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Abstract: Background: Nanotechnology application has widespread use in many products. Copper
nanoparticles (CuNPs) are widely used in industrial applications. The present study was conducted
to investigate the effect of the ethanolic saffron extract (ESE) as a natural antioxidant on the hepatotox-
icity induced by CuNPs in male mice. Methods: The characterization of CuNPs was determined using
ultraviolet–visible absorption spectroscopy, particle size analysis, zeta potential, Fourier-transform
infrared spectroscopy, and electron microscope. The effect of saffron on the hepatotoxicity induced by
CuNPs in mice was evaluated by evaluating the survival rate of the mice, oxidative stress, antioxidant
capacity, DNA evaluation, as well as its effect on the histology and transmission electron microscope
of the liver. Results: The results revealed that all parameters were affected in a dose-dependent
manner by CuNPs. These effects have been improved when the treatment of CuNPs is combined
with ethanolic saffron extract. Conclusions: We can conclude that saffron and its bioactive crocin
portion can prevent CuNP-induced oxidative liver damage. This substance should be useful as a
new pharmacological tool for oxidative stress prevention.

Keywords: liver; mice; copper nanoparticles; saffron; characterization; biochemical; histology;
transmission electron microscope

1. Introduction

Nanotechnology application is now in widespread use for consumer products and in
new pharmaceutical, electronic, and other industries. Metal nanomaterial have become
significantly used in biomedical sciences due to their interesting and unique properties [1,2].
They possess unique optoelectronic properties, due to their well-known localized surface
plasmon resonance characteristics [3]. They can be synthesized and modified from their
metal precursors with different chemical functional groups that allow them to be combined
with antibodies, ligands, and medicines of interest, and thus open up a broad range of
application spectra [4].

Copper nanoparticles (CuNPs) are used in industrial applications as an additive in
lubricants [5], for metallic coating [6], and as a highly reactive catalyst in organic hydrogen
reactions. Additionally, they have been used in osteoporosis treatment, antibacterial
materials, additives in livestock, and poultry feed. It was found that these nanoparticles
being released into the environment and the consequences of their various effects on human
health have increased. A common mechanism of toxicity of NPs is thought to be mediated
via oxidative stress [7], which damages lipids, carbohydrates, proteins, and DNA [8]. This
can lead to the production of highly toxic electrophilic species as malondialdehyde (MDA)
(an indicator of lipid peroxidation contents) which can affect and alter cellular signal
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transduction pathways [9,10]. CuNPs can affect the human body via consumer products,
spillage during shipping, and handling. Excess intake exposure to it may cause hemolysis,
hepatotoxicity, oxidative stress, and even renal dysfunction [11].

A collection of toxicological events, such as hepatocirrhosis [12], lipid profile changes,
oxidative stress, renal dysfunction [11], and the activation of the mucous membrane of the
food channel, can be caused by the overload of common copper in vivo. In the animal body,
CuNPs induced severe impairment in the kidney, liver, and spleen in mice due to their
toxicity [13,14]. The pulmonary effects of inhaled CuNPs were studied by Kim et al. [15] in
mice. They observed that dystrophy or tissue necrosis was caused by the rise in its dosage
to levels around its toxicity threshold. Its toxicity was associated with the size/specific
surface area of the particle. The variation in the size of NPs could lead to an alteration in
their catalytic properties [16]. Meng et al. [17] detected a metabolic alkalosis and copper
accumulation in the kidneys in mice that were orally exposed to CuNPs.

Doudi and Setorki [18] found that CuNPs with 10–15 nm diameters, and 99.9% pu-
rity could induce toxicity and changes in the liver and lung tissues of rats. Cholewińska
et al. [19] performed a study on the effect of CuNPs on gastrointestinal and hepatic mor-
phology and function in a rat model. CuNPs were shown to be ingested from the intestine
at higher dietary doses and to accumulate in brain tissue to cause liver harm. Using an-
tioxidant nutrients as a natural product is one of the most common forms of alternative
medicines. This, because of its pharmacological and antioxidant effect [20], and its role
in the prevention of oxidative stress associated with different diseases. Crocus sativus
flower (family Iridaceae) is a flowering plant cultivated in various parts of the world,
including Iran, China, Spain, Italy, and Greece [21]. It is identified as saffron, which is rich
in flavonoids, vitamins, and carotenoids and consists of the dried stigmas of the plant.

Crocus sativus (saffron) has been used in India and other parts of the world for medici-
nal purposes for many decades. It has been used for nutritional and medical applications,
in the food industry (flavoring and herbal agents), and in the garment industry (dyes).
Furthermore, it has a golden yellow-orange color is primarily due to the presence of α-
crocin. The medicinal uses of saffron can be attributed to active metabolites, such as crocin,
crocetin, picrocrocin, and safranal present within it, which exhibit antihypertensive, anti-
convulsant, antidepressant, antitussive, antigenotoxic, anxiolytic, aphrodisiac, antioxidant,
anticancer, anti-inflammatory, antinociceptive, and muscle relaxant activity [22].

Moreover, there are more than 150 volatile and aroma-producing elements in saffron,
many of which are carotenoids, including zeaxanthin, lycopene, and separate alpha and
beta-carotenes [22]. The wide range of applications of saffron is attributed to its free radical
scavenging nature, which makes it a potent chemotherapeutic agent for the treatment of
various diseases.

Saffron aqueous extract has an important role as a chemotherapeutic application in
mice [23]. Patel et al. [24] explained that saffron extract exerts its anti-cancer effects via RNA
and DNA synthesis inhibition, apoptosis induction [24–26], self-renewal genes expression
reduction [27], topoisomerase inhibition [28], cell proliferation inhibition [27–29], immune
modulation [30,31], and cell growth reduction [32,33]. Besides, Shakeri et al. [34] have
reported that saffron has selective toxic and protective effects on cancer cells, has no harmful
effects on normal cells and prevents the development of tumors. Safran in medicine may
also be a good candidate for new drug products for the treatment of cardiovascular diseases
(CVDs) [35].

