (C) Kaplan–Meier curves for overall survival of 300 patients in the ACRG cohort with 3 distinct ECM
clusters. The sample size of ECM clusters A, B, and C were n = 163, n =9 6, and n = 41, respectively. Log-rank test, p-value =7.4 × 10−7. (D) Kaplan–Meier curves for
the ECM score by the best cut off value in the ACRG cohort. The numbers of patients in the ECM score high and ECM score low groups were n = 68 and n = 232,
respectively. Log-rank test, p-value = 3.8 ×10−6. (E) Violin plot showing that the ECM scores are different among different tumor stages. Kruskal–Wallis test, p-value = 4.5
× 10−5. The ECM score of stage I and II is lower than that in stage III and IV, Student’s t test, p-value = 1.8 × 10−6. (F) Alluvial diagram showing the different ECM
clusters in the different ECM levels, ACRG subtype I, and ACRG subtype II. (G) Stacked bar chart showing the proportion of ACRG subtypes in the different ECM
clusters. (H, I) Different biological status and immune cell infiltration patterns of ECM clusters. The top and bottom of the boxes represent the interquartile range of the
values. The thick lines in the middle of the boxes represent the median values. The black dots show the outliers. The statistical differences among different ECM clusters
were evaluated using the Kruskal−Wallis test. Statistical p-value (*P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001). ns, not significant.
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the EMT subtype. Additionally, a higher ECM score was highly
associated with a mesenchymal phenotype and diffuse type of
Lauren class (Figures 2F, G and Supplementary Figure S2K) (8).
Activation of the EMT program could permit tumors to enter the
cancer stem cell (CSC) state, which is resistant to most conventional
therapeutics and themajor reason for failure of eradicating carcinoma
(30, 31). Thus, we deduced that ECM deposition constructed the
niche for CSC, which could hinder the efficacy of
multiple therapeutics.

The core matrisome turned out to be the major factor in gastric
cancer progression; therefore, we characterized the ECM
phenotypes with relevant biological processes involved in cancer
progression (Supplementary Table S8) (32). The results showed
that almost all chosen biological processes exhibited significant
differences among the three ECM clusters (Figure 2H). The ECM
score correlated positively with EMT-related processes and
negatively with processes involved in DNA replication and DNA
repair, which happened to be the feature of CSCs (Supplementary
Figure S2A and Supplementary Table S9). We also analyzed the
expression of transforming growth factor beta (TGFb)-EMT
pathway-related genes (VIM, COL4A1, PDGFRA, SMAD9,
TGFB2, TWIST1, ZEB2, CDH1), DNA damage repair-related
genes (BRCA1, BRCA2, MLH1, MSH2, MGMT, APEX1, FEN1),
and immune checkpoint-related genes (CD80, CD86, CTLA4,
HAVCR2, IDO1, LAG3, PD1, PDL1, TIGIT, TNFRSF9) in the
ECM clusters of the ACRG cohort. The results were consistent
with the related biological processes (Supplementary Figures
S3C–E).

Additionally, the results indicated that different ECM
phenotypes showed different immunocompetences. Therefore,
we analyzed the immune infiltration pattern of the ECM
phenotypes. ECM cluster C showed highest level of M2 and T
gamma delta cells, which were identified risk factors for the OS of
patients with gastric cancer, and lowest level of activated
dendritic cells, M0 macrophages, activated mast cells, and
neutrophils, which were identified as favorable factors for the
OS of patients with gastric cancer (Figure 2I) (9).

Clinical and Multi-Omics Traits of ECM
Phenotypes in the TCGA Cohort
Benefitting from multi-omics data, the TCGA cohort contains
data related to constructed comprehensive molecular subtypes for
gastric cancer, including genome stable (GS), microsatellite
instability (MSI), EBV infection, and chromosomal instability
(CIN). A higher ECM score was associated with the GS subtype
Frontiers in Oncology | www.frontiersin.org 7
and unfavorable prognosis, whereas a lower ECM score was
associated with the EBV or MSI subtypes and favorable
prognosis (Figure 3A, log-rank test, p-value = 0.0046; Figure 3B).

