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Abstract

During development, mulitpotent cells differentiate through a hierarchy of increasingly re-
stricted progenitor cell types until they realize specialized cell types. A cell differentiation
map describes this hierarchy, and inferring these maps is an active area of research spanning
traditional single marker lineage studies to data-driven trajectory inference methods on single-
cell RNA-seq data. Recent high-throughput lineage tracing technologies profile lineages and
cell types at scale, but current methods to infer cell differentiation maps from these data rely
on simple models with restrictive assumptions about the developmental process. We introduce
a mathematical framework for cell differentiation maps based on the concept of potency, and
develop an algorithm, Carta, that infers an optimal cell differentiation map from single-cell
lineage tracing data. The key insight in Carta is to balance the trade-off between the com-
plexity of the cell differentiation map and the number of unobserved cell type transitions on
the lineage tree. We show that Carta more accurately infers cell differentiation maps on both
simulated and real data compared to existing methods. In models of mammalian trunk devel-
opment and mouse hematopoiesis, Carta identifies important features of development that are
not revealed by other methods including convergent differentiation of specialized cell types,
progenitor differentiation dynamics, and the refinement of routes of differentiation via new
intermediate progenitors.
Code availability: Carta software is available at https://github.com/
raphael-group/CARTA

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.09.611835doi: bioRxiv preprint 

https://github.com/raphael-group/CARTA
https://github.com/raphael-group/CARTA
https://doi.org/10.1101/2024.09.09.611835
http://creativecommons.org/licenses/by-nc/4.0/


1 Main
Organismal development occurs via the differentiation of cells through a hierarchy of progenitor
cell types, each with progressively restricted potential, ultimately leading to specialized cell types.
The cell differentiation map describes this hierarchy, including all progenitor and specialized cell
types and the transitions between these cell types. Deriving cell differentiation maps – of tissues,
organs, or complete organisms – is a key challenge in developmental biology.

The traditional method to derive cell differentiation maps involves manual lineage tracing that
directly tracks cell division and differentiation during development [1–5]. A notable milestone
using this approach was the derivation of the complete differentiation map of the 671 cells of
Caenorhabditis elegans using time-lapse microscopy [6]. However, such a direct observational
approach is not feasible for more complex organisms, such as mice or humans, that contain trillions
of cells and develop in utero.

More recently, single-cell RNA sequencing, which measures the transcriptomes of individual cells,
has allowed investigation of cell differentiation maps at scale [7–12]. Cell differentiation maps are
derived from this data using trajectory inference methods that attempt to infer branching structures
and pseudotimes underlying dynamic differentiation processes from transcriptomes measured at
one or a small number of timepoints [13–23]. These methods rely on several limiting assumptions
that hinder their ability to reconstruct precise cellular relationships, particularly the assumption
that all progenitor cell types along the differentiation hierarchy are observed in the data [24, 25].

Recent advances in genome editing and single-cell sequencing have enabled high-throughput lin-
eage tracing of cells in complex developmental systems [26–29]. In these technologies, heri-
table barcodes are induced in dividing cells using genome editing tools such as CRISPR-Cas9,
providing markers of cell divisions. The barcodes can either be introduced at specific stages of
development [30–33] or dynamically through a continuous process as cells divide and differenti-
ate [34–39]. Single-cell RNA sequencing simultaneously measures barcodes (revealing the lineage
of cells) and gene expression (revealing cell types) for thousands of individual cells as the system
develops [40–46]. These barcoding systems offer the scalability to investigate development in
complex organisms but have limited resolution compared to exhaustive microscopy methods such
as those used for C. elegans. Thus, with these technologies one does not typically observe the
differentiation decisions of each dividing cell during development.

Current approaches to infer cell differentiation maps from single-cell RNA sequencing or lineage
tracing data are based on two opposing assumptions about the number of progenitor cell types
that exist in the developmental system. First, trajectory inference-based methods assume that all
progenitor cell types are observed in the data [24, 25]. On the opposite extreme, other recent
studies [28, 39, 47] use distance-based heuristics calculated from lineages that implicitly assume
that the cell differentiation map is a binary tree and consequently the number of progenitor cell
types is exactly one less than the number of observed cell types. Neither of these assumptions is
likely to be true in practice; for example, early transient progenitor cell types that arise long before
cell collection are likely unobserved, and the cell differentiation map is not always a tree due to
phenomena such as alternate routes of differentiation to cell types (convergent differentiation) [28].

