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Abstract

Genomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental condi-
tions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction
models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models
for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series
of treatment-inducing environmental conditions. The models are based on 7 different statistical methods built with genomic markers and
ChlF data used as predictors. This comparative analysis demonstrates that the best-performing phenomic prediction models show higher
predictability than the best genomic prediction models for the considered traits and environments in the vast majority of comparisons
within 3-way hybrid populations. In addition, we show that phenomic prediction models are transferrable between conditions but to a
lower extent between populations and we conclude that chlorophyll a fluorescence data can serve as alternative predictors in statistical
models of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to further improve the
prediction of growth-related traits for crops.
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Introduction
Food production must increase by 60–70% by 2050 to feed the in-

creasing world’s population. In parallel, climate change is

expected to reduce the yields of key crops (Arora 2019). One way

of addressing these challenges is by devising policies conducive

to sustainable agricultural production, which competes for

resources (e.g. arable land and water) with other industrial sec-

tors. Another way that makes use of the growing phenotypic and

genotypic data is to speed up the breeding of crop varieties (i.e.

genotypes), which are resilient to environmental cues exacer-

bated by climate change (e.g. water availability, ambient temper-

ature), while increasing the yield.
Before the era of genomic prediction (GP) (Meuwissen et al.

2001), the development of improved plant varieties has mostly re-

lied on classical breeding whose implementation is limited due to

the long selection cycles, high phenotyping costs, reduced reli-

ability when dealing with low heritable traits, and sensitivity to

environmental fluctuation (Tuberosa 2012). GP aims to overcome

these limitations by combining genotypic data and phenotypic

data of the training population through a predictive model that

in turn is used to compute genomic estimated breeding value for
individuals in a population with genotypic data but yet to be phe-
notyped (Poland et al. 2012). With the proliferation of cost-
effective high-throughput genotyping platforms, GP is rapidly
changing breeding perspectives in both crop (Jannink et al. 2010;
Heslot et al. 2015) and animal (Goddard and Hayes 2007; Hayes
et al. 2009) breeding.

Furthermore, the genetic evaluation in animal breeding when
full pedigree and genomic information are combined (Dou et al.
2017) and when some genotypes are missing (Christensen and
Lund 2010) paved the way for their application in crop breeding.
In the latter and for low heritable traits, it has been shown that
combining pedigree information and single-nucleotide polymor-
phism (SNP)-based relationships in a kinship matrix can improve
the predictability of GP models (Velazco et al. 2019). However,
classic estimators for genetic relatedness using molecular
markers are less effective for low-coverage sequencing data,
which often exhibit high levels of genotype uncertainty and miss-
ing data (Dou et al. 2017); moreover, access to high-quality refer-
ence genomes still remains a challenge for several species (e.g.
polyploid species).
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Effective growth and performance evaluation using noninva-
sive methods has been identified as one of the key challenges in
plant and crop improvement programs (Baker and Rosenqvist
2004). High phenotyping costs and developmental delays to the
emergence of important traits in perennial crops, such as coffee,
justify the popularity of GP. In the quest for alternatives to geno-
typing, using endophenotypes as predictors has been recently
proposed and used (Fernandez et al. 2016; Guo et al. 2016; Schrag
et al. 2018). The resulting findings suggest that phenomic predic-
tion (PP), based on the availability of phenotypes used as predic-
tors in the training and testing population, may be a suitable
alternative to GP.

Chlorophyll a fluorescence (ChlF) has been routinely used for
many years to noninvasively monitor the photosynthetic perfor-
mance of plants (Baker 2008) and to evaluate plant tolerance to
abiotic stressors (Stirbet et al. 2018). In a recent study (Gamboa-
Becerra et al. 2021), the effectiveness of this technique in assess-
ing the physiological state of coffee plants subjected to a combi-
nation of biotic and abiotic stress has also been demonstrated.
The observations that ChlF measurements can be used to esti-
mate the operating quantum efficiency of electron transport in
coffee leaves that directly relates to coffee plant health and oxi-
dative stress level have led to the use of this trait in examining
photosynthetic performance in contrasted field situations
(Toniutti et al. 2017, 2019). Furthermore, near-infrared reflectance
spectroscopy (NIRS) wavelength data on wheat grain and leaf tis-
sues have been shown to result in PP models that outperform GP
models (Rincent et al. 2018).

Because changes in fluorescence induced by the illumination
of dark-adapted leaves are qualitatively correlated with changes
in CO2 assimilation, under some circumstances, fluorescence
emissions in photosynthetic organisms could be correlated to
their photosynthetic rates (Stirbet et al. 2018). Using this ap-
proach, we hypothesize that ChlF transients can be employed in
high-throughput screens for growth and vigor in coffee. The
objectives of our study are to assess if there is a relation between
the photosynthesis efficiency and the vigor/growth of coffee trees
in different contexts that can potentially be used in breeding pro-
gram. To this end, we make use of facile to obtain phenomic data
(i.e. ChlF) and compare the performance of GP and PP for 3
growth-related traits from 2 three-way hybrid (H3W) coffee popu-
lations. The resulting models are used to understand the impact
of conditions that mimic different coffee-growing contexts.

Materials and methods
H3W populations
Clonally propagated F1 hybrid “Centroamericano” (T.05296 �
Rume Sudan, henceforth H1) plants were used as maternal donor
in crosses with Ethiopian lines ET47 and Geisha 3, producing 2
segregating populations (H3W). Note that T.05296 (a Sarchimor
cultivar) is known for its tolerance to coffee leaf rust disease
obtained through introgression from the Timor Hybrid. T.05296 is
also wind resistant, widely adaptable to varying altitudes and cli-
mates and has an exceptional root system enabling it to adapt to
different types of soil.

DNA extraction
DNA was extracted from leaf tissues of 8-month-old plants using
DNeasy Plant kit (Qiagen). DNA quality was evaluated by Agilent
2100 Bioanalyzer High Sensitivity DNA assay (Agilent
Technologies, Santa Clara, CA, USA) and quantified by Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA).

