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A laboratory-acquired E. coliO157:H7 infection with associated severe sequelae including
hemolytic uremic syndrome occurred in an individual working in the laboratory with a
mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend.
The patient was hospitalized and treated with an intravenous combination of
metronidazole and levofloxacin. The present study investigated the source of this
severe laboratory acquired infection and further examined the influence of the
antibiotics used during treatment on the expression and production of Shiga toxin.
Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient’s
stool were sequenced along with two pairs of thewt strains and their derived NalR mutants
used in the laboratory experiments. High-resolution SNP typing determined the strains’
individual genetic relatedness and unambiguously identified the two laboratory-derived
NalR mutant strains as the source of the researcher’s life-threatening disease, rather than
a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was
further confirmed that in sublethal doses, the antibiotics increased toxin expression and
production. Our results support a simultaneous co-infection with clinical strains in the
laboratory, which were the causative agents of previous O157:H7 outbreaks, and further
that the administration of antibiotics may have impacted the outcome of the infection.

Keywords: Shiga toxin (Stx) producing Escherichia coli (STEC), O157:H7, laboratory infection, genome sequencing,
single nucleotide polymorphisms (SNP) typing
INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens. Illness usually
begins as watery diarrhea, advancing to bloody diarrhea and hemorrhagic colitis (HC). Infection
may progress to a serious sequela known as hemolytic uremic syndrome (HUS), which can lead to
end-stage renal disease and death (Feng et al., 2022). STEC O157:H7, often referred to as
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enterohemorrhagic E. coli (EHEC), is the serotype that has most
often been associated with outbreaks and severe disease;
however, in recent years an increased prevalence of infections
caused by non-O157 STEC serogroups has been recognized
(Gould et al., 2013; NACMCF, 2019). STEC refers to those
strains of E. coli that produce at least one member of a class of
phage-encoded potent cytotoxins called Shiga toxin (Stx) or
verotoxin (VT), based on cytotoxicity on Vero cells (Bergan
et al., 2012). The production of Stx, as either Shiga toxin 1 or 2, or
subtypes and variants thereof is a virulence hallmark of STEC.
There are several subtypes within the Stx1 and Stx2 types; three
are recognized for Stx1 (Stx1a, Stx1c, and Stx1d), while multiple
are currently recognized for Stx2 (Stx2a through m) (Scheutz
et al., 2012; Bai et al., 2018; EFSA BIOHAZ Panel et al., 2020;
Yang et al., 2020a; Bai et al., 2021). Stx1a and Stx2a are the
prototypes of the Stx1 and Stx2 types and are considered ‘‘wild
type’’ Stx1 and Stx2 (Skinner et al., 2014). Although Stx1a has
been linked to human illness, STEC that produce subtypes Stx2a,
Stx2c, and Stx2d are more often associated with the development
of HC and HUS (Friedrich et al., 2002; Bielaszewska et al., 2006;
Melton-Celsa, 2014).

Currently, no effective prophylaxis exists for HUS (Serna and
Boedeker, 2008; Goldwater and Bettelheim, 2012), and data
suggest that exposure to a variety of antibiotics may increase
the risk of HUS in patients infected with STEC (Mody et al.,
2021; Wong et al., 2000; Tarr et al., 2005; McGannon et al., 2010;
Krüger et al., 2011; Bielaszewska et al., 2012; Wong et al., 2012).
The bacterial SOS-response triggered by DNA damage is linked
to phage induction and consequently, an increase in Stx
production (Kimmitt et al., 2000; Fadlallah et al., 2015; Krüger
and Lucchesi, 2015). Several studies have shown that Stx-
production is induced by the chemotherapeutic agent
mitomycin C due to activation of the SOS response following
DNA damage (Hull et al., 1993; Shimizu et al., 2009; McGannon
et al., 2010). It has been reported that antibiotic treatment of E.
coli O157:H7 infections is contraindicated as it has been
associated with severe sequelae such as HUS (Wong et al.,
2000; Serna and Boedeker, 2008). Nevertheless, some clinical
studies have revealed conflicting results (Tarr et al., 2005; Smith
et al., 2012), and this issue remains a controversial one (Mohsin
et al., 2015). Informed by the metadata analyses of several studies
the use of antibiotics in individuals with STEC infections is not
recommended (Freedman et al., 2016). Variables that contribute
to the development of HUS include host factors, such as age
(Tserenpuntsag et al., 2005) and the characteristics of the strain
involved (Grif et al., 1998; Ogura et al., 2015; Yin et al., 2015).
Furthermore, STEC strains that carry the stx2a variant are more
often associated with severe infection, and there are several
subtypes of stx2a-phages that are associated with different
toxin production levels (Ogura et al., 2015).

Shiga toxin presence and activity can be detected by Vero cell
cytotoxicity, immunologic, and PCR-based assays (Gerritzen
et al., 2011; Parma et al., 2012; Scheutz et al., 2012; Qin et al.,
2015; He Y et al., 2016; Armstrong et al., 2018). Different
immunologic Stx detection assays have shown good specificity
for the different Stx types and subtypes (Parma et al., 2012; He Z.
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et al., 2016; Armstrong et al., 2018). PCR-based assays targeting
the stx genes have also been used to detect specific stx types and
subtypes (Gerritzen et al., 2011; Scheutz et al., 2012).