Samarghandian et al. [36] showed that the daily intraperitoneal injection of ethanolic
extract of saffron for 4 weeks can be effective to protect susceptible aged liver, where it ame-
liorated the increased serum nitric oxide (NO) and lipid peroxidation (Malondialdehyde—
MDA) levels and decreased glutathione-S-transferase (GST) activity in the liver of old
rats (20 months). The changes in activities of antioxidant enzymes [superoxide dismutase
(SOD), GST, and catalase (CAT)] as well as the levels of MDA in the liver and serum
NO determined the effect of saffron on the status of oxidative stress. Khazdair et al. [37]
showed that saffron and its components can be considered as promising agents in the
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treatment of nervous system disorders (acts as an anticonvulsant and anti-Alzheimer prop-
erty). Furthermore, saffron was suggested as a drug for diabetic neuropathy treatment.
Zilaee et al. [38] studied the effects of the saffron extract on many diseases, such as allergic
asthma, and the resolution of inflammation in the metabolic syndrome [39–41]. From
the above-mentioned information, there are no data available on the effect of the saffron
extract on CuNPs. Therefore, the purpose of the present study was to investigate the effect
of the ethanolic saffron extract on the hepatotoxicity induced by CuNPs in male mice at
biochemical, histological, and ultrastructural levels.

2. Results
2.1. Characterization of the CuNPs and Zeta Potential

The UV-visible absorption spectrum showed a typical absorption spectrum of CuNPs
(Figure 1). The suspension of CuNPs has a strong absorption maximum at a wavelength of
550 nm. Particle size distribution, which was carried out by particle size analyzer showed
that the CuNPs appeared with mean particle sizes of 82.87 nm. The polydispersity index
was 0.5 (less than 1), indicating the homogeneous nature of the formulation (Figure 2).
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Figure 1. The absorption spectra of prepared CuNPs (λmax = 550 nm).
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The Zeta potential of the CuNPs was determined to estimate the surface charge of the
nanoparticles in solution. The results revealed that the particles were negatively charged
with a range of—23.9 ± 6.87 mv (Figure 3).
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2.2. Fourier-Transform Infrared Spectroscopy (FT-I) and Morphology of CuNPs Using the Electron
Microscope (EM)

The Fourier-transform infrared spectrum shows the peaks at 3426 cm−1, 1651 cm−1,
and 1423 cm−1 (Figure 4). These peaks correspond to the hydroxyl, oxidized carbonyl group
and conjugated carbonyl group, respectively, indicating the presence of the polyhydroxy
structure on the surface of copper nanoparticles. The electron micrograph revealed the
appearance of complete spherical-shaped particles with a low level of agglomeration, and
they have a size range of 82.78 (Figure 5).
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2.3. External Signs, Body Weight and Mortality

All experimental animals were examined daily for thirty-days to record any signs
of abnormalities attributed to the two doses of CuNPs (100 and 250 mg/kg). The results
showed no changes in the general health of mice, where most animals were still active.
Additionally, there were no significant increases in the bodyweight of all experimental
groups.

However, there was a significant decrease in the body weight of mice treated with
250 mg/kg CuNPs, compared to the control group (Table 1). The mortality was zero in the
control mice group and 100 mg/kg CuNPs + 60 mg/kg of ESE as well as in those treated
with 60 mg/kg of ESE. The mortality was 30% in the animals treated with 250 mg/kg CuNPs.
However, only 10% of dead mice recorded in the two treated-groups with 100-CuNPs and
those treated with 250-CuNPs + 60 mg/kg ESE during the experiment (Table 1).

Table 1. Percentage of mortality and body weight change of all experimental mice for 30 days.

Experimental
Groups No. of Mice No. of Dead Mice

% of
Mortality

Mean of Body Weight (g) The Mean Change in
Body WeightInitial Final

Control 10 0 - 22.3 ± 2.081 28.34 ± 1.15 27.09 ± 7.16

60 mg/kg bw ethanolic saffron
extract 10 0 - 24.33 ± 1.15 30.6 ± 1.54 26.02 ± 2.06

100 mg/kg bw CuNPs 10 1 10 23.01 ± 1.32 28.66 ± 1.5 24.78 ± 7.2

250 mg/kg CuNPs 10 3 30 22.66 ± 2.5 26.66 ± 1.5 18.24 ± 9.02 a

100 mg/kg bw CuNPs +
60 mg/kg ethanolic saffron extract 10 0 - 23.67 ± 1.15 29.66 ± 0.57 25.62 ± 8.33

250 mg/kg bw CuNPs +
60 mg/kg ethanolic saffron extract 10 1 10 22.66 ± 2.3 28 ± 1.73 23.88 ± 5.2

Data presented as means ± SE. a Significant difference as compared to the control group (p ≤ 0.05).

2.4. Enzymes Markers in Serum of Mice

The serum enzyme markers of the liver as aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and alkaline phosphatase (ALP) for both control and experimental
treated mice are presented in Table 2. After 30 days of administration with two doses of
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CuNPs, there were significant increases in the activity of AST, ALT, and ALP in the serum
of treated mice, as compared to the control. There was a significant decrease in the serum
activity of AST, ALT, and ALP of those treated with both doses of CuNPs with 60 mg/kg
ESE as compared to those treated with 100 and 250 mg/kg CuNPs only.

Table 2. Effect of ethanolic saffron extract on serum enzymes activity of liver functions of induced mice with CuNP.

Experimental Animals

Enzymes
Activity (U/mL) Control 60 mg/kg ESE 100 mg/kg bw

CuNP
250 mg/kg bw

CuNP

100 mg/kg
CuNP +

60 mg/kg bw
ESE

250 mg/kg
CuNP +

60 mg/kg bw
ESE

AST 60.18 ± 2.03 50.3 ± 2.4 68.84 ± 5.6 a 80.55 ± 4.6 a 51.66 ± 4.3 b 53.35 ± 1.8 c

ALT 68.44 ± 12.9 60.81 ± 5.1 79.08 ± 2.2 a 90.38 ± 9.01 a 60.3 ± 5.80 b 61.95 ± 7.2 c

ALP 134.46 ± 2.4 122.52 ± 2.07 139.56 ± 15.7 a 146.6 ± 0.4 a 120.56 ± 3.7 b 128.17 ± 8.3 c

Data are presented as mean ± SE. AST; aspartate aminotransferase, ALT; alanine aminotransferase, ALP; alkaline phosphatase, ESE;
ethanolic saffron extract, and CuNP; copper nanoparticle. a Significance was considered, compared with the control group (p ≤ 0.05), b,c

significance was considered compared with 100 and 250 mg/kg bw CuNPs groups, respectively.