Probe design
The 3 parental genotypes (i.e. ET47, Geisha, and H1) were first se-
quenced to identify polymorphic regions. Libraries were prepared
using “Celero DNA-Seq” kit (NuGEN, San Carlos, CA, USA) per
manufacturer’s instructions and quantified using the Qubit 2.0
Fluorometer. Sequencing was performed on an Illumina NovaSeq
6000 (Illumina, San Diego, CA, USA) in a paired-end 150 mode.
Low-quality reads and adapter regions were removed using ERNE
(2.2.1) (Del Fabbro et al. 2013) and Cutadapt v1.18 (–overlap 10 –
time 2 –minimum-length 50 -mask-adapter) (Martin 2011). Reads
were aligned using BWA-MEM (0.7.17) (Li and Durbin 2009) to a
draft genome of Coffea arabica from a Caturra red cultivar
(RHJU01) (Zimin et al. 2018). Variant calling was performed using
GATK (4.1.0.0) (McKenna et al. 2010).

Sequencing resulted in >400-M reads for each parental geno-
type, supporting the identification of an 3,127,161 SNPs. Due to
the allotetraploid genome of Coffea arabica, many of these were
likely false positives. SNPs associated with repeat regions of
Coffea canephora were first removed, resulting in 1,212,811 SNPs
(Denoeud et al. 2014; Smit et al. 2013–2015). To further remove col-
lapsed homeologous regions, a custom Perl script was used to re-
tain only those which were homozygous in at least one of the 3
parental lines. Relative levels of heterozygosity for each variety in
this remaining 260,015 SNPs reflected those anticipated, with
35,162 (14%), 32,150 (12%), and 219,479 (84%) heterozygous sites
in ET47, Geisha, and H1, respectively.

For ET47 and Geisha, 18,514 heterozygous SNPs were selected
with a minimum span of 50 bp. For H1, further examination was
applied to identify regions with high numbers of SNPs that are
likely to be regions of introgression from the ancestral rust toler-
ant Timor Hybrid variety. For putative introgressed regions,
35,274 SNPs were selected (minimum span 100 bp) and, for other
regions, 32,838 SNPs were selected (minimum span 50 bp). A total
of 86,626 SNPs were reduced to 80,584 when selecting for regions
critical to probe design for single primer enrichment technology
(SPET) (Scaglione et al. 2019). A total of 151,362 probes were
designed for regions up- and down-stream of the target SNPs
(NuGEN, Tecan Group).

H3W genotyping
H3W populations from crosses between the F1 hybrid and each
Ethiopian line (i.e. H1xET47 and H1xG) were then subjected to
targeted sequencing for SNP genotyping. Libraries were prepared
using the “Allegro Targeted Genotyping” protocol from NuGEN
Technologies with the described probes and 100 ng/lL of DNA as
input. Libraries were quantified using the Qubit 2.0 Fluorometer,
and their size was checked using the High Sensitivity DNA assay
from Bioanalyzer or the High Sensitivity DNA assay from Caliper
LabChip GX (Caliper Life Sciences, Alameda, CA). Libraries were
quantified through qPCR using the CFX96 Touch Real-Time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA) and se-
quenced on the Illumina NovaSeq 6000 in a 150-bp single-end
mode. Low-quality reads and adapter regions were removed us-
ing ERNE (1.4.6) (Del Fabbro et al. 2013) and Cutadapt v1.18
(Martin 2011), both with default parameters. Reads were aligned
using BWA-MEM (0.7.17) (Li and Durbin 2009) to RHJU01 (Zimin
et al. 2018) and retained where mapping quality is >10. SNP call-
ing was performed in GATK following best practices for germline
short variant discovery (DePristo et al. 2011).

SNPs with smaller than 5% minimum allele frequency and
call rate smaller than 95% were removed. In addition, we ex-
cluded all samples with more than 10% of missing genotypes and
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those without a match in the phenomic (i.e. ChlF) and phenotype
data. Mean imputation of the missing values in the SNP data that
passed the filtering rules was then performed, resulting in a final
data with 74 and 119 samples for H1xET47 and H1xG popula-
tions, respectively, with altogether 61,950 markers.

Field experiment
Each of the 2 segregating hybrid populations were cultivated at
La Cumplida farm in Matagalpa region, Nicaragua (GPS coordi-
nates 13.0008989–85.8514005). Plants were first grown in polypro-
pylene cells containing 540 mL of a 70% mixture of blonde peat
(PG-mix) and 30% sand, supplemented with 4 g/L of fertilizer
(Multicote). After 45 days, each cell received 3 g of fertilizer
(Multicote). At 10 months after sowing, plants were transferred to
5-gallon pots (height 0.37 m; width 0.32 m) and subsequently
treated with 5 g/L of fertilizer (Multicote) every 4 months.

Immediately after transferring to 20-L pots, plants were
moved into the first treatment condition shown in Table 1. Plants
were first maintained under shade for a complete acclimation at
altitude level 600 m where average daily high temperatures were
24�C. Then, they were transferred to full sun conditions for
2 months, followed by 3 months under shade and similar temper-
ature conditions. Finally, the plants were transferred to full sun
at an altitude of 1,300 m where average daily high temperatures
were 20�C. Consistent shading to 50% was achieved by the use of
an artificial shade net.

Phenotypic data
At the end of each treatment, plants were phenotyped for several
characteristics [e.g. trunk diameter (TD), height, total number of
leaves, and ChlF]. The first measurement (i.e. after acclimation)
took place when ET47, G, H1xET47, and H1xG were 13 months
old, and the second and third measurements were, respectively,
taken when the plants were 16 and 18 months old. For the 3
measurements, H1 parent clones were 4 months younger than
the other genotypes due to differences in the plant production
time.