We introduce a mathematical model of cell differentiation maps and derive an algorithm Carta
that infers an optimal cell differentiation map from single-cell lineage tracing data. We represent a
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cell differentiation map by a directed acyclic graph whose vertices are cell types and whose edges
represent transitions (differentiation events) between cell types that occur during development.
Importantly, Carta does not assume that all progenitor cell types are measured at the time of the
experiment. Instead, we introduce the concept of a potency set, defining unobserved progenitors
by the cell types of their descendants. Using the concept of potency, we demonstrate that there are
two competing objectives when inferring a cell differentiation map from lineage tracing data: the
complexity of the cell differentiation map and the discrepancy between transitions in the map and
the cell lineage tree. Carta quantifies the trade-off between these objectives and computes an op-
timal differentiation map for any number of progenitor cell types, providing a rigorous framework
to evaluate different hypotheses about cell differentiation maps.

We demonstrate the ability of Carta to infer interpretable cell differentiation maps that recapit-
ulate established developmental trajectories. On simulated cell differentiation maps and lineage
tracing data, Carta more accurately reconstructs the underlying cell differentiation maps com-
pared to existing methods. In an in vitro model for mammalian trunk development [29, 48, 49],
Carta infers a cell differentiation map that provides insights into the differentiation dynamics
of neuro-mesodermal progenitors (NMPs) into somitic and neural tube lineages that are not re-
vealed under the restricted frameworks of existing methods. On lineage tracing data from a mouse
hematopoiesis model [30], Carta infers a cell differentiation map that better recapitulates the es-
tablished differentiation of hematopoiesis and also has stronger agreement with gene expression
compared to existing methods. Carta provides a rigorous quantitative framework to derive cell
differentiation maps that extends beyond the restrictions of existing methods and provides oppor-
tunities to better understand development in a variety of contexts.

2 Results
2.1 Carta: a computational model for Cell Differentiation Mapping

Carta infers an optimal cell differentiation map from cell lineage tree(s) by accounting for am-
biguities in these trees resulting from sampling and other inherent limitations in data from cur-
rent lineage tracing technologies (Figure 1a,b). The inputs to Carta are m cell lineage trees
T := {T1, . . . , Tm}, with each tree Ti describing the cell division history of a distinct biological
replicate of the same developmental system. The leaves of each tree correspond to the sequenced
cells, the internal vertices represent the ancestral cells, and the edges indicate cell divisions (Fig-
ure 1a). Each leaf is labeled by a cell type – typically derived from single-cell RNA sequencing
data – but the internal vertices are unlabeled since the cell types of these cells are not measured.
Let S be the set of observed cell types, i.e. the set of cell types that label the leaves of T.

A cell differentiation map F is a directed graph where the vertices represent cell types and the
edges describe the cell type transitions that occurred during development. Given a cell lineage
tree with all cells labeled by their cell type, the cell differentiation map is determined by the
cell type transitions that occur along the edges of the tree. However, since the cell type of the
ancestral cells in the cell lineage trees T are not observed, the trees do not directly reveal the
cell differentiation map. Thus, inferring a cell differentiation map from lineage tree(s) requires
examination of different labelings of the ancestral cells by cell types.

An additional complication in the inference of the cell differentiation map is that the ancestral
cells may have cell types that are not observed in the lineage tracing data; i.e. the cell type of
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Figure 1: Cell differentiation mapping from lineage tracing data using Carta. (a) The input to Carta
is one or more cell lineage trees, whose leaves are labeled by the measured cell type (labeled A, B, C)
of the sequenced cells. Typically, some cells that are present at the time of the experiment are not sampled
(denoted by dotted lines). (b) Carta infers a cell differentiation map that describes the progenitor cell types –
represented as a potency set – and cell type transitions that occurred during development. (c) Carta quantifies
the trade-off between the number k of progenitor cell types in the cell differentiation map and its discrepancy
with the cell lineage trees by computing the Pareto front of optimal solutions. A cell differentiation map
with the optimal number k∗ of progenitors is chosen by identifying an elbow of the Pareto front.

an ancestral cell may not be observed at the leaves of any tree Ti. A key observation in Carta
is that these unobserved progenitor cell types are described by the set of observed cell types that
the progenitor can differentiate into. Namely, each unobserved progenitor cell type corresponds to
a potency set which contains the observed cell types that are possible future descendants of this
cell type. Formally, if S is the set of observed cell types, then the potency of a progenitor cell
type is a subset of S. For instance, the totipotent cell – a progenitor that can differentiate into
any observed cell type – has potency S, while an observed cell type t has potency {t}. We define
a cell differentiation map FS for the set S of observed cell types to be a directed graph whose
vertices represent observed cell types and unobserved progenitors – and are labeled by either an
elements of S or a subset of S – and whose edges represent cell type transitions that occurred
during development (Figure 1b).