2.5. Oxidative Stress and Total Antioxidant

The results showed marked significant increases in concentrations of malondialdehyde
(MDA) as an indicator of lipid peroxidation (LPO) in the serum of mice administered with
CuNPs, comparing with the control. However, there were no significant differences
detected in the MDA levels of mice administered with 60 mg/kg ESE as compared to the
control (Figure 6). There were significant decreases in the levels of serum MDA of those
treated with both doses of CuNPs and ESE, as compared to its related dose of CuNPs
groups (Figure 6).
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Figure 6. The effect of the ethanolic saffron extract on malondialdehyde levels of mice. Data are
presented as mean ± SE. a Significance was considered, compared with the control group (p ≤ 0.05),
b,c significance was considered compared with 100 and 250 mg/kg of CuNPs groups, respectively.

Depending on the dose levels, the results exhibited marked significant decreases in
the level of serum TAC of mice that were injected with CuNPs as compared with the
control. However, there were observable increases in this parameter in the serum of mice
administered with two doses of CuNPs and 60 mg/kg of ESE, as compared to those of the
CuNPs groups only (Figure 7).



Molecules 2021, 26, 3045 7 of 26

Molecules 2021, 26, x FOR PEER REVIEW 7 of 25 
 

 

 

Figure 6. The effect of the ethanolic saffron extract on malondialdehyde levels of mice. Data are 

presented as mean ± SE. a Significance was considered, compared with the control group (p ≤ 0.05), 
b,c significance was considered compared with 100 and 250 mg/kg of CuNPs groups, respectively. 

 

Figure 7. The effect of the ethanolic saffron extract on the serum total antioxidative capacity of 

mice. Data are presented as mean ± SE. a Significance was considered compared with the control 

group (p ≤ 0.05), b,c significance was considered compared with 100 and 250 mg/kg of CuNPs 

groups, respectively. 

2.6. Light Microscopic Observations 

The liver of control mice revealed that the hepatocytes are polygonal in shape and 

exhibited distinct boundaries, and they have centrally located spherical or ovoid baso-

philic nuclei and acidophilic cytoplasm. These nuclei showed considerable variations in 

size from cell to cell. Each nucleus contains one or two prominent nucleoli and dispersed 

chromatin (Figure 8a). The light micrographs of liver mice treated with 60 mg/kg of ESE 

showed that the hepatocytes had preserved their characteristic organization and became 

separated from each other by wide sinusoidal spaces. Their nuclei were vesicular and 

displaying normal appearance. The activated Kupffer cells were observed in most liver 

sections of the tissue (Figure 8b).  

Sections of liver mice treated with 100 mg/kg CuNPs showed that the hepatocytes 

were more or less similar to the control. In a few sections, they had lost their characteris-

tic organization, and the cytoplasm was slightly vacuolated. The nuclei were vesicular 

and displaying their normal shaped structures. Kupffer cells appeared few and showing 

0
2
4
6
8

10
12
14
16
18
20

control 60 mg/kg bw
ethanolic
saffron
extract

100mg/kg
bw Cu NPs

250mg/kg
bw Cu NPs

100mg/kg
bw Cu NPs +

60mg/kg
ethanolic
saffron
extract

250mg/kg
bw Cu NPs +

60mg/kg
ethanolic
saffron
extract

M
a

lo
d

ia
ld

eh
y

d
e 

le
v

el
s 

(n
m

o
l/

m
L

)

a

a

b,c

0

0.5

1

1.5

2

2.5

3

control 60mg/kg bw
ethanolic

safrron extract

100mg/kg bw
Cu NPs

250 mglkg bw
CuNPs

100mg/kg bw
CuNPs +

60mg/kg bw
ethanolic

saffron extract

 250mg/kg bw
CuNPs +

60mg/kg bw
ethanolic

saffron extract

T
o
ta

l 
a
n

ti
o

x
id

a
ti

v
e 

ca
p

a
ci

ty
 (

m
M

/L
)

a
a

b,c

Figure 7. The effect of the ethanolic saffron extract on the serum total antioxidative capacity of
mice. Data are presented as mean ± SE. a Significance was considered compared with the control
group (p ≤ 0.05), b,c significance was considered compared with 100 and 250 mg/kg of CuNPs
groups, respectively.

2.6. Light Microscopic Observations

The liver of control mice revealed that the hepatocytes are polygonal in shape and
exhibited distinct boundaries, and they have centrally located spherical or ovoid basophilic
nuclei and acidophilic cytoplasm. These nuclei showed considerable variations in size from
cell to cell. Each nucleus contains one or two prominent nucleoli and dispersed chromatin
(Figure 8a). The light micrographs of liver mice treated with 60 mg/kg of ESE showed that
the hepatocytes had preserved their characteristic organization and became separated from
each other by wide sinusoidal spaces. Their nuclei were vesicular and displaying normal
appearance. The activated Kupffer cells were observed in most liver sections of the tissue
(Figure 8b).

Sections of liver mice treated with 100 mg/kg CuNPs showed that the hepatocytes
were more or less similar to the control. In a few sections, they had lost their characteristic
organization, and the cytoplasm was slightly vacuolated. The nuclei were vesicular and
displaying their normal shaped structures. Kupffer cells appeared few and showing a
marked decrease in their sizes (Figure 8c). However, the light micrographs of liver sections
of mice administered with 250 mg/kg CuNPs showed severe congestion and dilatation of
the blood vessels, in addition to the massive lymphocytic infiltration around them. Most of
the hepatocytes were greatly damaged, exhibiting severe vacuolation, and had lost their
acidophilic substances. Moreover, the nuclei in most hepatocytes were displaying pyknosis,
and few small-sized Kupffer cells were observed (Figure 8d).