To investigate the source of this E. coli O157:H7 infection,
strains that were recovered from the patient in the hospital along
with strains used by the researcher in laboratory experiments
were sequenced and subjected to high-resolution SNP typing.
Our second major objective was to determine whether the
hospital administered antibiotics may have had an impact on
the Stx-expression and -production levels, and ultimately on
disease severity.
MATERIALS AND METHODS

Clinical History and Strains Used in
the Study
A laboratory-acquired E. coli O157:H7 infection occurred in
2013 in an individual who was working in the laboratory with a
mixture of six E. coli O157:H7 strains in a soil-biochar blend.
Symptoms included bloody diarrhea, hemolytic uremic
syndrome (HUS), complete kidney failure, encephalopathy,
respiratory failure, and retinal hemorrhages. After symptoms
developed, the researcher was hospitalized. Pulsed-field gel
electrophoresis (PFGE) analysis of the two isolates recovered
from the patient’s stool in the hospital and the six nalidixic acid-
resistant (NalR) mutant strains the researcher used in the
laboratory experiment showed that the two patient isolates had
indistinguishable PFGE patterns from laboratory strains E. coli
O157:H7 strains RM7386 (7386) and RM6535 (6535). Strains
used in this study, their characteristics, and sources are shown
in Table 1.

Genome Sequencing, Assembly
and Annotation
Strains were cultured in LB broth o/n at 37°C with shaking at 180
rpm. Total genomic DNA was extracted from the o/n culture
using the QIAamp DNA Mini Kit (Qiagen, Inc., Valencia, CA,
USA) for Illumina MiSeq and Nanopore MinION sequencing.
For PacBio RS II sequencing, genomic DNA was extracted using
the Genomic-tip 500/G kit (Qiagen). To close the genomes, we
pursued a hybrid approach combining short-read Illumina
MiSeq, long-read PacBio RS II, and Minion (Oxford Nanopore
Technologies) technologies. For Illumina sequencing, a paired-
end library was prepared for all strains using the NxSeq
AmpFREE Low DNA Library Kit (Lucigen) and sequenced
with 250-bp read length using the MiSeq Reagent Kit v2 500-
cycle (Illumina) following the manufacturer’s guidelines. For
MinION sequencing, genomic DNA of E. coli O157:H7 strain
7386 wtwas diluted to a concentration of 1.5 µg genomic DNA in
46 µl nuclease-free water. The library was prepared using the
Ligation Sequencing Kit 1D (SQK-LSK108) in combination with
the Native Barcoding Kit (EXP-NBD103) according to the
manufacturer’s instructions, and sequencing was performed on
a MinION Mk1B. MinION reads were assembled with Canu
version 1.1 (Koren et al., 2017). In addition, PacBio long-reads
June 2022 | Volume 12 | Article 888568
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were generated at the University of Delaware DNA Sequencing
and Genotyping Center, Delaware Biotechnology Institute in
Newark, DE and at the Drexel University Genomics Core Facility
in Philadelphia, PA. Genomic DNA was sheared into
approximately 10-kb fragments using g-TUBE (Covaris, Inc.,
Woburn, MA, USA). The library was prepared based on the 10-
kb PacBio sample preparation protocol and sequenced using P6/
C4 chemistry on four single-molecule real-time (SMRT) cells
with a 180-min collection time. The continuous long-read data
were assembled de novo using the PacBio hierarchical genome
assembly process (HGAP version 2.3.0) (Chin et al., 2013).
Contigs were merged and circularized using Circlator (v 1.0.2).
Assemblies were polished, and motifs were detected using
RS_Modification_and_Motif_Analysis (v 2.3.0). The integrity
of the resulting PacBio assemblies was evaluated by Canu (v
1.1) assembly of the MinION (Koren et al., 2017) reads for strain
7386WT and further by using Illumina short-reads in
combination with the available Nanopore and/or PacBio long-
reads with the hybrid assembler Unicycler (Wick et al., 2017)
with Pilon error correction (Walker et al., 2014). Finally,
molecules were rotated to the oriC (Luo and Gao, 2019) or
repA genes for the chromosome and pO157 plasmid and
annotated using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) (Tatusova et al., 2016).

Identification of Virulence/Resistance
Genes and Shiga-Toxin and
Intimin Subtypes
Virulence and resistance genes were identified in silico with
VirulenceFinder (Joensen et al., 2014; Kleinheinz et al., 2014;
Joensen et al., 2015), VFDB (Chen et al., 2016) and Card (Alcock
et al., 2020). To determine the Shiga toxin subtype, a single
colony from each strain was selected from tryptic soy agar plates
and grown in Luria Bertani medium overnight (o/n). DNA
template was prepared by incubating 100 ml of the bacterial
culture in 900 ml of sterile H2O at 100°C for 10 min. PCR assays
to identify stx subtypes were performed according to Scheutz
et al. (2012) using a ProFlex PCR system (Thermo Fisher,
Waltham, MA, USA) with slight modifications as indicated in
Baranzoni et al. (2016). The assays targeted stx2a, 2b, 2c, 2d, 2e,
2f, and 2g. Gel electrophoresis using 1 µl of amplified DNA was
performed using 2.0% UltraPure Agarose (Invitrogen, Carlsbad,
CA, USA) with 0.5X GelRed (Phenix Research Products,
Candler, NC, USA) in 1X Tris-acetate-EDTA buffer at 100 V
for 1 h, and products were visualized using an AlphaImager gel
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
documentation system (Alpha Innotech, San Leandro,
CA, USA). The allelic subtype of the intimin (eae) was
determined in silico according to Lacher et al. (2006) and Yang
et al. (2020b).