Phenomic measurements: ChlF
ChlF measurements were conducted between 2 and 4 AM with a
Handy PEA chlorophyll fluorimeter (Handy-Plant Efficiency
Analyser, Hansatech Instruments, Norfolk, UK) on mature leaves
(L3). Every measurement was performed on apparently healthy,
fully light-exposed leaves. Measurements were taken 5 times on
each plant during 3 consecutive nights at the end of each treat-
ment, resulting in 1,980 measurements per plant or 7,920 meas-
urements in total for the analyzed populations. During night,
leaves are dark adapted and when they are illuminated, ChlF in-
tensity shows characteristic changes called fluorescence tran-
sient (Stirbet et al. 2018). ChlF transients were induced by 1-s
illumination with an array of 6 light-emitting diodes providing a
maximum light intensity of 3,000 photosynthetically active radia-
tion. The fast fluorescence kinetics (from F0 to FM, where F0 and
FM are, respectively, the minimum and maximum measured

chlorophyll fluorescence of photosystem II in the dark-adapted
state) were recorded from 10 ls to 1 s. For the analysis, 18 param-
eters (Supplementary Table 1) were selected as the most relevant
to explain photosynthesis [i.e. IBR, PI total, phi(Ro), phi(Eo),
psi(Eo), phi(Po), phi(Po)/(1-phi(Po)), dRo/(1-dRo), psi(Eo)/(1-
psi(Eo)), RC/ABS, REo/RC, DIo/RC, ETo/RC, TRo/RC, ABS/RC, Fo,
Fm, and Fv/Fm].

Statistical methods
Throughout the text, the term “phenotypic” refers about the tar-
get traits (i.e. response variables) while the term “phenomic”
refers to endophenotypes (i.e. predictors in the PP models). The
comparative analysis is concerned with evaluating the perfor-
mance of genomic and PPs on 3 growth-related traits [i.e. leaf
count (LC), tree height (TH), and TD] under the following settings:
setting S1 that aims to select the best-performing H3W family by
comparing hybrids H1xET47 and H1xG based on the predictabil-
ity of GP and PP models. Traits and phenomic data were con-
structed by concatenating the respective measurements over all
treatment conditions after the acclimation period. Setting S2 con-
trasts the predictive abilities of GP and PP models in H1xET47 and
H1xG under established agroforestry system (AFS) that corre-
sponds to treatment 3 in Table 1. To this end, only traits and
ChlF data of the corresponding treatment were considered.
This setting also evaluates the effect of including more predictors
in PP models. For this second goal, ChlF measurements were
concatenated from treatments 2–4 while using the traits only
from treatment 3. Setting S3 evaluates GP and PP models based
on their abilities to predict traits in the next treatment condition.
Specifically, we compare the predictive abilities of these models
using the current environmental conditions for H1xET47 and
H1xG as the training set and the successive conditions as the test
one. Because the 2 hybrids have 1 parent in common (i.e. H1), we
finally consider setting S4, where we train the models with data
from 1 family and predict traits of the other one. Phenomic and
traits data are constructed as in setting S1. For completeness,
Supplementary Fig. 3 provides a graphical representation of data
construction for each setting.

In what follows, we present the statistical models used in the
comparative analysis and the details of the cross-validation strat-
egy. Since in our case the number of markers is much larger than
the number of observations, the following modeling approaches
were used instead:

Ridge regression
The marker effects are estimated by solving the following optimi-
zation problem.

bbi ðRRÞ ¼ argmin
bi

jjyi � Xbijj2 þ kjjbijj2; (1)

where k � 0 is a penalty parameter, estimated via cross-valida-
tion.

Table 1. Successive treatment conditions applied on the H3W coffee populations before their transfer to the field.

Treatment Altitude Temperature Condition Duration Mimicking

1 600 23.6 Shade 3 n/a (acclimation)
2 600 24.5 Full sun 2 Open field
3 600 23.5 Shade 2.5 AFS established
4 1300 20 Full sun 2 Cooler temperatures

Altitude, duration, and temperature are, respectively, measured in meters, months, and �C. AFS denotes agroforestry system.
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LASSO
Replacing the L2 norm by the L1 norm, the optimization problem

in (1) becomes the least absolute shrinkage and selection opera-

tor (LASSO) (Tibshirani 1996) that simultaneously select variables

and shrink coefficients by solving

bb iðLASSOÞ ¼ argmin
bi

jjyi � Xbijj2 þ kjjbijj1: (2)

Equivalently bBðmLASSOÞ ¼ argmin
B

jjY� XBjj2 þ kjjBjj1 for

multi-response.

Elastic net
To overcome some shortcomings of LASSO, such as SNPs in high

linkage disequilibrium and lack of group selection, elastic net

(EN) (Zou and Hastie 2005; Ogutu et al. 2012), an extension of

LASSO can serve as a remedy. EN blends ridge regression (RR)

and LASSO penalties and optimizes

bb iðENÞ ¼ argmin
bi

jjyi � Xbijj2 þ k1jjbijj2 þ k2jjbijj1: (3)

LASSO’s variable selection ability is preserved via the L1 pen-

alty in (3) and its L2 counterpart enables group selection.

Genomic best linear unbiased predictor
Implemented in this study with the R-package BGLR (de los

Campos and Pérez-Rodr�ıguez 2014), genomic best linear unbiased

predictor (GBLUP) was obtained considering the linear mixed ef-

fect model formulated as,

y ¼ Zuþ e: (4)

The residual error � is assumed to be normally distributed

with zero-mean and varðeÞ ¼ Ir2
e , with I the identity matrix of ap-

propriate dimension. In this setting, Z represents the incidence

matrix for individual effects and u is a vector of genotype random

effects assumed to follow a multivariate Normal distribution

with varðZuÞ ¼ Kr2
u, where r2

u is the genetic additive variance

and K ¼ ZZ0 is the realized genomic relationship matrix.