Furthermore, the hepatocytes in sections of liver mice treated with 100 mg/kg CuNPs
+ 60 mg/kg ESE showed no evidence of damage compared to those treated only with
100 mg/kg CuNPs. However, an observable dilatation in the hepatic sinusoids was seen
(Figure 8e). The light micrographs of liver mice treated with 250 mg/kg CuNPs and
60 mg/kg ESE showed that the hepatocytes normally appeared in their polygonal-shaped
structure. Their nuclei were vesicular and displaying their normal shaped structures as
well as the control. The Kupffer cells were normal in shape (Figure 8f).
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Figure 8. (a) Light micrograph of mice liver of control group showing, the vesicular spherical nuclei
(N), binucleated hepatocytes (arrow); hepatic sinusoids (S); triangular-shaped Kupffer cells (K), H&E,
×1000. (b) Light micrograph of liver mice treated with 60 mg/kg bw of ethanolic saffron extract,
showing polygonal hepatocytes (H); vesicular nuclei (N); wide blood sinusoids (S); many activated
Kupffer cells (K), H&E,×1000. (c) Light micrograph of liver mice treated with 100 mg/kg bw of CuNPs
showing vacuolated hepatocytes; nuclei (N); few leucocyte infiltrations (thick arrow) and small size
Kupffer cells (K), H&E. ×1000. (d) Light micrograph of liver mice treated with 250 mg/kg bw of
CuNPs showing degeneration and vacuolated hepatocytes; pyknotic nuclei (arrowheads); Kupffer cells
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(K), H&E,×1000. (e) Light micrograph of liver mice treated with 100 mg/kg bw of CuNPs + 60 mg/kg
bw ethanolic saffron extract showing polygonal-shaped hepatocytes containing vesicular nuclei (N).
Note: dilated blood sinusoids (S) and few small-sized appearances of Kupffer cells (K), H&E, ×1000.
(f) The light micrographs of liver mice treated with 250 mg/kg bw of CuNPs + 60 mg/kg bw ethanolic
saffron extract showed vacuolated hepatocytes (H) with vesicular nuclei (N) and Kupffer cells (K),
H&E, ×1000.

2.7. Transmission Electron Microscope

Ultrathin sections of the liver of control mice revealed that the hepatocytes have a
regular oval or spherical shaped nuclei with electron-dense nucleoli and outlined by a
well-defined nuclear envelope (Figure 9a). The cytoplasm contains numerous densely
packed mitochondria; they were rounded, elongated, and oblong. Short, flattened mem-
branes of the rough endoplasmic reticulum (rER) and the primary lysosomes, in addition
to the presence of few lipid droplets, were usually observed in the hepatocytes (Figure 9a).
Furthermore, β-granules of glycogen deposits were uniformly distributed in the cytoplasm
in close association with the areas of the rER. In ESE-treated mice, the hepatocytes nuclei
appeared normal, where most of them showed regular nuclear envelopes with dense scat-
tered clumps of heterochromatin. The cytoplasm of most hepatocytes contained numerous
evenly distributed mitochondria. They were of different shapes and sizes, most of them
were rounded, elongated, and oblong, and had distinct obvious cristae (Figure 9b).
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Figure 9. (a) An electron micrograph of a control mouse liver showing hepatocyte with regular nucleus
(N), nucleolus (Nu); elongated shaped mitochondria (M); short profile rough endoplasmic reticulum
(rER); lipid droplets(L); Kupffer cell (K) with triangular-shaped nucleus (N), ×2500. (b) Electron
micrograph of liver mice treated with 60 mg/kg bw ethanolic saffron extract showing, the vesicular
nucleus (N) of a hepatocyte, containing large nucleolus (Nu). Note that the cytoplasm contains
numerous distributed mitochondria (M) and glycogen granules (G),×2500. (c) Electron micrograph in
liver mice administrated with 100 mg/kg of CuNP showing, hepatocytes with irregular nucleus (N),
dark nucleoli (Nu), proliferated smooth endoplasmic reticulum (sER), many lipid droplets (L), many
small dense lysosomes (Ly) and increase in glycogen content (G), ×2500. (d) Electron micrograph in
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liver mice administrated with 250 mg/kg of CuNPs, showing necrotic hepatic tissue and cytoplasm
devoid of most organelles; aggregation of mitochondria (M) and deposition of CuNPs in nucleus
(arrow), ×2000. (e) Electron micrograph in liver mice administrated with 250 mg/kg of CuNPs
showing necrotic hepatic tissues and cytoplasm contains many lipid droplets (L); aggregation of
mitochondria (M) and myelin figures (thick arrows), ×4000. (f) Electron micrograph of the liver mice
treated with 100 mg/kg bw of CuNPs + 60 mg/kg ethanolic saffron extract showing, hepatocyte
contains elongated-shaped mitochondria (M); short profile rough endoplasmic reticulum (rER); many
dense lysosomes and lipid droplets (L), 3000×. (g) Electron micrograph of the liver mice treated with
250 mg/kg bw CuNPs + 60 mg/kg bw ethanolic saffron extract showing hepatocyte with regular
nucleus (N); elongated shaped mitochondria (M); dilated rough endoplasmic reticulum (rER); lipid
droplets (L); glycogen granules (G), ×2500.

The electron micrographs of liver mice treated with 100 mg/kg CuNPs revealed injury
in the hepatocyte nuclei, and they contain large, dark, and well-developed nucleoli. In
the cytoplasm, the mitochondria were rounded and elongated in shape. The rER was
greatly dilated and reduced into a few short irregularly placed dilated cisternae through
the cytoplasm of hepatocytes, and there were many proliferated smooth endoplasmic
reticula, which indicate the toxic effect of CuNPs. Many light electron-dense lipid droplets
and small dense lysosomes could be seen (Figure 9c).

The liver section of mice treated with 250 mg/kg of CuNPs revealed the deposition of
dark electron-dense spherical nanoparticles inside the nucleus of hepatocyte (Figure 9d). In
the cytoplasm, the increase in glycogen contents displaces the cytoplasmic organelles to the
periphery of cells, and there were many light electron density lipid droplets (Figure 9d,e).
Moreover, the electron micrographs showed an apparent profile of the myelin, shown in
Figure 9e.