Core Genome SNP Discovery
The core genome SNP discovery pipeline is implemented on
Galaxy (Goecks et al., 2010; Afgan et al., 2018), an open-source
web-based bioinformatics platform. The SNP discovery strategy,
detailed in Rusconi et al. (2016), allows to determine strain-to-
strain variation and to establish phylogenetic relationships within
the genomes of various microbial pathogens (Eppinger et al., 2010;
Eppinger et al., 2011; Eppinger et al., 2014; Nicholson et al., 2020;
Petro et al., 2020). The core genome is defined as the set of genic
and intragenic regions that are not repeated, do not contain phages,
IS elements, plasmid regions, genomic islands, or other mobile
genetic elements, which evolve at different rates and are not
indicative of evolutionary relationships. These regions were
determined for the complete annotated reference E. coli O157:H7
strain EC4115 chromosome (CP001164.1) as follows: repeats with
NUCmer (Delcher et al., 2003) by running the reference against
itself to find repeated regions, prophages with PHASTER (Zhou
et al., 2011; Arndt et al., 2016; Arndt et al., 2017), IS elements using
ISEScan (Xie and Tang, 2017) in Galaxy (Afgan et al., 2018), and
plasmids using PlasmidFinder (Carattoli et al., 2014). The SNP
discovery and verification pipeline contains the following modules:

SNP Discovery and Typing
Illumina reads for all six strains were uploaded in Galaxy for
read-based SNP discovery. First, reads were aligned with BWA-
MEM (Li and Durbin, 2009) to the selected reference genome
EC4115. Resulting alignments were processed with Freebayes
(Garrison and Marth, 2012) with the following threshold
settings: mapping quality 30, base quality 30, coverage 10, and
allelic frequency 0.75. Assemblies were analyzed using the
contig-based workflow. Genomes were aligned with NUCmer
against the reference strain EC4115 and SNPs were called with
delta-filter and show-snps distributed with the MUMmer
package (Delcher et al., 2003). The resulting SNP panel for
each of the query genomes was used for further processing.

SNP Curation
To account for false positive calls, we used several SNP curation
strategies detailed in our previous works (Eppinger et al., 2011;
Eppinger et al., 2014; Rusconi et al., 2016; Nyong et al., 2020):
TABLE 1 | Laboratory and patient E. coli O157:H7 strains used in this study.

Strain stx1 stx2a eae-g1 Source

7386 wt Negative Positive Positive Washington PHL strain #14873 isolated from bagged lettuce - Northwest
Fruit and Produce implicated in an outbreak in Washington State in 20087386 nalR

Patient isolate – M1300706001A

6535 wt Positive Positive Positive Human isolate (MN) associated with an outbreak linked to iceberg lettuce
in U.S. (Taco John) in 20066535 nalR

Patient isolate – M1300706002
June 2022 | Volume 12 | Article 888568
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SNPs located within repetitive or mobile regions in the reference
(repeats, bacteriophages, plasmids and/or IS elements) were
excluded as previously described (Eppinger et al., 2011). SNPs
were further curated by extracting the surrounding nucleotides
(40 nt) for each predicted SNP in the reference genome and
BLASTn of this fragment against the query genomes (Altschul
et al., 1990). Finally, resulting alignments were parsed to remove
SNP locations with missing information (“no hits”), SNPs
derived from ambiguous hits (>=2), low alignment quality or
misalignments, non-uniformly distributed regions, and InDels,
as previously described (Eppinger et al., 2011; Rusconi et al.,
2016). Multinucleotide insertions and deletions of polymorphic
bases were not considered SNPs and were excluded

SNP Annotation and Distribution
The curated catalogued SNPs from each query genome were
merged into a single SNP panel, hereby reporting the SNP
position, allelic and genic/intergenic status, and annotation.

SNP Validation of In Silico Predicted SNPs
To confirm the in silico predicted SNPs linked to nalidixic acid
resistance (Saenz et al., 2003; Fabrega et al., 2009), we performed
Sanger amplicon sequencing of the DNA gyrase and
topoisomerase IV genes in clinical strain pairs 7386Nal/
M1300706001A and 6535Nal/M1300706002 (Genewiz).
Primers were designed with Primer Express (Applied
Biosystems) and are listed along with PCR cycling conditions
in Supplementary Table 1. Each reaction was performed in a
volume of 20 ml using the Phusion High-Fidelity PCR Master
Mix (Thermo Scientific) followed by PCR product purification
with GeneJET PCR Purification Kit (Thermo Scientific), prior to
Sanger sequencing (Genewiz). To confirm SNP alleles,
sequencing results were compared to the corresponding SNP
positions in the reference strain EC4115.

Phylogenomics
SNP Based Phylogeny
The identified curated SNP panel was used for phylogenetic
reconstruction by maximum parsimony with PAUP v4.0a136
(Wilgenbusch and Swofford, 2003) with a 100 bootstrap
replicates. The SNP tree was visualized in Geneious (vR9)
(Kearse et al., 2012) and the majority consensus tree was built
in Mesquite (Maddison andMaddison, 2021) and decorated with
Evolview (Zhang et al., 2012; He Z. et al., 2016). Calculation of
the consistency index for each SNP allowed us to identify
parsimony informative SNPs and flag homoplastic SNPs as
described in our previous works (Rusconi et al., 2016; Nyong
et al., 2020).

Whole Genome Alignment-Based Phylogeny
To establish a phylogenetic framework and position the
laboratory- and patient strains in the broader context of the
O157:H7 step-wise evolutionary model (Wick et al., 2005; Feng
et al., 2007), we constructed a whole genome phylogeny,
including representative isolates for each of the nine clades
(Manning et al., 2008) (Supplementary Table 2). The
phylogeny was inferred by whole genome alignment with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Mugsy (Angiuoli and Salzberg, 2011) and RAxML with 100
bootstrap replicates (Stamatakis, 2014). The tree topology was
visualized in Geneious (Kearse et al., 2012) and decorated with
respective strain-associated metadata in Evolview (Zhang et al.,
2012; He Z. et al., 2016).