Bayesian LASSO
Previously discussed GP methods assume common variance for

all SNP effects. However, for some traits, departure from normal-

ity is often exhibited in practice and should be accounted for.

Bayesian LASSO (BL) (Park and Casella 2008; de los Campos et al.

2009) allows to take such effects into account. It can be shown

that Equation (2) is minimized when regression coefficients are

assumed to be independently distributed with Laplace (i.e.

double-exponential) priors (Hans 2009). With a product of p inde-

pendent and zero-mean double-exponential densities as prior on

bi, BL solves

pðyijbi;r
2
e Þ ¼

Yn

l¼1

Nðyiljx0ilbi;r
2
e Þ: (5)

Using the scale-mixture parametrization and the hierarchical

model (see Park and Casella 2008 for details), BL was imple-

mented using the R package BLR (Pérez et al. 2010) with the hyper-

parameter as recommended in the package and using a chain of

20,000 iterations and a burn-in sample of 5,000 iterations. We

would like to point out that 20,000 iterations were considered

because beyond this number, no substantial change was ob-
served on the predictability.

Unlike single trait, multiple-trait (MT) GP models combine in-
formation from individual lines and analyze MTs simultaneously.
The potential of MT methods to improve predictive ability in GP
has been proven (Jia and Jannink 2012; Lado et al. 2018;
Budhlakoti et al. 2019). For completeness, the following 2 MT pre-
diction methods are also included in the comparative analysis.

MT BayesB
Most MT GP models are built upon a restrictive assumption that a
given locus affects simultaneously all the traits or none of them. To
overcome this limitation, Cheng et al. (2018) used mixed priors to
develop MT Bayesian regression methods allowing a locus to influ-
ence any combination of traits. Our comparative analysis focuses
only on their MT BayesB (mBayesB), where vectors of marker effects
are assumed to be multivariate normally distributed with mean
zero and locus-specific covariance matrix having an inverse
Wishart prior. Details regarding the derivation of full conditional
distributions of parameters can be found in Cheng et al. (2018).

L2;1-norm regularized multivariate regression and covariance
estimation
The L2;1-norm regularized multivariate regression and covariance
estimation (L21-joint) (Mbebi et al. 2021), models traits jointly by as-
suming that the response variables follow a multivariate Gaussian
distribution with precision matrix X.

f ðB;XÞ ¼ argmin
B;X

JðB;XÞ þ k1jjXjj1 þ k2jjBjj2;1
� �

; (6)

with tuning parameters k1 � 0 and k2 � 0 to be obtained from the
data and

JðB;XÞ ¼ tr
1
s
ðY0 � B0X0ÞXðY0 � B0X0Þ0

� �
� log jXj:

As shown in (6), the L2;1 and L1 losses are, respectively, applied
on the marker effects and precision matrix to provide sparse esti-
mates of the regression coefficients and the precision matrix using
an iterative optimization procedure. At each iteration, the esti-
mated X is used to refine the estimation of marker effect until con-
vergence.

K-fold cross-validation and hyperparameters
Given the moderate sample size after data filtering, n¼ 74 and
n¼ 119 for H1xET47 and H1xG, respectively, we perform K-fold
cross-validation, randomly sampling individuals in phenotype,
SNP and ChlF data sets into K¼ 3 blocks of approximately equal
size. We divided each data set into training and validation sets,
composed of 2- and 1-fold, respectively. We used 2-fold to train
the statistical models and the remaining fold for validation. We
quantified model performances by the Pearson correlation coeffi-
cient between predicted and observed trait values in the valida-
tion set (Crossa et al. 2010; Ober et al. 2012). This was done until
every fold was used as validation and the performance is then
computed as the average value over the 3-fold (Zhou et al. 2017).

Nevertheless, some models in the comparative analysis have
hyperparameters that need tuning (i.e. optimizing). To avoid using
the same data to optimize model parameters and performance
evaluation that often leads to overfit (Cawley and Talbot 2010),
nested 3-fold cross-validation was used. This is accomplished by 2
loops and splitting the data into training, validation, and test sets.
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In the inner loop, each training set is used to fit the model and the
hyperparameters are subsequently selected after evaluating the
model on the validation set. In the outer loop, the independent test
set is used to quantify the prediction abilities. For a better assess-
ment, we then used re-sampling and repeated this procedure 20
times.

Heritability and genetic correlation
We next recall 2 of the most important genetic parameters to
consider for breeding. (1) Heritability is defined as the proportion
of phenotypic variance explained by underlying genetic effects

(Falconer 1989). The broad-sense heritability is computed as H2 ¼
r2

G
r2

Gþr2
Eþr2

GxE=eþr2
e =e

(Hallauer et al. 2010), where e represents the num-

ber of environments (i.e. treatment conditions), r2
G; r2

E; r2
GxE, and

r2
e are, respectively, the genetic, environment, genetic by environ-

ment, and residual components of the variance. The variance
partition of each factor is estimated by fitting a linear mixed
model with all above effects as random and fixed effects of inter-
cept. The computations were implemented with the R package
lme4 (Bates et al. 2015).

(2) Genetic correlation between trait i and j is defined as

r2
g ¼

covðgi ;gjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgi ;gjÞÞ
p , where gi and gj are the genetic effect of trait i and j,

respectively, and is equivalent to the Pearson correlation coeffi-
cients between their genetic effect (Galic et al. 2019). The genetic
effects are obtained based on the SNP data using rrBLUP model
for each trait and Pearson correlation coefficients between phe-
notypic traits (i.e. LC, TH, and TD) and ChlF parameters as the ge-
netic correlations.