Multiple cell differentiation maps with varying number k of progenitor cell types can explain the
development of a set S of observed cell types. For example, suppose there are three observed cell
types S = {A, B, C} (Figure 1a). The simplest cell differentiation map contains k = 1 progenitor
cell types, namely the totipotent cell with potency S, with outgoing edges to vertices representing
each of the observed cell types (Figure 1c), top. On the other extreme, the most complex cell
differentiation map may contain all possible subsets of S, leading to a map with 2|S| − |S| − 1
progenitor cell types, or k = 4 in this example (Figure 1c, bottom). In order to evaluate these
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differing hypotheses about cellular differentiation, one needs a metric to assess the fit between a
cell differentiation map and the cell lineage trees.

We introduce the discrepancy score D(T, FS), a metric that evaluates the fit between a candidate
cell differentiation map FS and a collection T of cell lineage trees. D(T, FS) relies on a labeling ℓ
of the ancestral cells (internal vertices of the cell lineage trees) by potencies of cell types (vertices
of the cell differentiation map FS). A discrepancy occurs when a cell type in the labeled potency
of an ancestral cell is not observed in its leaf descendants. The discrepancy score D(T, FS) is
the minimum number of such discrepancies when the ancestral cells in T are optimally labeled by
potencies in FS (see Methods Section 4.1 for details). A lower discrepancy score indicates a better
fit between the cell differentiation map and the cell lineage trees T under the assumption that the
cells in T follow the routes of differentiation in the map.

Solely choosing the cell differentiation map with minimal discrepancy may not lead to accurate in-
ference of the true map due to sampling limitations of current lineage tracing technologies. Specifi-
cally, lineage tracing technologies have limited throughput and thus all the cell types in the potency
of each ancestral cell may not be observed in the cell lineage trees. For instance, an ancestral cell
whose true potency is {A,B,C} may have no descendants with cell type A due to those cells not
being sampled (Figure 1a). This leads to an ancestral cell with an observed potency of {B,C},
which does not match any of the progenitor cell types in the true cell differentiation map. As
such, minimizing the discrepancy over all possible differentiation maps may lead to the inference
of complex cell differentiation maps with large number of progenitors and cell type transitions,
several of which may be false positives.

Our algorithm, Carta, infers a cell differentiation map FS from cell lineage trees T by balancing
the trade-off between the complexity of FS and its discrepancy score D(T, FS). We characterize
the complexity of cell differentiation maps by the number k of progenitor cell types. The least
complex cell differentiation map (k = 1) has a single totipotent progenitor cell type that can differ-
entiate into any observed cell type. However, this map will typically have a very high discrepancy
score (Figure 1c, upper left) . On the other extreme, one can always find a cell differentiation map
with minimum discrepancy D(T, FS) = 0, but this map will often have a large number k of pro-
genitor cell types, several of which may be false positives (Figure 1c, bottom right). Carta solves
the Cell Differentiation Map Inference Problem (Problem 4.2 in Methods Section 4.1), deriving a
cell differentiation map FS with minimum discrepancy D(T, FS) for each number k of progenitor
cell types. These solutions give the Pareto front of optimal solutions; i.e. there are no cell differen-
tiation maps that have both fewer number of progenitors and lower discrepancy compared to these
solutions. Thus, Carta provides a systematic approach to evaluate cell differentiation maps with
varying number of progenitors and to identify an optimal solution with k∗ progenitors – leading to
accurate inference of the cell differentiation map (Methods Section 4.2).