The electron micrograph of liver mice treated with 100 mg/kg of CuNPs and 60 mg/kg
ESE revealed an improvement in the structures of hepatocytes. Their nuclei were regular
in shape and had electron-dense nucleoli. The mitochondria in the cytoplasm were evenly
distributed with densely packed structures. The rER was frequently evaluated when short-
flattened membranes were present near the nucleus, and if the cytoplasm contained many
lipid droplets and many dense lysosomal bodies (Figure 9f).

The hepatocytes of liver mice treated with 250 mg/kg of CuNPs and 60 mg/kg ESE
showed little improvement in the structure of the nucleus, compared to those of the treated
group with 250 mg/kg CuNPs. In the cytoplasm, the mitochondria were characterized
by the marked disappearance of their cristae, and the profiles of rER were interrupted
(Figure 9g).

DNA analysis with the agarose gel electrophoresis, the results showed massive DNA
fragmentation, which appears as DNA laddering (smearing) in the liver tissues of mice
administered with two doses of CuNPs. However, partial protection against apoptotic and
necrotic cells appeared in groups treated with 100 and 250 mg/kg CuNPs and 60 mg/kg
ESE, which showed low DNA laddering (DNA fragmentation). Furthermore, no detectable
changes were observed in the liver tissue of ESE and control mice (Figure 10). The DNA
intact band appears to be condensed near the application point with no DNA smearing.
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Figure 10. DNA analysis in the liver tissue of mice, demonstrating apoptotic and necrotic cell death
induced by CuNPs and protection by ESE. Lane 1: control. Lane 2: Low CuNPs treated mice. Lane 3:
High CuNPs treated mice. Lanes 4 and 5: High CuNPs, and ESE treated mice. Lanes 6 and 7: Low
CuNPs and ESE treated mice. Lane 8: saffron.

3. Discussion

In the present study, the toxicity of intraperitoneal injection with CuNPs (100 and
250 mg/Kg body weight) for 30 days on the liver of mice was evaluated. These doses
do not necessarily reflect the actual concentrations of CuNPs found in real environments.
However, they can be used to assess the health risks from exposure to CuNPs.

Concerning the characterization of CuNPs, the present results showed that the crys-
talline structure morphology of synthesized CuNPs was observed using their optical
properties characterized by UV–visible spectroscopy, FT-IR analysis, and TEM. The results
revealed that the UV–Vis absorption of the prepared CuNPs in this study showed a typical
spectrum. With the TEM, the results showed that CuNPs were spherical, having a smooth
surface and the size of the particles was 82.87 nm.

FT-IR is an effective method to reveal the functional groups of the prepared CuNPs, at
peaks 3426/cm, 1651/cm, and 1423/cm. These peaks correspond to the hydroxyl, oxidized
carbonyl group, and conjugated carbonyl groups, respectively. These results are similar
to the results of Xiong et al. [42] who found that the CuNPs indicated the presence of a
polyhydroxy structure on the surface of CuNPs.

The current study revealed that the rate of mortality was increased in mice adminis-
tered with a high dose of CuNPs (250 mg/kg), and there were significant decreases in the
body weights of this group of mice as compared to the control animals. This suggests that
exposure exerts a major visible impairment in the health statuses of animals. However,
no significant differences in body weight were observed in mice administered with a low
dose of CuNPs, as compared to the control. Lei et al. [14] found that incidences of toxicity
were higher in a higher dose of CuNPs (250 mg/kg) compared to the low dose (50 mg/kg),
which parallels the present study.

Depending on the dose of CuNPs, the current results revealed a significant elevation
in the activity of serum AST, ALT, and ALP of mice administered with 250 mg/kg CuNPs.
Serum aminotransferases analyses have become a standard measure of hepatotoxicity
because of the significance of these enzymes. AST and ALT are located inside the cell,
while the ALP is located on the cell membrane. These transaminases play an important
role in protein and amino acid metabolism. In such cases, the serum AST rises and escapes
from the damaged hepatic cells into the serum. These enzymes are usually found in the
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liver and other tissues where they act in the metabolism of energy requiring amino acid
transamination. However, in cases of cellular damage, the AST and ALT could leak out
into the general circulation, leading to elevated activity [43]. These changes in the levels
of these enzymes are in association with a pathology, involving the necrosis of the liver.
Gaskill et al. [44] had reported that the release of ALT, AST, and ALP from the cytoplasm
of hepatic cells could have occurred secondary to cellular necrosis. This may be due to the
leakage of these enzymes from the cytoplasm of the liver cells into the general circulation,
liver dysfunction, and disturbance in the biosynthesis of these enzymes, with an alteration
in the permeability of the liver membrane.

The obtained results are consistent with the previous findings of Doudi and Se-
torki [19], who reported that CuNPs were found to increase in these three enzymes AST,
ALT, and ALP. Chen et al. [13] had reported that increase ALP reflected hepatic dysfunc-
tion. Additionally, the increase in ALP was consistent with the liver toxicity induced by
AgNPs, [45,46]. Mansouri et al. [47] suggested that, due to the damaged to the liver cells,
such enzymes are released into the blood. Therefore, a high amount of these enzymes
indicates the destruction of liver cells. Furthermore, the toxic effect of nanoparticles can be
elucidated by the estimation of oxidative stress parameters [48]. Nanoparticles are found
to produce free radicals and to induce oxidative stress and thus can disturb the antioxidant
defense system in the animal [49].

The current results revealed increased levels of MDA and decreased the TAC in the
serum of mice administered with 100 and 250 mg/Kg, depending on the dose level. These
results follow the results of Al-Salmi et al. [50], who found that CuNPs caused an increase
in the level of MDA. Grotto et al. [51] explained that MDA is one of the end products
of lipid peroxidation, and the production of it is used as a biomarker to measure the
level of oxidative stress in an organism. Free-radical-induced LPO has been suggested to
alter the membrane structure and function, thus causing cellular abnormalities, such as
mutations and cell death. LPO could produce a gradual loss of cell membrane fluidity,
reduce membrane potential, and increase permeability to ions such as Ca2+ [52].