Results and discussion
Heritabilities and genetic correlations of
the studied traits
First, we quantify heritability since it directly relates to the extent
to which a given trait is predicted by genetic factors, and therefore
can be improved by breeding. To this end, we partition the vari-
ance into environment (E), genetic (G), genetic by environment
(G� E), and residual (e) components. We considered phenotypic
traits (i.e. LC, TH, and TD) as well as the 18 ChlF traits in each fam-
ily and estimated their broad-sense heritability. Strong variability
of traits heritability was exhibited (Supplementary Tables 2 and 3),
with maximum values always observed for TH in both H1xG
(H2 ¼ 62%) and H1xET47 (H2 ¼ 77%) families. Although some mild
peak values of about (24%) could be observed, overall heritability
for most ChlF traits was very small in both families. Further look
at the GxE component of the phenotypic variance indicates a ge-
netic component to the plasticity of these traits.

To further assess the usability of ChlF traits in PP models, we
quantified the proportion of variance shared by 2 traits due to
genetic effects using the genetic correlations (Galic et al. 2019) be-
tween phenotypic traits (i.e. LC, TH, and TD) and ChlF parame-
ters. Since in this setting, a trait expressed in multiple
environments is treated as a different trait, this lead to a 9� 54
genetic correlation matrix (i.e. 3 and 18 traits for each treatment
condition). Our findings (Supplementary Tables 4 and 5) show
that in both families, the highest genetic correlations between
ChlF and the target traits were achieved with ChlF parameters
measured under the acclimation condition (e.g. IBR, WEo; uEo).
Furthermore, the high variability of genetic correlation observed
between treatment conditions could indicate that in line with the

large GxE component, ChlF is sensitive to environment that a dif-
ferent set of genes influences the studied traits differently and
that responses of genotypes with respect to the studied traits
may not be consistent across environments.

Accuracy of GP and PP were evaluated using 3-fold cross-vali-
dation with the final model performance computed as the aver-
age over 20 replications. For all statistical models, except for
GBLUP, we evaluated the performance of PP by using ChlF data
instead of the SNPs for each hybrid.

Comparison of trait predictability based on GP
and PP models for 3 traits and identification of the
best-performing H3W coffee family
To assess the predictability of 3 growth-related traits, namely,
LC, TH, and TD, we consider setting S1 to built and compared 7
models [i.e. L21-joint, RR, multi-response LASSO (mLASSO), EN,
BL, mBayesB, and GBLUP] based on SNPs for GP and ChlF data in
3 treatments (see Table 1) for PP for the H1xET47 and H1xG fami-
lies. Our findings show that under all treatment conditions, GP
and PP models from the H1xET47 family achieve the highest
predictability for all traits of interest (Fig. 1 and Supplementary
Fig. 1). Furthermore, with Hotelling’s T2 test (Hotelling 1992) indi-
cating significant statistical difference (P� value ¼ 0:0002876)
between the mean performance of the 2 population, we can con-
clude that the traits for H1xET47 hybrids can be predicted better
than those from H1xG. Moreover, for all hybrids and traits, the
highest predictability was seen at treatment 3 and the lowest was
always exhibited by mLASSO.

Within population and for all treatment conditions, a clear de-
cision regarding the systematic outperformance of GP or PP could
not be made because the highest predictability for the traits of in-
terest was achieved in at least 1 combination of population and
treatment by each approach. As shown by Supplementary Tables
4 and 5 where the maximum genetic correlation (Galic et al. 2019)
between the growth-related traits and ChlF measurements are
respectively 0.35 and 0.38 for H1xET47 and H1xG, one may favor
GP because ChlF parameters seem to have small heritability
(0 � H2 � 0:24, Supplementary Tables 2 and 3). However, ChlF
can be used as a valuable predictor because increased electron
transport efficiency leads to better carbon partitioning (Ni et al.
2009; Shen et al. 2015; Ko et al. 2016; Toniutti et al. 2019).
Furthermore, the chlorophyll content measured on plants culti-
vated either in phytotron or in field (i.e. full sun and shade) al-
ways being higher in hybrids compared to line varieties together
with the strong relationship between ChlF and the expression of
genes related to the photosynthetic electron transport chain
(Toniutti et al. 2019) allowed to define PI, the chlorophyll content,
and the oxidative stress level as indicators of productivity and
plant health. This indicates that ChlF is a good proxi for hybrid
vigor. This vigor is translated in Arabica by a faster development
of the seedling, which can be measured by the diameter at the
collar, the size of the plant, or its number of leaves. We then con-
clude that PP models compete with the GP counterpart when pre-
dicting vigor in H3W coffee at an early developmental stage.

Comparative analysis of GP and PP under AFS
Performance comparison of GP and PP was conducted with L21-
joint, RR, mLASSO, EN, BL, and mBayesB to predict each of the 3
growth-related traits under 50% shade net equivalent to estab-
lished AFS (i.e. setting S2). As depicted in Fig. 2, our results show
that under AFS, for H1xG hybrids and the corresponding ChlF
data, the best-performing PP and GP model outperformed each
other on 1 count out of 3 and achieved similar predictability for
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Fig. 1. Predictability of traits in H3W coffee families based on GP and PP models. We used the following models: L21-joint, RR, mLASSO, EN, BL,
mBayesB, and GBLUP to predict LC (left), TH (middle), and TD (right). This is setting S1 with traits and phenomic data obtained by concatenating the
respective measurements over all conditions after the acclimation. The predictability is computed as the average Pearson correlation coefficient
between observed and predicted values for the 9 traits (i.e. 3 traits for each treatment) in the validation set, based on 20 repetitions of 3-fold cross-
validation. Two H3W coffee populations were considered for the comparative analysis: H1xET47 and H1xG, where Centroamericano (H1) is an F1
hybrid cultivated clonally and results from a cross between T.05296 and Rume Sudan, and Geisha 3 (G) and ET47 (the mother plant) are 2 Ethiopian
landrace varieties. The average accuracy obtained from repeated cross-validations are reported as the height of the bars, and standard errors are
included.