Gene instability, evaluated using the tumor mutation burden
(TMB), would result in more neo-antigens, increasing the
opportunity for immune recognition and clearance (33, 34).
Besides, chemotherapeutic drugs function through damaging
DNA integrity of rapidly cycling cancer cells (35). Thus,
evaluation of the gene mutation load is very important for the
precise administration of medication. First, we found that the
high ECM score group had a lower TMB than the low ECM score
group in the TCGA cohort (Figure 3C; Wilcoxon rank sum test,
p-value = 2.9 × 10−7). In addition, the TMB correlated negatively
with the ECM score (Figure 3D; Spearman correlation, r =
−0.38, p-value = 6.4×10−14). Subgroup analysis showed that the
correlation between ECM score and TMB differed in different
molecular subtypes (Supplementary Figures S4A–E), which was
highest in GS group (Spearman correlation, r = −0.5, p-value =
0.0014) and insignificant in MSI group (p>0.05). Furthermore,
the low ECM score group presented a more extensive TMB than
the high ECM score group for the levels of individual altered
genes in the top 30 most frequently mutated genes (Figure 3E).
According to Figure 2H, the ECM score correlated negatively
with DNA replication, which might explain why a higher ECM
score was associated with a lower TMB. Similarly, the high ECM
score group tended to have less gain or loss in copy number and
more wild-type genes (Figure 3F). In addition, the total CNV
was also correlated negatively with the ECM score (Figure 3G;
Spearman correlation, r= −0.39, p-value = 8.1×10−15), and the
results in different molecular subtypes were about the same
(Supplementary Figures S4F–J).

Epigenetic abnormalities are widespread among all tumor
types, which also play an important role in drug resistance and
immune surveillance (36–38). Therefore, we examined the
association of the ECM score with DNA methylation.
Interestingly, the high ECM score group had a lower level of
DNA methylation in all DNA parts except for 3’ untranslated
region, and the CpG island and CpG shore, which are associated
with inhibiting gene expression, were enriched in the low ECM
score group (Figure 3H and Supplementary Figures S4K–L).
Furthermore, we compared the CpG island abundance between
the high ECM score and the low ECM score group. GSEA
enrichment results showed that, in the high ECM score group,
the most hypomethylated biological processes were synapse
development and cell differentiation, which may lead to EMT
September 2021 | Volume 11 | Article 753330
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FIGURE 3 | Characteristics of the ECM pattern in TCGA-STAD molecular subtypes and multi-omics level. (A) Kaplan–Meier curves for the ECM score by best cut off
value in the TCGA-STAD cohort. The numbers of patients in the ECM score high and ECM score low groups were n = 264 and n = 111, respectively. Log-rank test,
p-value = 0.0046. (B) Violin plot showing that the ECM scores are different among different molecular subtypes in the TCGA-STAD cohort. Kruskal−Wallis test, p-value =
4.5 × 10−9. MSI (n = 61), CIN (n = 207), HM-SNV (n = 7), GS (n = 45), EBV (n = 27). (C) Difference in the TMB between the ECM high and ECM low groups. The
scattered dots indicate the TMB of each sample. The top and bottom of the boxes represent the interquartile range of the values. The thick lines in the middle of the
boxes represent the median value. Wilcoxon rank sum test, p-value = 2.9 × 10−7. (D) Scatter plot depicting the correlation between the ECM score and the TMB.
Spearman correlation analysis, R = −0.38, p-value = 6.4 × 10−14. The color of the dots represents the molecular subtypes annotated by the legend. (E) An Oncoprint
showing the gene mutation map of the ECM high (right, red) and ECM low (left, blue) groups. Each column represents a patient and the barplot in the right of each group
indicates the gene mutation frequency of each gene in the corresponding group. The barplot on the top shows the TMB. The gene mutation types are annotated in the
legend. Molecular subtypes and Lauren subtypes are also shown as patient annotation. (F) CNV pattern of the ECM high and ECM low groups. The length of the plot
represents the whole genome and each vertical line represents a gene; red for gain of copy number and blue for loss of copy number. The penultimate line mark the
genes with differential copy number between the two groups; a red stripe for higher and a blue stripe for lower copy number in the ECM high group. The last line
indicates the −log10 transformed chi-squared test p-value of the copy number difference. (G) Scatter plot depicting the correlation between the ECM score and CNV.
Spearman correlation analysis, R = −0.39, P = 8.1 × 10 −15. The color of the dots represents the molecular subtypes annotated by the legend. (H) Heat map exhibiting
the DNA methylation pattern of the ECM high and ECM low groups. The locations of each DNA methylation site are indicated in the left annotation. The molecular
subtype is shown as patient annotation. (I) GSEA enrichment of CpG islands in biological processes between ECM high group and ECM low groups. The upper part
shows the top10 hypermethylated biological processes and the lower part shows the top10 hypomethylated biological processes. The enrichment plot, normalized
enrichment score (NES), p value and false discovery rate (FDR) are shown in the right.
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and cell stemness, and the most hypermethylated biological
processes were less significant to be mentioned (Figure 3I).
Global hypomethylation is an important feature of naïve
pluripotent cells and complex regulation of the epigenome also
promotes CSCs formation (39, 40). Therefore, we speculated that
ECM deposition might promote CSC formation through an
epigenetic mechanism.