Minimum Inhibitory Concentration (MIC)
and Antibiotics-Induced Stx2 Production
Determination of the Concentration of Antibiotics to
Assess Their Effect on Toxin Production
The antibiotics tested on the strains were the same as those used
in the treatment of the patient. Patient treatment consisted of a
combination of 500 mg of metronidazole (Flagyl, MET) and 250
mg of levofloxacin (Levaquin, LEV) each day for a total of 16
days. MET was administered more than once on a number of
days, and LEV was administered 3 times on one of the days. The
expected peak plasma concentrations (Cmax) for MET at the
treatment dose are expected to be ~25 µg/ml [Mandell et al.,
2005; National Center for Biotechnology Information, PubChem
Compound Database: http://pubchem.ncbi.nlm.nih.gov/
compound/metronidazole (metronidazole C6H9N3O3)], and
this concentration was used for testing the bacterial cultures
since this was just below the assessed MIC (Andrews, 2001). For
LEV, the expected Cmax indicated in the literature is
approximately 5.0 µg/ml (range 4.1 to 11.3 µg/ml) at the
dosage used in the patient (Sowinski et al., 2003; National
Center for Biotechnology Information, PubChem Compound
Database: http://pubchem.ncbi.nlm.nih.gov/compound/
levofloxacin [C18H20FN3O4]). However, a concentration of
5.0 µg/ml killed the bacteria, and thus, 50 ng/ml (just below
the MIC) was used. MET (RPI Research Products International,
Mount Prospect, IL) and LEV (Chem-Impex International, Inc.,
Wood Dale, IL) were tested alone and in combination. As a
positive control, mitomycin C (MMC), (Millipore Sigma, St.
Louis, MO) which induces production of Stx2 was used at a
concentration of 50 ng/ml, and tryptic soy broth (TSB) (Becton
Dickinson, Franklin Lakes, NJ) without antibiotics was used as
the negative control. The experiments were performed in
duplicate and repeated twice.

Determination of Stx2 Levels in Strains Exposed
to Antibiotics
Single colonies of each strain were inoculated into 10 ml of TSB
and grown overnight at 37°C at 150 rpm, and then diluted 1:50
into fresh TSB and TSB with different antibiotics (2.0 x 107 CFU/
ml in 10 ml TSB) (Skinner et al., 2014) and incubated at 150 rpm
for 18 h at 37°C. The TSB was supplemented with either 50 ng/
ml MMC, 25 mg/ml MET, or 50 ng/ml LEV, and with both 25 mg/
ml MET and 50 ng/ml LEV. After incubation of the strains with
the antibiotics for 18 h, the cultures were diluted 10-fold in TSB
and plated onto tryptic soy agar (TSA), and colonies were
counted to determine the CFU/ml after exposure to the
antibiotics. The cultures were then centrifuged at 5,000 × g for
15 min at 4°C, and the supernatants were sterilized using 0.2-mm
filters. Subsequently, the sterile supernatants were used for the
quantification of Stx2 amount using a commercial indirect
ELISA kit (Eurofins-Abraxis, Warminster, PA, USA; (PN
June 2022 | Volume 12 | Article 888568
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542010; https://abraxis.eurofins-technologies.com/home/
products/rapid-test-kits/bacterial-toxins/shiga-toxin-elisa-
plates/shiga-toxin-2-stx-2-elisa-96-test/) as recommended by the
manufacturer. The sensitivity of this method is 30 pg/ml. Positive
and negative controls were those included in the kit. For
quantification of Stx2 production, a standard curve was
simultaneously generated with each assay using serial dilutions
of purified lyophilized Stx2a toxin from E. coli (List Biological
Laboratories, Campbell, CA, USA; https://www.listlabs.com/
products/shiga-toxins). A linear production was observed when
serial dilutions included concentrations from 2.5 ng/ml to 78
pg/ml. Samples were diluted until their ODs were included in
those shown in the standard curve to be in the linear range; most
samples required a 1:500 dilution. The results were analyzed
spectrophotometrically at 450 nm using a TECAN Safire II plate
reader (Tecan, Morrisville, NC). The experiments were
performed in duplicate and repeated at least twice.

Reverse Transcription (RT)-qPCR to
Determine Expression of Stx2a
Expression of the stx2a gene in the laboratory and clinical strains
was quantified using a RT-qPCR assay under non-induced,
MMC, and antibiotic-induced conditions. A total of six strains
were grown from an overnight culture in Luria-Bertani broth
(LB, Thermo Fisher Scientific) at 37°C and 180 rpm to an OD600

of 0.3-0.5. Cultures were induced either with MMC at 0.5 µg/ml
(Allué-Guardia et al., 2014) or a combination of the two hospital
administered antibiotics, MET and LEV, at concentrations of 25
µg/ml and 50 ng/ml. After cultures were incubated for 18 h at
37°C at 180 rpm, total RNA was extracted using the PureLink
RNA Mini Kit (Thermo Fisher Scientific) and treated with
DNAse I (DNAse I, amplification grade, Invitrogen) following
the manufacturer’s instructions. The RNA quantity and integrity
were assessed at an absorbance of 260 nm using a UV-
spectrophotometer and by agarose gel electrophoresis. RNA
was then converted into cDNA (RevertAid H minus first
strand cDNA Synthesis kit (Thermo Scientific), and stx2a was
quantified using the Go-Taq® qPCR Master Mix (Promega,
Madison, WI) and MicroAmp Fast optical real-time 96-well
PCR plates (Applied Biosystems, Grand Island, NY) on an ABI
StepOne PLUS Real-Time PCR system (Applied Biosystems).
The primers and the cycling program used are described in
Supplementary Table 1 (Wang et al., 2002; Gobert et al., 2007).
Specificity was checked by analyzing the melting curves.
Expression levels of stx2a were normalized against the
endogenous gene tufA using the ABI StepOne PLUS System
SDS software (Applied Biosystems) and are shown in relative
quantity (RQ). Two biological replicates were conducted for each
strain tested.