Fig. 2. Comparison between GP and PP models under AFS conditions. We used L21-joint, RR, mLASSO, EN, BL, and mBayesB for PP and the best-
performing GP model for each H3W coffee plant and trait. For the selected traits, BL and GBLUP are the best-performing GP models for H1xG, while EN,
L21-joint, and GLUP are the best GP models for H1xET47. The predictability is computed as the average Pearson correlation coefficient between
observed and predicted trait values in the validation set based on 20 replicates of 3-fold cross-validation. The comparative analysis is concerned with
setting S2 where the best-performing genomic prediction models for H1xET47 and H1xG populations (i.e. GP-H1xET47 and GP-H1xG) using their
respective SNP data, are contrasted with phenomic predictions of the same hybrid families (PP-H1xET47 and PP-H1xG) under established AFS. Models
were evaluated after treatment 3 (Table 1) with phenotypic and phenomic data following setting S2. The average accuracy obtained from repeated
cross-validations are presented as the height of the bars along with their corresponding standard errors.
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the remaining trait. With respect to the H1xET47 population, a
similar pattern could be observed, whereby L21-joint and EN are
the GP and PP models with the highest predictability for TH and
LC, respectively.

Because a single genotyping experiment suffices to determine
the predictors used in GP models, while multiple phenomic data
collection at different stages of growth may be needed to obtain
reliable predictability of PP models, one may argue that GP should
be favored. However, SNPs in polyploid and heterozygote species,
like C. arabica, are more difficult to determine, while endopheno-
types (e.g. ChlF) can be easily measured. Since PP relied only on
18 predictors for each treatment condition and GP on 16,950
SNPs, and because genotyping (i.e. about 220 e/sample) in this
case is more expensive than phenomic data collection (i.e. 5,300
efor all samples including fluorimeter purchase), our results indi-
cate that PP can be a competitive approach in predicting growth-
related traits in coffee while requiring some efforts to obtain the
endophenotypes.

Predictability of traits based on PP models and the
effect of including more predictors
To see if including ChlF measurements from all conditions

impacts the performances of PP models for the 2 H3W families,

we considered changes with respect to established AFS condi-

tions. To this end, plants were moved from shade and exposed

under full sun, the altitude level was increased by 700 m, and

temperature decreased to 20�C, as described in Table 1. To ac-

count for these changes, we make use of the second aim of set-

ting S2 with phenomic measurements concatenated over all

treatments except the acclimation, and the phenomic predictive

ability on the traits of interest evaluated. With respect to the

best-performing statistical model, our findings show an increased

PP accuracy with the augmented fluorescence data model for

both H1xET47 and H1xG families on 2 out of 3 traits (i.e. LC and

TD, Supplementary Fig. 2). Moreover, when considering only

H1xET47, a clear pattern of improved predictability for the

Table 2. Comparison between GP and PP models based on condition-ahead predictive abilities.

H1xET47

GP of treatment 3 using treatment 2 PP of treatment 3 using treatment 2

BL EN GBLUP L21-joint mBayesB RR BL EN L21-joint mBayesB RR

LC 0.276 0.164 0.086 0.06 0.032 0.34 LC 0.429 0.539 0.376 0.387 0.315
TH 0.055 0.324 0.419 0.307 0.063 0.186 TH 0.297 0.076 0.303 0.392 0.083
TD 0.016 0.049 0.079 0.164 0.516 0.115 TD 0.273 0.491 0.205 0.104 0.314

GP of treatment 4 using treatment 3 PP of treatment 4 using treatment 3

BL EN GBLUP L21-joint mBayesB RR BL EN L21-joint mBayesB RR

LC 0.191 0.124 0.012 0.111 0.153 0.068 LC 0.224 0.167 0.111 0.012 0.163
TH 0.182 0.168 0.493 0.483 0.188 0.271 TH 0.146 0.107 0.418 0.317 0.051
TD 0.202 0.338 0.028 0.23 0.082 0.095 TD 0.36 0.365 0.165 0.042 0.056

GP of treatment 4 using treatment 2 PP of treatment 4 using treatment 2

BL EN GBLUP L21-joint mBayesB RR BL EN L21-joint mBayesB RR

LC 0.279 0.122 0.106 0.173 0.173 0.484 LC 0.0187 0.495 0.023 0.083 0.084
TH 0.204 0.168 0.427 0.482 0.036 0.052 TH 0.359 0.131 0.496 0.382 0.223
TD 0.004 0.154 0.047 0.239 0.061 0.13 TD 0.069 0.138 0.0425 0.369 0.287

H1xG

GP of treatment 3 using treatment 2 PP of treatment 3 using treatment 2

BL EN GBLUP L21-joint mBayesB RR BL EN L21-joint mBayesB RR

LC 0.197 0.081 0.026 0.218 0.191 0.142 LC 0.213 NA 0.069 0.098 0.052
TH 0.043 0.009 0.117 0.112 0.065 0.022 TH 0.105 0.09 0.07 0.194 0.289
TD 0.314 0.125 0.116 0.069 0.025 0.372 TD 0.094 0.072 0.316 0.024 0.023

GP of treatment 4 using treatment 3 PP of treatment 4 using treatment 3

BL EN GBLUP L21-joint mBayesB RR BL EN L21-joint mBayesB RR

LC 0.14 0.037 0.133 0.121 0.072 0.005 LC 0.294 0.186 0.332 0.181 0.369
TH 0.08 0.076 0.053 0.188 0.094 0.355 TH 0.508 0.37 0.03 0.13 0.136
TD 0.012 0.23 0.059 0.35 0.132 0.155 TD 0.207 0.01 0.151 0.097 0.359

GP of treatment 4 using treatment 2 PP of treatment 4 using treatment 2

BL EN GBLUP L21-joint mBayesB RR BL EN L21-joint mBayesB RR

LC 0.334 0.103 0.136 0.167 0.096 0.383 LC 0.279 NA 0.191 0.389 0.386
TH 0.027 0.11 0.068 0.081 0.063 0.361 TH 0.434 0.381 0.381 0.582 0.305
TD 0.015 0.175 0.036 0.149 0.19 0.288 TD 0.018 0.087 0.231 0.2964 0.149

We used L21-joint, RR, mLASSO, EN, BL, and mBayesB. The performance is computed as the correlation coefficient between measured and predicted LC, TH, and
TD, for H1xET47 (i.e. top panel) and H1xG (i.e. bottom panel). This is setting S3, where models are trained on the current environmental condition to predict the
next one. Numbers in bold represent the best performance and mLasso is not represented because all the corresponding standard deviations were zero.
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augmented model could be observed for all traits with the multi-
trait models (i.e. mBayesB and L21-joint). The inclusion of addi-
tional predictors from different environmental conditions exhib-
iting a change on PP performances and especially for multi-trait
models could suggest that ChlF measurements over different
growth periods could be helpful in boosting the model perfor-
mance.