Knaapen et al. [53] suggested that free radicals also interact with lipids and proteins,
abundantly present in bio-membranes, to yield the LPO products associated with mutagen-
esis and apoptosis. It is well established that the uncontrolled generation of ROS triggers a
cascade of proinflammatory cytokines and mediators via activation of and NF-κB signaling
pathway that controls the transcription of inflammatory genes, such as IL-1β, IL-8, and
TNF-α [54]. The NF-κB group of proteins activates genes responsible for defense mecha-
nisms against cellular stress and regulates miscellaneous functions, such as inflammation,
immune response, apoptosis, and cell proliferation.

The studies of Fahmy and Cormier [55] indicated that, in comparison with normal
cells and cells exposed to CuNPs, the level of antioxidant enzymes (CAT and glutathione
reductase activity) decreased, and the activity of glutathione peroxidase was increased.
They suggested that the increase in the activity of GSH is due to that CuNPs not only
produce free radical but they also stop the cell antioxidant defense.

Mansouri et al. [47] had reported that ZnNPs caused a significant increase in the hepatic
level of MDA, indicating the presence of oxidative stress. The current results are confirmed
by the study of Ranjbar et al. [56], who reported that silver NPs, after 14 days of exposure,
caused a significant decrease in TAC. These data suggest that the NPs can induce oxidative
damage through an ROS-mediated process However, it remains to be investigated whether
NPs directly or indirectly induce free radicals through depletion of antioxidant defense
mechanisms caused by interactions with antioxidant systems [57]. Furthermore, in the
present study, the intraperitoneal administration of ESE in mice for 30 days showed an
improvement in the biochemical and histological alterations induced in the livers of mice
by CuNPs, depending on the dose levels. Additionally, our data were supported by the
results and observations of the liver tissues. Similarly, Anlin et al. [58] reported that ESE has
a curative effect against liver toxicity induced by alcohol and CCl4 in rats.
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The present results revealed a marked and significant decrease in serum levels of
AST, ALT, and ALP in mice administered with the ESE. These results explained the role of
saffron in improving the disruption in the liver function enzymes and its role in alleviating
the increased levels of LPO. Additionally, Mohajeri et al. [59] had reported that the ESE
ameliorated rifampin-induced histopathological and biochemical alterations ALT, AST, and
ALP in rats. Additionally, Mohajeri and Doustar [60] found that the ESE could reduce LPO
and improve antioxidant enzyme activity—SOD-, CAT-, and GSH-related enzymes—in
the liver of rats, the liver being the target organ for CuNPs and the site at which they
preferentially accumulate [61].

Iranshahi et al. [62] showed that ESE (stigma and petal) reduces the incidence of
hepatic necrosis in the range of 29.2% to 93.9% induced by CCl4 in mice. Additionally,
these findings confirm other findings showing the protective effects of ESE on hepatic
tissue ischemia-reperfusion-induced oxidative damage in rats [63]. Yosry and Seham [64]
suggested that the mechanism of ESE improved hepatotoxicity through the inhibition of
oxidative stress and enhancing the antioxidant defense system. Zheng et al. [65] reported
that the carotenoids in saffron extracts may protect tissues from oxidative damages due to
their antioxidant effect. Additionally, they showed remarkable modulation in the levels of
oxidative markers in the liver.

In the current study, the cytotoxicity of CuNPs was evidenced by the appearance of
morphological changes in liver cells, such as congestion and dilatation of the blood vessels,
the presence of much inflammatory infiltration in pre-central veins, as well as the appear-
ance of hepatocellular necrosis. These alterations were prominent in the liver tissues of
mice administered with 250 mg/kg of CuNPs. However, the decrease in these degenerative
changes in the liver of mice was apparent in the liver tissues of mice treated with ESE. Our
present study, parallel with Kim et al. [46], reported some histopathological changes and
increased infiltration around the central vein induced by nanoparticles. The destruction
of lobular structure and vacuolization of hepatocytes together with the dilatation of the
central vein and blood sinusoids indicate that these NPs may affect the permeability of the
cell membrane in hepatocytes and the endothelial lining of blood vessels [66]. Additionally,
the appearance of inflammatory cells in hepatic tissue suggests that nanoparticles can
interact with proteins and enzymes in the interstitial tissue of the liver, interfering with the
antioxidant defense mechanism and leading to the generation of ROS, which in turn may
induce an inflammatory response [67].

The obtained results are consistent with the previous findings of Doudi and Setorki [19]
who found that 100 mg/kg CuNPs induced histological changes in the hepatic tissues, vas-
culature in the central vein, and the disappearance of hexagonal liver lobules which is lined
with the present study. Moreover, the destruction of the lobular structure, vacuolization of
hepatocytes (fat deposits), and congestion of RBC, and infiltration of leukocytes in the liver
tissue of mice administered with 300 mg/kg ZnNPs, indicating its necrotic effects [56].

Using the TEM, the results revealed many ultrastructural abnormalities in the liver
tissues of mice administered with 250 mg/kg CuNPs. Most nuclei of the hepatocytes
were pyknotic with condensed chromatin. Besides, they contained more than two large,
dark, and well-developed nucleoli. These indicate the hypermetabolic activity of the liver,
cellular and nuclear degeneration, cellular atrophy or rupture, indicated by the direct
toxicities of CuNPs. Moreover, the pyknotic nuclei refer to an irreversibly condensed
form of chromatin material in the nucleus, which indicated highly severe and irreversible
damage to the liver [68]. This change in the nucleus indicates that this organelle is affected
in a major way by CuNPs. Colegio et al. [69] and Waisberg et al. [70] suggested that
chromatin condensation was due to the progressive inactivation of the nuclear component,
probably due to the inhibition of DNA repair and DNA methylation.

Furthermore, liver toxicity seen in the current study may be explained by the depo-
sition of CuNPs in the nuclei of certain hepatocytes, leading to the generation of ROS
associated with inflammatory, oxidative stress, genotoxicity, and the induction of apoptosis.
It had been reported that some NPs, owing to their small size, are capable of reaching
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the nucleus and might attack DNA [71]. They may also exhibit an indirect effect on DNA
through their ability to generate ROS. Lopotko et al. [72] have demonstrated that the inter-
action of nanoparticles with cells leads to the formation of NP clusters in various cellular
organelles viz., endosomes, and vacuoles via endocytosis.