2.2 Simulated data

We compared Carta to ICE-FASE [47] and evolutionary coupling (EvoC) [39], two methods pre-
viously used for cell differentiation map inference in lineage tracing studies, on simulated data.
ICE-FASE and EvoC use distance-based heuristics calculated from cell lineage trees to perform
hierarchical clustering of the cell types to produce the cell differentiation map. Importantly, both
of these methods infer cell differentiation maps that are binary trees with k = |S| − 1 progenitor
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Figure 2: Carta outperforms existing methods in inferring cell differentiation maps on simulated data.
(a, b) Jaccard distance between the progenitors inferred by each method to the ground-truth progenitors when
the cell differentiation map is (a) a tree and (b) a DAG. Box plots show the median and the interquartile range
(IQR), and the whiskers denote the lowest and highest values within 1.5 times the IQR from the first and
third quartiles, respectively. (c) Normalized discrepancy D̃(T, FS) of cell differentiation maps, inferred
by Carta-tree (blue) and Carta-DAG (orange), for k = 1, . . . 10 reveals the Pareto fronts; here shown
for a simulated cell differentiation map with 6 progenitor cell types, 6 observed cell types, and 150 cells
of each observed cell type. Discrepancy of cell differentiation maps inferred by ICE-FASE (purple) and
Evolutionary Coupling (EvoC) (green) for their fixed number of 5 progenitors.

cell types, where S is the set of observed cell types. While Carta relies only on the topology of the
input cell lineage trees, both ICE-FASE and EvoC additionally require timed cell lineage trees as
input.

We simulated two types of cell differentiation maps: (i) trees (not necessarily binary) and (ii) di-
rected acyclic graphs (DAGs). In each case, we generated cell differentiation maps by randomly
sampling k = 2, 4, 6 progenitor cell types that lead to the generation of r = 4, 6 observed cell types
in the simulated data (Methods Sections 4.3.1). For each cell differentiation map, we simulated
timed cell lineage trees using the simulator in the Cassiopeia [40] platform which employs a gen-
eralized Birth-Death model [50] (Methods Section 4.3.2). We then simulated cell type labelings on
the vertices of each cell lineage tree, only allowing transitions that exist in the the cell differentia-
tion map. We sampled 50, 100, or 150 cells of each observed cell type from a larger tree such that
the total number of sampled cells is 20% of the number of leaves in the larger tree. We provided
this pruned cell lineage tree as input to the three methods, and we additionally provided the number
k of progenitors to Carta. This sampling procedure mimics limitations in current lineage tracing
technologies in which only a small fraction of cells of the developmental system are sampled for
sequencing.

We evaluated the performance of each method by comparing the set P∗ of progenitors present in
the ground-truth cell differentiation map and the set P of progenitors present in the inferred cell
differentiation map using two metrics: the Jaccard distance dJ(P,P

∗) [51] and the normalized
minimum Hamming distance dH(P,P

∗) (Methods Sections 4.3.3). The Jaccard distance evaluates
how well P∗ matches P while the normalized minimum Hamming distance evaluates the deviation
of each progenitor in P∗ from each progenitor in P. Both metrics are 0 when the set P of inferred
progenitors exactly matches the set P∗ of ground-truth progenitors.
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Carta-tree and Carta-DAG both outperform ICE-FASE and EvoC when the ground-truth cell dif-
ferentiation map is a tree (Figure 2a) or DAG (Figure 2b) on all simulation parameters. In the cases
where the cell differentiation map is a tree, i.e. Case (i), both Carta-tree and Carta-DAG either
outperform or match the performance of existing methods. Specifically, Carta-tree has the lowest
Jaccard distance (median 0, mean 0.0119) (Figure 2b), but Carta-DAG (median 0, mean 0.0399)
also has lower distance than ICE-FASE (0, 0.135) and EvoC (0.4, 0.374). This indicates the ability
of Carta-DAG to accurately infer cell differentiation maps that are trees even when its output is not
restricted to be a tree. Additionally, both Carta-tree and Carta-DAG as well as ICE-FASE have
perfect precision and recall of the ground-truth progenitors in almost all instances (mean precision,
mean recall; Carta-DAG: 0.975, 0.975, Carta-tree: 0.993, 0.993, ICE-FASE: 0.866, 0.999). Simi-
lar trends are observed for the normalized minimum Hamming distance metric (Figure 8). In the
DAG case, i.e. Case (ii), with 150 sampled cells for each cell type, Carta-DAG achieves the lowest
Jaccard distance (median 0) (Figure 2a) and normalized minimum Hamming distance (median 0)
compared to ICE-FASE (median 0.571 and 0.0365) and EvoC (median 0.67 and 0.0556). Further,
Carta-tree achieves lower Jaccard distance (median 0.5) and normalized minimum Hamming dis-
tance (median 0.0352) than ICE-FASE and EvoC. This indicates that Carta is the most accurate
tree-restricted method in inferring ground-truth cell differentiation maps that are not restricted to
be trees.