The ECM Score Predicts
Chemotherapeutic Benefits
Upon dividing the specific data sets by the best cutoff value of the
ECM score, significant differences in OS were observed between
the low and high ECM score groups for all gastric cancer data sets
except GSE29272 (HR, 1.43; 95% CI, 0.99–2.07) (Figure 4A and
Supplementary Table S10). Meanwhile, the prognostic value of
the ECM score was also validated in five other independent data
sets (GSE13861: HR, 3,21; 95% CI, 1.47–7.0; GSE15459: HR, 2.69;
95% CI, 1.57–4.6; GSE26253: HR, 2.19; 95% CI, 1.62-2.97;
GSE26942: HR, 2.67; 95% CI, 1.75–4.08; GSE84437: HR, 2.15;
95% CI, 1.52–3.04; Supplementary Figures S5C–G). Moreover,
the ECM score could also predict poor prognosis in each stage of
gastric cancer (stage I: HR, 3.48; 95% CI, 1.91–6.34; stage II: HR,
2.16; 95% CI, 1.54–3.04; stage III: HR, 1.71; 95% CI, 1.40–2.09; and
stage IV: HR, 2.03; 95% CI, 1.55–2.68). These results suggested
that the ECM score could be prognostic factor that is independent
of tumor stage in gastric cancer (Supplementary Figures S5A, B).

Next, we investigated the performance of the ECM score in pan-
cancer. We evaluated the predictive value of the ECM score for 14
types of solid tumors in the TCGA cancer cohort, comprising 6251
samples in total (Supplementary Table S11). The results showed
that the ECM score was a risk factors for eight types of cancer in the
TCGA cohorts, including thyroid cancer, brain lower grade glioma,
skin cutaneous melanoma, uterine corpus endometrial carcinoma,
ovarian serous cystadenocarcinoma, glioblastoma, kidney renal
clear cell carcinoma, and lung squamous cell carcinoma, but was
irrelevant to other types of cancer, which indicated the biological
heterogeneity of the ECM among distinct cancer types (Figure 4B).

Chemotherapy is a crucial treatment to supplement surgery in
patients with gastric cancer. However, currently, there is no
biomarker that can effectively predict a patient’s chemotherapy
Frontiers in Oncology | www.frontiersin.org 9
response and even guide the choice of chemotherapeutic regimens.
Our results demonstrated that a higher ECM score was associated
with the EMT molecular subtype in the ACRG cohort and with
the GS molecular subtype in the TCGA-STAD cohort, which were
tolerant to chemotherapy. To explore the capacity of the ECM
score to predict the chemotherapy response, we first evaluated the
best cut off value of the ECM score for patients in the TCGA-
STAD cohort who had received chemotherapy according to their
prognosis, which could divide the TCGA-STAD cohort into ECM
low and ECM high groups. Combined with the chemotherapeutic
history, the best cut off value further stratified the TCGA-STAD
cohort into Chemo+/ECM high, Chemo−/ECM high, Chemo+/
ECM low, Chemo−/ECM score low groups. Interestingly, survival
analysis indicated that patients with a low ECM score could benefit
fromchemotherapy (Figure4C; log-rank test, p-value=0.019),while
there was no significant difference between the chemotherapy and
non-chemotherapy group even when the sample size was larger
(Figure4D; log-rank test, p-value>0.05). Besides,morepatientswith
a low ECM score showed a complete response to chemotherapy and
less progressive disease compared with patients with a high ECM
score (Supplementary Figure S5H). To further verify this result,
stage II, III, or IVgastric cancerwithoutdistantmetastasis (n=180) in
three cohorts [GSE26899 for the KUGH cohort, GSE26901 for the
KUCM cohort, and GSE13861 for the YUSH cohort;
(Supplementary Table S12)] with complete chemotherapy
information were integrated for survival analysis (log-rank test, p-
value = 6.5 × 10-6) Likewise, patients with a low ECM score could
achieve a satisfactory chemotherapy response (Figure 4E; log-
rank p-value = 0.00019), while patients with a high ECM score
could not (Figure 4F; log-rank test, p-value > 0.05). Our results
strongly supported the view that the ECM score could predict
poor prognosis and the response to chemotherapy.