Statistical Analyses
Statistical significance was determined by two-way analysis of
variance ANOVA using Prism (version 9.0.1) (GraphPad
Software, San Diego, CA) for comparison of Shiga toxin
production and expression among the different culture
conditions within each strain and among the different strains for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
each culture condition. Differences among groups were performed
by Tukey’s multiple comparison test. Kruskal Wallis-non-
parametric ANOVA and Dunn’s multiple comparison test were
used for analysis of log CFU/ml results. Statistical significance was
considered when p < 0.05. A confidence level of 95% was applied.
RESULTS AND DISCUSSION

Laboratory-Associated Infection With
E. coli O157:H7
A researcher working with strains of E. coli O157:H7 developed
sharp elbow pain with flu-like myalgias, followed by pain in
multiple joints and eye pain two days after conducting an
experiment with a six-strain cocktail of NalR E. coli O157:H7.
His illness progressed to bloody diarrhea and severe abdominal
pain that was alleviated with hydromorphone. Assessment
following hospital admission was to refrain from antibiotic use
until it was determined that infection was not due to STEC.
Nonetheless, on the same day of admission, serologic testing for
Campylobacter using the ImmunoCard STAT!®CAMPY assay
returned a positive result. The patient was then started on two
cycles of LEV and MET on days 1 and 2, before laboratory tests
indicated the presence of STEC. The antibiotics were stopped on
day 3 and then recommenced on day 4 for a total treatment time
of 16 days, and the patient was diagnosed with pancolitis.

The E. coli O157:H7 infection was reported to the PA State
Health Department where stool samples were sent for
confirmation. The patient’s clinical course continued to
deteriorate, and one week after hospitalization, the patient
developed HUS, followed by respiratory failure, encephalopathy
with seizures, and retinal hemorrhages. After treatment with
hemodialysis and plasmapheresis the condition gradually
improved and the individual was discharged 24 days after
admission. The researcher was working with a mixture of a total
of six STEC strains in the laboratory. The two strains isolated from
the patient had indistinguishable PFGE patterns to two laboratory
strains 6535 and 7386 that were part of the STEC strain mixture,
pointing to a likely source of the patient’s severe O157:H7 co-
infection. These clinical isolates are linked to an outbreak caused by
contaminated iceberg lettuce and bagged lettuce, respectively
(Table 1). Both strains carried the loci encoding the stx2a
subtype and the eae-g1 gene. The virulence profiles are shown in
Supplementary Table 3, neither strain encodes antibiotic resistance
genes. Cases of laboratory-associated infections caused by E. coli
O157:H7 have been reported (Booth and Rowe, 1993; Burnens
et al., 1993; Rao et al., 1996; Coia, 1998; Salerno et al., 2004; Spina
et al., 2005). The latter article describes four laboratory-associated
cases that occurred in New York State from 1999 to 2004. The
authors stated that standard laboratory biosafety practices had not
been strictly followed, and in the four cases, the low infectious dose
and ability of the pathogen to survive on surfaces for prolonged
periods contributed to transmission. Regular assessment of
laboratory safety protocols, adequate training, and ensuring
compliance are important to avert exposure to potential hazards
and for prevention of laboratory-acquired infections.
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It has been reported that stressing E. coli O157:H7 with
quinolone antibiotics such as LEV can induce a bacterial stress
response due to perturbation of the DNA gyrase (topoisomerase
IV) cascading to a Gram-negative “SOS response” (Nassar et al.,
2013), leading to increased production and release of Shiga toxin
2 (Stx2) and escalating the likelihood of hemolytic uremic
syndrome (Wong et al., 2000; Panos et al., 2006; McGannon
et al., 2010; Smith et al., 2012; Wong et al., 2012). However,
treatment with certain classes of antibiotics does not result in an
increase in Stx production (McGannon et al., 2010; Bielaszewska
et al., 2012). McGannon et al. (2010) reported that antibiotics
that interfere with DNA synthesis, including ciprofloxacin and
trimethoprim-sulfamethoxazole, increased Stx production, but
other classes of antibiotics that target the cell wall, ribosome, or
RNA polymerase did not. Antibiotics (LEV and MET) were
administered to the patient described in this report due to a
positive result with the stool antigen test for Campylobacter. LEV
is a quinolone that interferes with DNA replication, and MET
belongs to the nitroimidazole class and inhibits nucleic acid
synthesis. The stool antigen test for Campylobacter used on the
patient has been reported to have a positive predictive value
(PPV) of only 36.6% (Fitzgerald et al., 2016). Later it was
however determined that the patient was not infected with
Campylobacter. This conclusion was based on a negative PCR
result testing the patient’s stool for Campylobacter, thus the
initial Campylobacter antigen test gave likely a false positive
result. A similar incident occurred in June of 2013 in Virginia
when a 69-year-old woman infected with STEC O111 was
misdiagnosed with Campylobacter by the same immunoassay
used on the patient in the current report (Operario et al., 2014).
The woman was treated with azithromycin, ciprofloxacin, and
metronidazole, and she subsequently developed hemolytic
uremic syndrome. The authors stated that “Campylobacter was
not confirmed by culture or PCR, suggesting that the initial
Campylobacter EIA [enzyme immunoassay] was likely a false-
positive result.”

Whole Genome Sequence Typing (WGST)
and Phylogenomic Relationship of Patient
Recovered Isolates
Our phylogenomic analyses revealed how the analyzed laboratory-
and patient strains fit into the phylogenomic context of the O157:
H7 lineage. Numerous genomic epidemiology studies of STEC
have embraced whole genome sequence typing (Franz et al., 2014;
Sadiq et al., 2014; Eppinger and Cebula, 2015; Pightling et al.,
2018), which proved critical for strain attribution and source
identification (Bono, 2009; Eppinger et al., 2011; Holmes et al.,
2015; Strachan et al., 2015; Yin et al., 2015; Cowley et al., 2016;
Lupolova et al., 2016; Lee et al., 2017). To further investigate the
source of infection, we sequenced a total of six genomes associated
with this clinical case using NGS short- and long-read
technologies on the Illumina, Oxford Nanopore, and PacBio
platforms. The two isolate sets were comprised of wt outbreak
strains 7386 (Washington lettuce, clade 8) and 6535 (Taco John,
clade 2), the two derived NalR mutant strains the patient was
exposed to in the laboratory, and further the two isolates recovered
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from the patient. To investigate the genetic relatedness of the wt
and respective derived NalR mutants and clinical strains recovered
from the patient, we reconstructed a phylogenomic hypotheses
inferred from whole genome alignment (Figure 1). We included
representative isolates from the stepwise evolutionary model of
O157:H7, which has been refined by many groups (Whittam et al.,
1988; Wick et al., 2005; Feng et al., 2007; Leopold et al., 2009; Zhou
et al., 2010; Jung et al., 2013). The tree topology partitions the
isolates into nine distinct clusters, as previously established by
Manning (Manning et al., 2008). As evident from the tree
topology, the Taco John (6535) and Washington lettuce
outbreak (7386) strains, along with their laboratory-derived NalR