Carta also defines the Pareto fronts illustrating the trade-off between the discrepancy and the num-
ber of progenitors for both tree and DAG cell differentiation maps for varying number k of pro-
genitors (Figure 2c). These results show that Carta-tree will always infer cell differentiation maps
with lower discrepancy than tree-restricted methods such as EvoC and ICE-FASE, and that less-
constrained Carta-DAG will always infer cell differentiation maps with lower discrepancy than
any tree restricted method. Further, while EvoC and ICE-FASE are restricted to only infer cell dif-
ferentiation maps with |S| − 1 progenitors, Carta-tree can infer differentiation maps with a wide
range of number of progenitors. Note that here and below, we report the normalized discrepancy
D̃(T, FS), which is the discrepancy divided by the total number of ancestral cells across the input
lineage trees.

2.3 Cell differentiation mapping of Trunk-Like Structures (TLS) – an in vitro model of the
mammalian embrynonic trunk

We compared Carta and several other methods in inferring the routes of differentiation during
mammalian trunk development. Specifically, we applied Carta, Fitch, PhyloVelo [52], ICE-
FASE [47] and Evolutionary Coupling [38] (Methods Section 4.5) to cell lineage trees derived from
single-cell CRISPR-Cas9-based lineage tracing of an in vitro embryoid model called Trunk-Like
Structures (TLS) [29]. TLS mirrors post-occipital mammalian trunk development and is particu-
larly suited for studying the differentiation dynamics of neuromesodermal progenitor (NMP) cells.
NMPs are a pool of self-renewing progenitors that differentiate into both the neural tube, which
forms the future spinal cord, and the flanking somitic mesoderm, which form future vertebrae and
muscle cells of the trunk (Figure 3a) [48]. Given their bipotent nature, NMPs are particularly
interesting as they produce cells of two germ layers in the posterior embryo, the neuroectoderm
and the paraxial mesoderm, that are classically considered to come from separate origins [53–55].
This dataset consists of 14 cell lineage trees with a total of 6570 cells labeled by 6 observed cell
types derived from the gene expression measurements: Endoderm (233 cells), Endothelial (124
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Figure 3: Carta accurately infers the cell differentiation map of Trunk-Like Structures (TLS), an in
vitro model of mammalian trunk development. (a) A representative live-imaged TLS structure at 120h
with NMP progenitor pool (orange) and elongating neural tube (light blue) and somite (green) structures.
(b) Normalized discrepancy D̃(T, FS) of cell differentiation maps, inferred by Carta-tree (blue) and Carta-
DAG (orange), for increasing number k of progenitors revealing the Pareto fronts. Discrepancy of cell
differentiation maps inferred by existing methods that infer unobserved progenitors (·) and do not infer
unobserved progenitors (X) are also shown. (c) Canonical model of TLS differentiation [29]. (d) Cell
differentiation map inferred by Carta-DAG, where edges are annotated by number of cells that traverse
the cell type transition. Legend indicates the number of cells of each cell type. (e) Cell differentiation
map inferred by PhyloVelo. Weight of each edge is the inferred transition probability between two cell
types. (f) The number of cells that directly transition from progenitor cell types (rows) to observed cell
types (columns) for the cell differentiation maps inferred by each method. (g) The marginal distribution,
or the proportion of total cells that derive from each progenitor, and the corresponding entropy H of each
distribution. (h) The support, or the number of internal nodes in the lineage trees with the exact potency as
each progenitor.
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cells), Primordial germ cell-like cells (PGCLCs; 233 cells), Somites (3188 cells), Neural Tube
(2289 cells), and NMP (513 cells) (see Methods Section 4.4.1 for details).

We compared the cell differentiation maps generated by Carta with varying number of progenitors
to the differentiation maps inferred by existing methods. Both modes of Carta, i.e. Carta-tree
and Carta-DAG, consistently infer cell differentiation maps with lower discrepancy compared to
existing methods for the same number of progenitors (Figure 3b). For example, the normalized dis-
crepancies of cell differentiation maps with k = 5 progenitors that Carta-tree and Carta-DAG infer
are 0.802 and 0.668, respectively In contrast, ICE-FASE, EvoC and Fitch infer cell differentiation
maps that have 5 progenitors and normalized discrepancy of 1.936, 2.580 and 0.915, respectively
(see Methods Section 4.8 for details). PhyloVelo infers a map with 6 progenitors with normalized
discrepancy of 1.930 compared to 0.802 and 0.546 for Carta-tree and Carta-DAG respectively
with k = 6. We determined the optimal number k∗ = 7 progenitors in the cell differentiation
maps (normalized discrepancy 0.458) by identifying the elbow in the Pareto fronts derived using
Carta-DAG (See Methods Section 4.6 for details).