A comparative analysis of GP and PP models
using condition-ahead prediction
Our interest with condition-ahead prediction (i.e. setting S3) is to
further compare the performances of GP and PP models based on
their abilities to predict the next environmental condition while
being trained on the previous one (e.g. use treatment 2 as training
data to predict the corresponding trait values in treatment 3).
With phenomic and trait data from H1xET47 and H1xG at the tar-
geted training treatment, we start by estimating GP and PP mod-
els’ parameters before using them to predict the first 20 lines in
the corresponding test data. Because SNPs are recorded only once
and for a fair comparison between GP and PP, we trained the
models without the first 20 samples, such that they can be
used as unseen data in the prediction phase. Our results show
that, with H1xET47 and when the models were trained with
data from acclimation to predict traits under established AFS,
GP outperformed PP on 2 counts (i.e. for TH and TD) out of 3 as
quantified by the correlation coefficient between measured
and predicted traits values and reported in Table 2. Compared
to the performance with GP when training the model with data
from established AFS to predict traits under higher altitude,
LC and TD were better predicted using PP. With the family
H1xG, for all traits and under all training and predictions set-
tings, PP and GP achieved in most cases comparable predict-
ability with slight improvement observed for PP on some
occasions. Because the highest predictabilities were mostly

observed with PP models for both crosses, we conclude that PP
models exhibit better performance. This is likely due to the
fact that different ChlF data are recorded in each environmen-
tal conditions and accounted for in the training process of PP,
while the same SNPs are constantly used across environments
for GP. The highest accuracies often occurring when GP and PP
models for both families were trained under established AFS
to predict traits in treatment 4 could also suggest that models
reach their best-training abilities under shade. Under setting
S4 and since the 2 families have 1 parent (i.e. H1) in common,
we next considered comparing the predictabilities of GP and
PP models trained with data from H1xET47 and evaluated on
traits from H1xG and vice versa. With traits and fluorescence
data constructed in setting S1, our results in Table 3 show that
PP models exhibit higher predictability than GP model of the
considered traits when transferred from H1xET47 to H1xG, but
not vice versa. This findings shows that while PP models may
be a suitable alternative to GP, they have similar problems to
the transferability of models on unseen populations.

Model performances based on the selection
ability of the best- and worst-performing lines
To further assess the performance of GP and PP models on each
H3W population, by ranking the genotypes based on the mea-
sured and predicted values of each trait. The 20 best- and worst-
performing lines for each category were then retained and used
to compute the proportion of the best- and worst-performing
lines that were correctly predicted as the best and worst perform-
ing, respectively. Our findings in Table 4 identified on 2 counts
EN as the best-performing GP model for H1xG family, whereas
L21-joint outperformed the contenders when LC and TH were the
traits of interest using H1xET47 population. Decision regarding
the best statistical model with respect to H3W family and condi-
tion could not be made because each model was ranked first at

Table 3. Comparison between GP and PP models based on between-family predictive abilities.

GP of H1xG using H1xET47 PP of H1xG using H1xET47

BL EN GBLUP L21-joint mBayesB mLasso RR BL EN L21-joint mBayesB mLasso RR

LC2 0.038 0.13 0.056 0.038 0.114 0.03 0.308 0.099 0.137 0.009 0.102 NA 0.02
TH2 0.002 0.095 0.022 0.061 0.168 0.072 0.103 0.305 0.123 0.236 0.294 NA 0.094
TD2 0.025 0.07 0.078 0.007 0.079 0.168 0.042 0.111 0.273 0.01 0.225 NA 0.359
LC3 0.1 0.118 0.046 0.003 0.052 0.194 0.222 0.027 0.164 0.128 0.177 NA 0.223
TH3 0.066 0.203 0.035 0.083 0.127 0.039 0.073 0.345 0.153 0.168 0.322 NA 0.032
TD3 0.078 0.209 0.066 0.168 0.076 0.114 0.079 0.14 0.018 0.138 0.096 NA 0.058
LC4 0.025 0.095 0.064 0.037 0.143 0.108 0.138 0.144 0.087 0.096 0.143 NA 0.167
TH4 0.009 0.09 0.068 0.128 0.018 0.015 0.224 0.252 0.084 0.277 0.279 NA 0.051
TD4 0.069 0.074 0.154 0.027 0.114 0.139 0.051 0.211 0.096 0.214 0.163 NA 0.039

GP of H1xET47 using H1xG PP of H1xET47 using H1xG

BL EN GBLUP L21-joint mBayesB mLasso RR BL EN L21-joint mBayesB mLasso RR

LC2 0.201 0.025 0.343 0.072 0.29 NA 0.008 0.118 0.066 0.081 0.018 NA 0.098
TH2 0.143 0.169 0.078 0.04 0.006 NA 0.349 0.008 0.002 0.116 0.047 NA 0.053
TD2 0.009 0.196 0.204 0.111 0.127 NA 0.161 0 0.037 0.054 0.007 NA 0.052
LC3 0.07 0.197 0.052 0.157 0.106 NA 0.025 0.005 0.11 0.018 0.021 NA 0.144
TH3 0.016 0.214 0.077 0.122 0.029 NA 0.194 0.129 0.002 0.126 0.04 NA 0.082
TD3 0.038 0.021 0.142 0.099 0.117 NA 0.093 0.086 0.068 0.067 0.151 NA 0.326
LC4 0.213 0.101 0.036 0.002 0.142 NA 0.036 0.096 0.103 0.033 0.064 NA 0.058
TH4 0.004 0.116 0.214 0.118 0.002 NA 0.214 0.096 0.09 0.048 0.003 NA 0.049
TD4 0.345 0.186 0.194 0.125 0.294 NA 0.244 0.133 0.203 0.178 0.111 NA 0.08