mutants and isolates recovered from the patient, cluster with the
representative clades 2 and 8 strains PA11 (Hartzell et al., 2011)
and EC4115 (Eppinger et al., 2011), respectively. It is in the nature
of isolates linked to single outbreaks to form tight clonal clusters
and consequently outbreak investigations require the application
of high-resolution subtyping strategies (Eppinger et al., 2011;
Rusconi et al., 2016). To increase resolution and resolve the
intimate relationship of the strains, we applied high resolution
SNP typing (Figure 2). Core genome SNPs are highly informative
in the context of outbreak investigation to differentiate “near
clonal” outbreak isolates in support of strain attribution and
outbreak ex- and inclusion (Eppinger et al., 2014; Jenkins et al.,
2015; Rusconi et al., 2016). Whole genome SNP discovery and
typing provided the necessary resolution to resolve the genetically
homogenous population structure and allowed to differentiate
near clonal laboratory wt and NalR mutant and clinical strains.
The SNP analysis yielded a total of 588 SNPs, of which 572 were
parsimony informative. Phylogenetic reconstruction based on the
curated high-quality SNP panel with PAUP (Wilgenbusch and
Swofford, 2003) identified two genetically distinct clusters
separated by 551 SNPs, each comprised of the respective
laboratory wt strains, 7386 and 6535, derived NalR mutants, and
FIGURE 1 | Whole genome phylogeny of representative EHEC O157:H7 strains
Genomes of a total of 15 E. coli strains were aligned using Mugsy (Angiuoli and
Salzberg, 2011) and included wt/NalR laboratory strains 7386 and 6535 and two
clinical strains recovered from the patient and were complemented by
representative isolates in the stepwise evolutionary model of EHEC O157:H7
(Feng et al., 2007; Manning et al., 2008).The phylogenetic tree was constructed
using RAxML (Stamatakis, 2014) with 100 bootstrap replicates and decorated
with the strain-associated metadata in Evolview (He Z. et al., 2016). Bootstrap
values below 100 are shown in the tree.
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clinical isolates recovered from the patient. Strains within clusters
7386 and 6535 are near clonal and are either indistinguishable on
the SNP-level or separated by one or two SNPs (Figure 2 and
Supplementary Table 4). The NalR mutants feature non-
synonymous SNPs in both the DNA gyrase and topoisomerase
genes, which are known mutations conferring this particular
resistance phenotype (Saenz et al., 2003; Fabrega et al., 2009).
The in silico predicted SNPs for these two genes were further
confirmed by Sanger amplicon sequencing. In STEC O157:H7 we
previously demonstrated that such numbers of SNPs can arise
during a single passage in the laboratory (Eppinger et al., 2011).
The recorded SNP numbers in the two clusters are further in line
with the numbers reported for serial patient-derived O157:H7
isolates that underwent short-term microevolutionary changes
(Rusconi et al., 2016). Taken together, the phylogenomics data
identified the laboratory derived NalR mutant strains as the source
of the researcher’s life-threatening disease rather than a
conceivable ingestion of unrelated STEC O157:H7 isolates
circulating at the same time. The results also clearly support a
simultaneous co-infection with laboratory-housed strains, which
were the causative agents of previous O157:H7 outbreaks. Co-
infections have been only observed rarely in STEC (Rivas et al.,
1993; Gilmour et al., 2007; Cheung et al., 2020), and the potential
impact on disease manifestation by such mixed infections of
strains featuring distinct genome and virulence traits has not
been evaluated.

Determination of Stx2a Production by
ELISA and Stx2a Expression by qRT-PCR
Following Exposure to the Antibiotics
We recorded production traits of Stx2a, the most potent allelic
subtype associated with human disease (Tesh et al., 1993;
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Orth et al., 2007; Fuller et al., 2011), in response to MET and
LEV in wt strains, laboratory-derived NalR mutants, and clinical
isolates. For a comprehensive readout, we recorded both toxin
transcript and protein levels under spontaneous (non-induced)
and MMC-inducing conditions (Figure 3). Expression and
production levels of the stx2a gene and Stx2 were measured by
RT-qPCR (Figures 3A, B) and ELISA (Figures 3C, D),
respectively. MMC is a potent Stx2 prophage-inducing agent
that triggers toxin production via the SOS response mechanism
(Raya and H’bert, 2009; Pacheco and Sperandio, 2012; Allué-
Guardia et al., 2014). Bacterial counts (log CFU/ml) after 18 h of
growth at 37°C in TSB medium alone were very similar among
the six strains analyzed (Table 2). Statistically significant
reductions in CFU/ml, compared to TSB, were observed in the
presence of MET in 7386 wt, 7386 NalR, 6535 wt, and patient
isolates M1300706001A and M1300706002 (Table 2). The
addition of both MET and LEV to the cultures resulted in
statistically significant reductions in patient-derived strain
M1300706001A and in 7386 NalR compared to counts
observed in TSB alone (Table 2). LEV had no significant effect
on the reduction of CFU/ml in any strain compared to TSB
(Table 2). Therefore, the reduction in bacterial growth observed
in cultures with the combination of MET and LEV were
primarily due to MET.