The presence of NPs inside the cell nucleus and lysosomes indicates the important role
in the apoptotic process: the lysosomal proteases can be released into the cytosol, where they
cause pro-apoptotic proteins to adopt their conformation and to insert into mitochondrial
membranes and induce the mitochondria-mediated apoptosis pathway [73,74].

In the cytoplasm, the results revealed the appearance of fatty deposits, which may be
due to LPO, which leads to rough endoplasmic damage and the detachment of the cyto-
plasmic lipoprotein, which indicates abnormal fat metabolism. The mitochondria showed
a marked disappearance of the mitochondrial cristae. This may reflect the disturbances in
ox reduction processes taking place in the organelle [75]. Mitochondria represent the most
active cellular redox organelles and the localization of these particles into such redox-active
centers is expected to cause alterations in various antioxidant enzyme systems that are
functional here. Thus, as it happens, in the case of nanoparticles of various chemistries,
particles are taken up into cells via endocytic pathways and are mainly localized to mito-
chondria [76–78].

Additionally, there was an increased proliferation in the number of secondary lyso-
somes in the cytoplasm of many hepatocytes of the liver of mice administered with
250 mg/kg CuNPs. This indicates an attempt to digest these NPs, and this is consid-
ered as a general manifestation of injury. The sequestration of damaged organelles in
lysosomes is a mechanism of cellular repair and follows all types of sublethal injury [79].

Furthermore, the Kupffer cells were found as an indication of the damaging effects of
CuNPs in the liver tissues. These cells appeared with marked irregularities in their nuclear
counter and having many dense patches of heterochromatin. This indicates their activation
and suggests hepatocellular damage. Kupffer cells play a defensive role, protecting against
bacterial or viral invasion into the portal blood flow [80]. Other investigators had reported
that Kupffer cells stimulate the DNA synthesis of hepatocytes by producing and releasing
certain factors, such as prostaglandin E2 [81,82].

In the present results, DNA laddering electrophoresis was chosen for the assessment
of DNA damage on the liver tissue of mice treated with different doses of CuNPs and/with
the ESE. Depending on the dose levels of CuNPs, the present results showed that massive
DNA fragmentation was found in the liver tissues of mice. Fahmy and Cormier [55]
explained that nano copper can trigger both intrinsic and extrinsic apoptotic pathways in
oxidative stress. Apoptosis has been implicated as a major mechanism of cell death caused
by NPs-induced oxidative stress [83].

Apoptosis is associated with a distinct set of biochemical and physical changes involv-
ing the cytoplasm, nucleus, and plasma membrane. Early in apoptosis, the cells round
up, losing contact with their neighbors, and shrunk. In the cytoplasm, the endoplasmic
reticulum dilates and the cisternae swell to form vesicles and vacuoles. In the nucleus,
chromatin condenses and aggregates into dense compact masses [84]. Martinez et al. [85]
explained that ROS is known to react with DNA molecules, causing damage to both purine
and pyrimidine bases, as well as the DNA backbone. ROS attack on DNA generates a huge
range of base and sugar modification products.

Among the different apoptotic pathways, the intrinsic mitochondrial apoptotic path-
way plays a major role in metal NP-induced cell death since mitochondria are one of
the major target organelles for NP-induced oxidative stress and apoptosis [86]. Jeng and
Swanson [87] explained that metals can generate free radicals via the Fenton-type reactions
that react with cellular macromolecules and induce oxidative stress.

Furthermore, the administration of saffron resulted in reduced DNA fragmentation
which was confirmed by Premkumar et al. [88]. The decrease in DNA fragmentation in
treatment with Saffron was similar to the results of Yosry and Sehm [64] using different
techniques for the Feulgen reaction, improving the amount of DNA-containing particles. A
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possible mechanism of toxicity is proposed, which involves the disruption of the mitochon-
drial respiratory chain by CuNPs, leading to the production of ROS and the interruption
of ATP synthesis, which in turn causes DNA damage. This leads to cell-cycle arrest in the
G2/M phase.

4. Materials and Methods
4.1. Chemicals

The copper chloride dehydrates (CuCl2·2H2O-97%) and L-ascorbic acid (vitamin
C-98%) were purchased from Sigma-Aldrich, St. Louis, MO, USA.

4.2. Synthesis of Copper Nanoparticles

In a synthetic procedure, copper-nanoparticles were obtained via a wet chemical
reduction route. Copper chloride (CuCl2) aqueous solution was prepared by dissolving
0.02 M CuCl2 in 50 mL de-ionized water in a flask. Then, the solution was heated to
80 ◦C in an oil bath with continuous magnetic stirring. L-ascorbic acid aqueous solution
(50 mL of 0.1 M) was added dropwise while stirring. Over time, the color of dispersion
was gradually changed from white to yellow to orange to brown and finally to dark brown.
The appearance of yellow color followed by orange color indicated the formation of fine
nano-scale copper particles from L-ascorbic acid-assisted reduction. The obtained result
was centrifuged for 15 min [80]. The doses of nano-copper (CuNPs) in this preparation
were 100 and 250 mg/kg, according to Lei et al. [14].

The supernatant of the prepared nanoparticles was frozen by vacuum using a freeze-
drying machine (Telestar, Spain) (Model/CRYODOS-50) at City of Scientific Research and
Technological Applications, Borg Al-Arab, Alexandria, Egypt (it works at 230 V, 50 Hz). The
obtained solutions were placed in 50 mL falcon tubes, frozen in liquid nitrogen and frozen
drying by vacuum Freeze Drying Machine at a pressure of 26.5 pa and 5.0% saccharine
that was used as a cytoprotectant. The prepared CuNPs were suspended in saline and
dispersed by ultrasonic vibration (130 W, 20 kHz) for 20 min for all experimental work.

4.3. Preparation of Ethanolic Saffron Extract

One hundred grams of saffron stigmas were macerated and shacked for 3 days in one
liter of 80% ethanol at room temperature by using an Environ Shaker (Model/Lab-Line
3527 Orbit Environ Shaker, Southwest Science, P.O. Box 144, Roebling, NJ 08554, USA).
Then, it was filtered, and the filtrate was concentrated under vacuum using the rotatory
evaporator (40 ◦C) till giving dark red residues kentron by using a rotatory evaporator
(model/strike 201), at Medical Technology Center, Alexandria University. The obtained
ethanol saffron extract (ESE) was chilled in the refrigerator until use [89].