In Vitro Study Indicated That the ECM
Could Influence the Invasion and
Chemoresistance of Gastric Cancer Cells
To further verify our analysis, we chose two representative ECM
genes for the in vitro experiment. Firstly, we conducted Spearman
correlation analysis for two ECM genes according to their
expression levels in the TCGA-STAD, ACRG/GSE66229,
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GSE84437, and the meta-cohort and submitted the correlation
networks to Cytoscape to find a hub gene for ECM deposition
(Supplementary Figures S6A–E and Supplementary Table S13).
FBN1was identified as the only common top 10 hub gene among all
the cohorts. Fibrillin 1 serves as scaffold for elastic fibers and as a
reservoir for growth factors like TGFb (Figure 5A) (41, 42). Then,
we performed univariate Cox regression for all the ECM genes in
the meta-cohort and identified LAMC1, which encodes laminin
subunit gamma 1, an essential component of the basement
membrane that is involved in multiple types of cancer
progression (43–46), as the risk factor with the lowest p-value
(Figure 5B). Both genes correlated significantly with poor prognosis
in the meta-cohort (Figures 5C, D; LAMC1: HR = 1.71, log-rank
Frontiers in Oncology | www.frontiersin.org 10
test, p-value < 0.0001; FBN1: HR = 1.74, log-rank test, p-value <
0.0001). After knocking down the expression of LAMC1 and FBN1
separately in Hs746T cells, a metastatic and mesenchymal like cell
line, the invasiveness of Hs746T cells was compromised
significantly. Similar but less conspicuous results were when the
experiment was repeated in AGS cells, a primary and epithelial like
cell line (Figures 5E, F). We speculated that relative lower
expression of the targeted genes in AGS cells accounted for the
less significant influence of treatment. However, it is plausible to
claim that the ECM could have impact on the EMT phenotype. To
check whether the ECM could influence the chemotherapeutic
response, we treated Hs746T and AGS cells with 10 mM 5
fluorouracil (5FU), a first-line chemotherapy drug, (1) combined
A B

C E FD

FIGURE 4 | ECM score is a prognostic biomarker and could predict chemotherapy response. (A) Forest plot showing the difference in prognosis between ECM
high and low groups in independent gastric cancer cohorts and different tumor stages. The horizontal coordinates represent the hazard ratio of the ECM high group
relative to the ECM low group and the horizontal line represents the 95% confident interval of the hazard ratio. The size of the dot indicates the sample size of the
independent group. (B) Forest plot showing the difference in prognosis between the ECM high and low groups in 14 types of solid tumors from the TCGA datasets.
The horizontal coordinates represent the hazard ratio of the ECM high group relative to the ECM low group and the horizontal line represents the 95% confident
interval of hazard ratio. The size of the dot indicates the sample size of the independent group. (C) Kaplan–Meier curves for overall survival of the ECM high group in
the TCGA-STAD cohort grouped by chemotherapeutic history. CHEMO-/ECM high, n = 157; CHEMO+/ECM high, n = 121. Log-rank test, p-value = 0.19.
(D) Kaplan–Meier curves for overall survival of the ECM low group in the TCGA-STAD cohort grouped by chemotherapeutic history. CHEMO−/ECM low, n = 51;
CHEMO+/ECM low, n = 46. Log-rank test, p-value = 0.019. (E) Kaplan–Meier curves for overall survival of the ECM high group in the KUGH, YUSH, and KUCM
cohorts grouped by chemotherapeutic history. CHEMO−/ECM high, n = 19; CHEMO+/ECM high, n = 50. Log-rank test, p-value = 0.27. (F) Kaplan–Meier curves for
overall survival of the ECM low group in the KUGH, YUSH, KUCM cohort grouped by chemotherapeutic history. CHEMO−/ECM low, n = 29; CHEMO+/ECM low,
n = 82. Log-rank test, p-value = 0.00019.
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with LAMC1 or FBN1 knockdown for 48 h. Knocking down
LAMC1 or FBN1 did not influence the survival of Hs746T or
AGS cells. However, knocking down LAMC1 or FBN1, or both
could sensitize Hs746T cells to 5-FU; the same phenomenon was
observed in AGS cells but with less significance. In addition, the
mesenchymal-like Hs746T cell line was more tolerant to 5-FU than
the epithelial-like AGS cell line (Figure 5G).
DISCUSSION