Several biotic and abiotic cues can induce the Stx converting
prophage complement in STEC hosts, including antibiotics
(Pacheco and Sperandio, 2012). Therapeutic use of antibiotics
for STEC infections is thus controversial, as certain antibiotics are
known to induce Stx2 phages and consequently toxin production
through SOS-dependent activation of the phage lytic cycle
(Kimmitt et al., 2000; Wong et al., 2000; Zhang et al., 2000;
McGannon et al., 2010). Elevated toxin levels and stx2a transcripts
were observed when compared to spontaneous conditions after
exposure to MET and LEV (Tables 3, 4). Significantly increased
production of Stx2 was observed in each of the six strains analyzed
with combined MET and LEV compared to TSB (p<0.05), except
for 7386 NalR, which showed high levels of toxin production in the
presence of TSB alone. The highest Stx2 production with
combined MET and LEV was observed in 6535 wt (average
4717 ng toxin/ml) with significantly higher Stx2 production
compared to 7386 wt, 7386 NalR, and both patient isolates
(p<0.05) (Figure 3D). Significantly higher production of Stx2
was observed in 6535wt compared to the 6335 NalR patient isolate
M1300706002 (Table 3). The 6535 wt strain produced
significantly less Stx2 under MET-induction when compared to
the combination of the two antibiotics.

Stx2 production levels with exposure to MMC were higher
than those induced by combined MET and LEV in the two NalR

mutant strains and in the two patient isolates (Table 3), but
statistically significantly increased Stx2 production was only
observed in 7386 NalR. Lower Stx2 production by MMC was
observed in both wt strains, with significantly lower production
in 6535 wt compared to exposure to LEV and the combination of
MET and LEV.

Stx2 transcript levels were examined only in the presence of
LEV and MET combined, and not with the antibiotics
FIGURE 2 | Maximum parsimony (MP) SNP-based tree of analyzed laboratory
and clinical EHEC O157:H7 strains Comparison of the six genomes yielded a
total of 588 SNPs of which 572 were parsimony informative. The tree shown is
a majority-consensus tree of 100 equally parsimonious trees with a consistency
index of 0.998 and was recovered using a heuristic search in Paup 4.0a163
(Wilgenbusch and Swofford, 2003). The phylogeny revealed two distinct clusters
comprised of laboratory strains 7386 and 6535 and respective derived NalR
mutants and clinical isolates recovered from the patient. The SNP tree
unambiguously identified the two laboratory strains as source of this life
threatening O157:H7 co-infection. As evidenced both patient recovered
strains form tight clonal clusters with their respective laboratory progenitor
strains and the tree topology unambiguously identified the laboratory strains
as progenitor and thus source of the researchers’ infection. Only nodes with
bootstrap values below 100 are listed.
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individually (Figures 3A, B and Table 4). Results indicated that
the induction effect of these antibiotics was not as pronounced
as in samples treated with MMC. Results with MET+LEV
treatments were not significantly different than treatment
with TSB alone with the exception of strain 7386 wt. Another
notable exception was that results with strain 7386 wt did
not show a statistical difference between MMC and
MET+LEV treatments.

When comparing stx2 expression versus Stx2 production
results, a similar trend was observed in most strains. 7386 wt
showed no significant differences in both expression and
production of toxins in MMC versus MET+LEV, while the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
other strains showed significant differences in both toxin
expression and production in MMC versus MET+LEV
(Tables 3, 4). Host derived strains M1300706001A/7386-NalR

and M1300706002/6535-NalR showed significant differences in
stx2a gene expression under MMC versus MET+LEV conditions,
but not in toxin production. This may indicate a delayed
production of toxins in this strain; however, this would require
further study. We note here a disconnection between transcript
and Stx2 protein levels has been previously reported in O157:H7
strains, though the reason for this apparent lack of correlation
remains to be elucidated (Leenanon et al., 2003; Neupane
et al., 2011).
TABLE 2 | Colony counts of the different strains.

Strain TSB TSB+MMC TSB+Metronidazole (MET) TSB+Levofloxacin (LEV) TSB+MET+LEV

7386 wt 8.9 ± 0.1a 8.2 ± 0.5ab 6.8 ± 0.3b 8.8 ± 0.5a 7.2 ± 0.5ab

7386 nalR 8.7 ± 0.1a 8.1 ± 0.1ab 7.2 ± 0.4b 8.7 ± 0.1a 7.2 ± 0.4b

M1300706001A 8.9 ± 0.1a 8.5 ± 0.3ab 7.2 ± 0.2b 8.7 ± 0.2a 7.0 ± 0.4b

6535 wt 9.0 ± 0.1a 8.5 ± 0.1ab 7.1 ± 0.1b 9.0 ± 0.0a 8.3 ± 0.1ab

6535 nalR 8.9 ± 0.1ab 8.4 ± 0.1ab 7.5 ± 0.5b 9.1 ± 0.1a 7.7 ± 05ab

M1300706002 9.0 ± 0.0b 8.6 ± 0.1ab 7.3 ± 0.3a 8.9 ± 0.1b 7.4 ± 0.2ab
June 2022 | Volume 12
Log [CFU/ml] of the different strains (average ± standard deviation) after 18 h growth in TSB, mitomycin, LEV, MET, and MET and LEV combined. Statistics are based on non-parametric
Kruskal Wallis Anova test and Dunn’s multiple comparison test. Different letters in the same row among columns indicate statistically significant differences.
A

B D

C

FIGURE 3 | Stx-virulence phenotypes in response to hospital administered antibiotics Stx-production of the infection-associated laboratory and clinical isolates were
recorded under non-induced, MMC-induced conditions and hospital administered antibiotics. Transcripts of stx2a (A, B) were measured by RT-qPCR using two
biological and technical replicates and normalized against the endogenous gene tufA. Values are shown in relative quantitation (RQ), after using the comparative CT