4.4. Animal Design and Care

Sixty adult male albino mice (25–29 g) were obtained from the animal house of Medical
Research Institute, Alexandria University, Egypt. They were housed (5 mice/cage) in the
stainless-steel cages, and they were observed for health status and acclimatized for two
weeks before use at 25 ± 2 ◦C and humidity 55 ± 5% using normal photoperiod day/night.
Mice were allowed free access to food and drinking water throughout the study. Mice were
cared for following the guidelines of the Care and Use of Laboratory Animals committee,
Alexandria University, Egypt.

After two weeks of acclimatization, mice were assigned to six groups (10 mice/each)
given day after day for 30 days the following treatment. The mice have received 0.5 mL
saline solution and presented as group I (control). Group II was injected i.p. with 60 mg/kg
ESE. Mice were injected i.p. with 100 or 250 mg/kg CuNPs, respectively, and considered as
group III and IV. Groups V and VI were injected i.p. with 100 or 250 mg/kg CuNPs and
followed by 60 mg/kg of ESE after each other.
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4.5. Toxicological Assessment of CuNPs

The mice were inspected for clinical signs of toxicity by testing their emotion as
excitability and aggressiveness. The autonomous functions such as diarrhea, dieresis,
salivation, and mortality were evaluated during the time of dosing of 30 days.

4.6. Characterization of CuNPs
4.6.1. Ultraviolet–Visible Absorption Spectroscopy (UV-Vis)

UV–vis spectroscopy was used to characterize the optical absorption properties of
copper nanoparticles. The absorption spectra of samples were recorded in the wavelength
range of 250 to 650 nm using a UV-6800 UV\VIS spectrophotometer (JENWAY, Bruker,
Ettlingen, Germany), at the Medical Biophysics Department, Medical Research Institute,
Alexandria University. CuNPs suspension (1 mL) was placed in a quartz cuvette to record
its wavelength absorption.

4.6.2. Particle Size Analysis and Zeta Potential

The particle size of the prepared particles was determined by Laser Light Scattering
on a Nano Zeta sizer particle analyzer (Malvern, UK). The laser obscuration range was
maintained at 15–20%, and the mean particle size was measured after experimenting with
triplicate. Using cumulative analysis software and the exponential sampling method,
hydrodynamic size distribution, and surface charge (zeta potential) were determined.

4.6.3. Fourier-Transform Infrared Spectroscopy (FT- IR)

Fourier-Transform Infrared Spectra of the prepared particles were obtained on a
Shimadzu FTIR-8400S (Tokyo, Japan). The pellets were prepared by grinding 4–8 mg of
samples with 200 mg potassium bromide. Tablets were prepared then fixed on the holder
to be examined. The spectra were scanned over the wavenumber range of 4400 to 350/cm.

4.6.4. Transmission Electron Microscope (TEM) for Nanoparticles

The size and shape of the prepared nanoparticles were determined by transmission
electron microscope (Jeol, JSM-6360LA, Joel, Japan). For this purpose, the particle sus-
pension was diluted 10-times with distilled water, and a drop of an aqueous suspension
containing the biosynthesized CuNPs was placed on 400-mesh copper grids coated with
carbon film after allowing the water to evaporate.

4.7. Body Weight and Biochemical Parameters

In one-week intervals over 30 days, all mice were weighed at the end of the experiment,
they were euthanized using diethyl ether, and the blood samples were collected by a syringe
from the inferior vena cava by heart puncture in EDTA tubes.

Serum samples were obtained by centrifugation of the blood samples at 3000 rpm, for
30 min, and were frozen at −20 ◦C until assayed. The serum levels of malondialdehyde
(MDA) [90], total antioxidant capacity (TAC) [91], aspartate, and alanine aminotransferase
(AST and ALT) [92], as well as alkaline phosphatase (ALP) [93], were determined.

4.8. Qualitative DNA Fragmentation Assay Using Agarose Gel Electrophoresis

The liver tissues were excised out and preserved at −80 ◦C for DNA analysis. DNA
fragments isolated from cells or tissue that were laddering were determined on 1.2%
agarose (15 µg/lane), and were illuminated with 300 nm UV light, and a photographic
record was made [94].

4.9. Light Microscopic Investigation

Small pieces of the liver tissues were excised carefully, fixed in 10% formalin solution,
dehydrated using ascending graded series of ethanol, and cleared by xylem. The specimens
were embedded in paraffin wax according to the routine processing protocol of Bancroft
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and Gamble [95]. Serial sections at 5 µm slices were cut and stained with hematoxylin and
eosin (H&E), examined, and photographed under light microscopy.

4.10. Transmission Electron Microscopic Study

The small pieces of liver tissue were immediately fixed in 4% formalin and 1% glu-
taraldehyde, rinsed in 0.1 M phosphate buffer (pH 7.4) at 4 ◦C for 24 h, and post-fixed using
1% buffered osmium tetroxide (OsO4) at 4 ◦C for 2 h. Then, the specimens were washed
several times with phosphate buffer for 30 min, dehydrated through ascending grades of
ethanol concentrations, and at 4 ◦C they were treated with propylene oxide and embedded
in a mixture of 1:1 of Epon-Araldite resin mixture [96]. Thick ultrathin sections (60 nm)
were mounted on 200 mesh naked copper grids, double stained with uranyl acetate and
lead citrate for 30 min, and lead citrate for 20–30 min, examined and photographed at Jeol
Transmission Electron microscope (JSM-6360LA, Joel, Japan).

4.11. Statistical Analysis

Data were expressed as mean values ± SE, and statistical analysis was performed
using one-way ANOVA to assess significant differences among treatment groups. Statistical
significance was considered at p < 0.05. All statistical analyses were carried out using SPSS
statistics version 16 software package (Philadelphia, PA, USA).

5. Conclusions

In conclusion, the present work demonstrates that saffron and its bioactive component,
crocin, can prevent oxidative damage of the liver induced by CuNPs. Thus, these substances
should be useful as new pharmacological tools for alleviating oxidative stress.
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