Growing evidence suggests that the ECM is an indispensable but
enigmatic component of the tumor microenvironment (13, 15).
Frontiers in Oncology | www.frontiersin.org 11
Aberrant constitution of the ECM is involved in all the cellular
processes throughout cancer initiation, progression, and
dissemination, and, in most cases, correlated with more
aggressive tumors and poorer prognosis (19). In breast cancer,
researchers found that decellularized ECM from tumor-bearing
and obese mammary glands drives triple-negative breast cancer
(TNBC) cell invasion, and collagen VI was found to be the driver
protein by proteomic analysis (47). In colon cancer, Romero-
López et al. (48) extracted and compared ECM from normal
human colon and colon tumor that had metastasized to liver and
even seeded tumor cells in these ECM. The results showed that
cells seeded in tumor ECM had higher levels of free NADH along
with glycolytic rate and more capable of inducing tumor-like
A B C D
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FIGURE 5 | ECM could influence the invasion and drug tolerance of gastric cancer cells. (A) A Venn diagram showing the intersection of top 10 hub ECM genes of
four cohorts (TCGA-STAD, ACRG, GSE84437 and meta-cohort). FBN1 is the only common hub ECM gene in the four cohorts. (B) Univariate Cox regression results
of all ECM in the meta cohort. The top 10 ECM genes with the lowest p values are shown. The horizontal bars shows the −log10 p-value of the univariate Cox
regression and the horizontal coordinates of the dots show the b value of univariate Cox regression. (C, D) Kaplan–Meier curves for FBN1 and LAMC1 by best cut
off value in the meta cohort. FBN1: HR, 1.74, Log-rank p-value = 1.1 × 10−11. LAMC1: HR, 1.71, Log-rank p-value = 3.1 × 10−11. (E, F) Transwell invasion assay
performed in AGS and Hs746T cells transfected with control siRNA, FBN1 siRNA, or LAMC1 siRNA. (G) Apoptosis was determined using fluorescence activated cell
sorting (FACS) analysis by Annexin V-FITC and propidium iodide (PI) co-staining (left panel), and Annexin V+ cell populations were defined as apoptotic (right panel).
Statistical p-value (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).
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vasculature compared with those seeded in normal ECM.
Contradictorily, in pancreatic ductal adenocarcinoma, decreasing
ECM with an anti-LOXL2 antibody in vivo boosted tumor growth
and diminished overall survival, suggesting a protective role of
ECM (20). Also, in melanoma, there is evidence that aging
fibroblasts were less capable of secreting ECM, especially
HAPLN1, resulting in a more aligned ECM that promoted
metastasis of melanoma cells (49). Hence, it seems that the ECM
also share heterogeneity among different tumor types and the
interplay between ECM and tumor cells is still intricate.

Additionally, the ECM is also an interference factor during anti-
tumor therapy. Excessive ECM deposition and stiffening in solid
tumors could also induce physical and biological barriers for
chemotherapy, a major problem faced by current cancer research.
For example, ECM deposition in liver metastasis of colorectal tumor
could enhance angiogenesis and anti-angiogenic therapy resistance,
while inhibiting ECM deposition with drugs targeting the renin-
angiotensin system could reverse resistance to anti-angiogenic
bevacizumab (22). Also, decreasing ECM stiffness with lysyl
oxidase (LOX) inhibitors increased drug penetration and
overcame chemotherapy resistance in triple negative breast cancer
(50). However, to date, the clinical andmulti-omics characterization
of the ECM in gastric cancer and the potential of the ECM to predict
prognosis and chemotherapy response had not yet been
systematically explored, neither did any clinical trials investigate
the role of ECM deposition in anti-tumor therapy resistance.

Exploiting GSVA algorithms, we scored all the gene set
canonical pathways and ECM was identified as core factor in
gastric cancer progression with highest degree among all
prognostic pathways in the overlap of four cohort. Then, we
resolved the ECM constitution pattern and depicted the overall
landscape of the clinical and multi-omics characterization of the
ECM in gastric cancer. Integrated analysis detected that the ECM
score performed well to predict the prognosis and chemotherapy
response in gastric cancer. The ECM score was a robust risk
factor in different stage of gastric cancer and in different cohorts.
It was verified in both the TCGA-STAD cohort and the KUGH,
YUSH, and KUCM cohorts that chemotherapy showed a poor
effect in patients with gastric cancer with a high ECM score, the
result of which might be instructional for precision medicine.