We used L21-joint, RR, mLASSO, EN, BL, and mBayesB. The performance is computed as the correlation coefficient between measured and predicted LC, TH, and
TD at each treatment condition and for H1xET47 (i.e. top panel) and H1xG (i.e. bottom panel). This is setting S4, where models are trained with data from one
family to predict traits of the other one, with traits and phenomic data constructed by concatenating the respective measurements over all treatment conditions
after the acclimation period. Numbers in bold represent the best performance and NA is used to denote that the corresponding standard deviation was zero.
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least once, for a specific trait. However, one can observe that the
highest performances were attained under PP with trees from
H1xET47 family (Table 4).

Regarding the selection ability on the worst-performing lines
(Supplementary Table 6), similar conclusions can be reached,
whereby for GP models on H1xG family, GBLUP outperformed the
contenders when predicting LC and TH and L21-joint was the
best-performing model for the same traits with H1xET47 family.
In addition, we still observed at the population level that the
highest ability for negative selection (i.e. proportion of the worst-
performing lines predicted as worst performing) was achieved
with PP on H1xET47 family.

Conclusion
Our comparative analyses provided a comprehensive investiga-
tion of the differences in the performance of GP and PP models
for 3 growth-related traits from 2 H3W coffee families exposed to
a succession of treatments. The PP models are based on measure-
ments of ChlF after the exposure to each environmental condi-
tion. The comparative analyses contrasted 7 different statistical
models that differ with respect to whether they are aimed at pre-
dicting single trait or MTs. In the 3 considered settings for the
comparison of PP and GP models within and between H3W coffee
families, we showed that, although ChlF parameters in both
H1xET47 and H1xG seem to have small heritabilities
(0 � H2 � 0:24), PP tends to outperform GP models and ChlF can
be used as a suitable alternative to genomic markers when pre-
dicting plant vigor. Interestingly, however, in the fourth scenario
that tests the transferability of the models between the families,
we showed that PP suffers the same issues as GP models, and
here, the consideration of more phenomic data (e.g. NIRS) may
improve the performance.

In Toniutti et al. (2017) and Gamboa-Becerra et al. (2021), it has
been demonstrated that parameters related to photosystem II
and photosynthetic electron transport chain components are
powerful indicators of the physiological status of the coffee
plants and predict infection intensity, respectively, of Hemileia
vastatrix and Fusarium isolates, in combination with different
kinds of abiotic stress. These works highlight the relevance of
ChlF as an early and high-throughput phenotyping tool for plant
stress. Although the mechanisms underlying heterosis remain
largely unknown, several recent studies have shown that hybrid
vigor is due, at least in part, to a deregulation of certain central
genes of the circadian cycle. Ni et al. (2009) showed that, in

Arabidopsis hybrids and allopolyploids, increased photosynthetic

and metabolic activities are linked to altered expression of 2 cen-

tral genes of the circadian clock. The authors demonstrated that

an epigenetic deregulation of circadian clock regulators, which

control many genes and are involved in many biological pro-

cesses, resulted in an increase in chlorophyll content and starch

biosynthesis leading to growth vigor and increased biomass

(Miller et al. 2012). Monocots like maize and rice produced similar

results (Song et al. 2010; Ko et al. 2016). For example, Shen et al.

(2015) showed that deregulation of 3 circadian clock genes and

consequently the downstream genes involved in the chlorophyll

and starch metabolic pathways could also be related to heterosis.

Toniutti et al. (2019) demonstrated a similar relationship between

circadian cycle dysregulation and carbon metabolism in coffee

tree and established the relationship between the increased pho-

tosynthetic electron transport efficiency and the clone’s better

performance. ChlF measurement is a good indicator of the coffee

tree’s physiological status for the breeder and is an excellent

proxy for photosynthesis in coffee, making it a tool of choice for

assessing the vigor of a genotype, which the present study tends

to prove.

Data availability
We implemented all statistical models using R programming lan-

guage; the codes and all data sets used in the current study are

freely available from https://github.com/alainmbebi/GP-PP.
Supplemental material is available at G3 online.
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Table 4. Selection performance of L21-joint, RR, mLASSO, EN, BL, and mBayesB.

Selected proportion of best-performing lines

RR Mlasso EN GBLUP BL mBayesB L21-joint RR Mlasso EN GBLUP BL mBayesB L21-joint

(A1): GP_H1xG (A2): GP_H1xET47

LC 15 20 5 20 10 5 20 15 20 25 25 25 35 30
TH 15 10 20 5 15 15 15 30 20 20 20 30 30 35
TD 15 10 25 20 15 15 20 10 10 15 25 10 20 25

(B1): PP_H1xG (B2): PP_H1xET47

LC 15 10 10 xx 20 20 20 25 5 25 xx 30 25 30
TH 0 10 15 xx 15 5 10 20 15 35 xx 30 25 30
TD 5 10 35 xx 15 15 25 30 25 25 xx 25 30 30

The performance is computed as the proportion of correctly selected best-performing lines with respect to LC, TH, and TD. For populations H1xG (i.e. left panel)
and H1xET47 (i.e. right panel), the assessment is conducted for genomic and phenomic prediction models accounting for environmental conditions. Numbers in
bold represent the best performance and we write xx to express that the corresponding statistical approach was not used for phenomic prediction.
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