(DDCT) method (Livak and Schmittgen, 2001). Stx2-production (C, D) was quantified by ELISA. Error bars depict standard deviation of two biological replicates.
Statistical significance of the RT-qPCR and ELISA for each individual strain when comparing conditions (A, C), and for each condition when comparing strains is
shown (B, D). Different letters among conditions in each strain (A, C) and among strains in each condition (B, D) indicate statistically significant differences.
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CONCLUSIONS

High-resolution genomic epidemiology techniques have been
extensively used in outbreak investigations to identify the
contaminated source and emergence of hypervirulent STEC
lineages (Underwood et al., 2013; Amigo et al., 2015; Dallman
et al., 2015a; Dallman et al., 2015b; Eppinger and Cebula, 2015).
Assuring a timely and informed response in the control of
microbial outbreaks is challenging, and techniques with high
discriminatory power become of particular importance to
distinguish outbreak isolates that form tight clonal complexes
with only few genetic polymorphisms. Particularly, de novo SNP
typing complements often surpass other more labor-intensive
molecular typing schemes that have been developed for STEC
pathogen populations over the last decades (Sadiq et al., 2014).
Our investigation of this clinical STEC case identified a
laboratory contamination with an Stx2a-positive O157:H7
strain mixture as the source of a severe human infection.
PFGE in combination with SNP profiling allowed us to
establish a “close” clonal relationship of the compared
laboratory wt/NalR-mutant and patient strains reflecting the
short-term microevolutionary changes in their genomes. The
detected SNP numbers are in line with reports by us and other
groups for serial outbreak isolates of O157:H7 (Dallman et al.,
2015b; Rusconi et al., 2016; Dallman et al., 2021). Unfortunately,
to date no effective treatment or prophylaxis for HUS is known
(Goldwater and Bettelheim, 2012). Certain antibiotics are known
to mobilize Stx2a-phages and ultimately cause toxin production,
thus the therapeutic use of antibiotics remains highly
controversial (Mead and Griffin, 1998; Rahal et al., 2015;
Freedman et al., 2016). The treatment regimen of the patient
provided us with the unique opportunity to assess the impact of
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the individual administered antibiotics or cocktails on the
strains’ Stx production capabilities. In vitro assays showed that
exposure to MET and LEV likely increased the pathogenic
potential of the infective strains. In sublethal doses, these
antibiotics elevated both toxin-transcript and -production
levels in this clinical case, and in consequence may have
exacerbated the symptoms and the severity of the disease. As
demonstrated in this study, the integration of genome and
virulence information is critical for outbreak investigations and
improved risk assessment of STEC (Sadiq et al., 2014; Eppinger
and Cebula, 2015), and our findings call for awareness of
increased Stx production capabilities following the therapeutic
treatment with antibiotics.
ACCESSION NUMBERS

The sequencing datasets for all isolates analyzed in this study
have been deposited in the Sequence Read Archive (SRA) and the
Whole Genome Shotgun Repository at National Center for
Biotechnology Information (NCBI) under BioProjects
PRJNA407949 and PRJNA750123. Accessions for reads,
assembled, and annotated draft genomes, along with strain-
associated metadata are provided in Supplementary Table 2.
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TABLE 4 | stx2a gene expression of the different strains.

Strain TSB TSB+MMC TSB+MET+LEV

7386 wt 1.6 ± 0.8a 186.9 ± 24.4b 124.6 ± 32.4b

7386 nalR 4.9 ± 4.5a 202.4 ± 34.3b 70.7 ± 10.0a

M1300706001A 2.0 ± 0.4a 226.0 ± 110.2b 104.4 ± 81.6a

6535 wt 7.2 ± 2.6a 275.9 ± 89.6b 114.1 ± 2.2a

6535 nalR 7.1 ± 1.1a 268.2 ± 39.5b 69.8 ± 10.8a

M1300706002 8.5 ± 0.5a 302.0 ± 27.6b 58.2 ± 4.9a
June 2022 | Volume 12
qPCR results for stx2a gene expression in the different strains (average ± standard deviation) after 18 h growth in TSB, MMC, and LEV+MET combined. Statistics are based two-way
ANOVA and Tukey’s multiple comparison tests. Different letters in the same row among columns indicate statistically significant differences.
TABLE 3 | Stx2a production of the different strains.

Strain TSB TSB+MMC TSB+Metronidazole (MET) TSB+Levofloxacin (LEV) TSB+MET+LEV

7386 wt 197.9 ± 74.7a 2110.5 ± 495.6b 1186.0 ± 483.2ab 2594.0 ± 200.6b 2440.0 ± 117.9b

7386 nalR 477.0 ± 56.4a 4122.1 ± 777.8b 1606.8 ± 826.1a 1767.3 ± 423.5a 1934.8 ± 858.7a

M1300706001A 295.9 ± 226.8a 3709.5 ± 353.5b 2507.8 ± 506.1b 2773.1 ± 205.0b 2352.9 ± 358.3b

6535 wt 80.3 ± 10.7a 1686.6 ± 139.3a 1149.7 ± 258.6a 4272.7 ± 1056.8b 4717.0 ± 1579.7b

6535 nalR 169.8 ± 25.7a 4413.6 ± 363.2b 3386.8 ± 775.0b 2695.4 ± 496.8b 2988.4 ± 378.8b

M1300706002 185.7 ± 116.8a 2935.4 ± 1035.1b 2140.9 ± 909.7b 1683.4 ± 1087.5ab 2193.3 ± 579.1b
Stx2a production [ng/ml] in the different strains (average ± standard deviation) after 18 h growth in TSB, mitomycin, LEV, MET and MET+LEV combined. Statistics are based on two-way
ANOVA and Tukey’s multiple comparison tests. Different letters in the same row among columns indicate statistically significant differences.
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