In the ACRG cohort, the ECM score was exclusively high in
patients with the EMT molecular subtype. Previous studies had
identified EMT or a mesenchymal phenotype as predicators for
poor prognosis and resistance to anti-cancer drug therapy in
multiple cancer types (8, 30, 51–53). The EMT-like change could
also enable cancer cells to acquire a cancer stem cell phenotype,
which has received unanimous acceptance as the backbone of
drug resistance (30). Counterintuitively, our results showed that
cancers with a higher ECM score showed a remarkably low level
of proliferation activity, which might be ascribed to the
dominant state of CSCs. There is considerable evidence
demonstrating that ECM remodeling could be the upstream
signal that regulates the EMT or CSCs phenotype through a
mechanochemical pathway in cancer cells (15, 54–56).

In the TCGA-STAD cohort, the ECM score was exclusively
high in patients of the GS molecular subtype. The GS molecular
Frontiers in Oncology | www.frontiersin.org 12
subtype is characterized by a low TMB. Most chemotherapy
imposes DNA damage on rapidly proliferating cancer cells that
lack adequate DNA repair (35). Hence, we deduced that gene
stability and relatively slow DNA replication could restrain the
effectiveness of chemotherapeutic drugs, which happened to be
the feature of those cancers with a high ECM score. Our results
demonstrated that the ECM score was closely related to the TMB
as well as CNV, further explaining its capacity to predict
drug response.

The role of non-genetic or epigenetic mechanisms to regulate
drug resistance is vital but poorly understood. Aberrant
epigenetic regulation is common among all tumor types and
has long been considered as a regulator of drug resistance, and
several epigenetic therapies have been involved in preclinical
trials (57–60). Our data indicated that ECM deposition in gastric
cancer might alter epigenetic states, thus influencing the drug
response. Determining the interconnection between ECM
remodeling and epigenetic alteration would deepen our
understanding of drug-tolerant cancer.

Increased use of immunotherapy has revealed the presence of
immune tolerance (61–64). It is not surprising that in accordance
with our results, the tumor-associated ECM could also have
immune modulatory effects and could regulate the migration and
localization of immune cells (65, 66). Actually, combined treatment
targeting both the immune and stroma microenvironment could
lead to remarkable therapeutic effects (67, 68). Finally, we chose
two representative ECM genes, LAMC1 and FBN1, to further verify
our findings. Knocking down these two genes impaired the
invasion ability of cancer cells and sensitized cancer cells to
chemotherapeutic drugs, which, to some extent, corroborated
our analyses.

In short, in the current study, gene expression analysis
identified ECM as the driving factor involved in gastric cancer
progression. Hence, we systematically discussed the landscape of
clinical, biological, and multi-omics characterization of the ECM
constitution pattern in gastric cancer and found a higher ECM
score is tightly associated with an epithelial to mesenchyme
transition (EMT) phenotype, a gene stable (GS) molecular
subtype, markedly lower somatic mutation rates, and a lower
level of DNA methylation. In addition, the ECM score was
identified as robust prognostic biomarker and predictive factor
for the response to chemotherapy resistance, which was further
verified experimentally. Our findings imply that ECMmay foster
chemotherapy resistance in gastric cancer genetically and
epigenetically. Further investigation would help to solve the
enigma of chemoresistance acquisition. The establishment of
ECM score could also help to design personalized and precise
chemotherapy and provide inspiration to develop combination
therapy. Nevertheless, our study has some limitations as well.
Detailed information regarding the treatment history of the
enrolled patients with gastric cancer was inadequate, such as
the prescription and duration of the chemotherapy, and the
receipt of any other treatment, which would interfere with the
precise identification of the best cut off point. Further treatment
information gathering would help to refine the prediction model.
Additionally, tumor heterogeneity is the main cause of
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. ECM Landscape in Gastric Cancer
chemotherapy tolerance, which means that sequencing of mixed
tumor tissues might inevitably lead to bias. Standardized and
sub-regional sample collection and, if conditional, single cell
sequencing, would ensure an in-depth exploration of the role of
the ECM in chemoresistance.
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