The cell differentiation map inferred by Carta (Figure 3d) agrees with known features of trunk
developmental progression. Carta-tree infers a cell differentiation map in which the relative or-
dering of commitment of observed cell types is – PGCLC, endoderm, endothelial, NMP, somites
and neural tube (Supplementary Figure 6). This is consistent with the canonical model of TLS
differentiation in which the fate of PGCLC and endoderm cells is committed earlier compared to
the NMP, somite and neural tube cells (Figure 3c) [48]. This is also reflected in the Carta-DAG
cell differentiation map, in which endothelial, endoderm, and PGCLC cells derive from progeni-
tors with larger potencies (mean progenitor potency size: 4.5, 4.0 and 5.0, respectively) compared
to the more closely related NMP, somitic, and neural tube cells which arise from progenitors with
more restrictive potencies (mean progenitor potency size: 3.7, 3.3 and 3.3, respectively).

A key insight of the Carta-DAG cell differentiation map is the convergent differentiation of somite
cells, with one origin stemming from shared ancestry with neural tube cells and an alternate origin
indicating shared ancestry with endothelial cells via the presence of the {endothelial, somite}
progenitor. This is consistent with previous in vivo studies that have found evidence for a secondary
pathway towards the production of the trunk endothelium [56, 57]. Such instances of convergent
differentiation cannot be revealed by methods such as ICE-FASE and EvoC that infer only tree-
structured cell differentiation maps in which each cell type arises from a single developmental
trajectory.

Carta further reveals the progenitor dynamics as well as the commitment bias of NMPs, i.e. the
proportion of NMPs committing to each downstream state. The Carta-DAG differentiation map
includes NMPs in multiple known stages of development [53–55]. The {NMP} cell type represents
observed undifferentiated NMPs, the {neural tube, somite} cell type represent ancestral NMPs
that existed in the past, and the {NMP, neural tube, somite} cell type represent NMP cells that
both self renew and are differentiating. Further, the {NMP, neural tube} cell type represents NMP
cells that are only observed differentiating into neural tube cells, and the {NMP, somite} cell type
represents NMP cells that are only observed differentiating into somitic cells. Notably, all of the
different instances of progenitor cell types such as {NMP, neural tube} and {neural tube, somite}
can only be represented simultaneously in a DAG structure and not a tree structure. We observe
that the Carta-DAG cell differentiation map only includes the {NMP, neural tube} and not the
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{NMP, somite} progenitor, suggesting that NMP cells in this system have a higher propensity to
commit to a neural rather than somitic fate (Figure 3c). This bias towards neural fate supports
previous analyses that NMP cells gradually shift their differentiation potential towards the neural
fate during TLS development [29].

In contrast, methods where all progenitor cell types are assumed to be observed – such as Fitch
and PhyloVelo – infer cell differentiation maps that are not well supported by the literature. Many
spurious cell type transitions exist in the differentiation map produced by PhyloVelo (Figure 3d).
For example, somitic cells differentiate into PGCLC, endoderm, and neural tube cells. Further,
endothelial cells differentiate into somites and endoderm cells differentiate into NMPs. In these
instances, observed cell types are shown to transition directly to each other when it is known that
these cell types are related through progenitor cell types that are potent for each of them. This
highlights that the deficiencies of the assumption that all progenitors are observed. Additionally,
PhyloVelo does not correctly infer the hierarchical differentiation process as the differentiation
map shows neural tube cells can differentiate back to the NMP state (Figure 3d). The cell differen-
tiation maps inferred by ICE-FASE, EvoC, and Fitch also have poor agreement with the reported
developmental routes in TLS (Supplementary Figure 6).

The progenitors inferred by Carta are better supported by the cell types of descendants of ances-
tral cells in the cell lineage trees. We demonstrate this advantage using two metrics. First, we
calculate the distribution of the number of cells of each observed cell type that directly arise from
the progenitor cell type inferred by each method (Figure 3f, Methods Section 4.8). The progen-
itors inferred by Carta produce a more uniform distribution Figure 3g) quantified by the higher
entropy (H = 1.759) of the distribution compared to existing methods (ICE-FASE: H = 1.0,
EvoC: H = 0.820, PhyloVelo: H = 1.104, Fitch: H = 1.319). Moreover, for ICE-FASE, EvoC
and PhyloVelo, the proportion of cells arising from the two progenitors that account for the most
cells (ICE-FASE: 0.814, EvoC: 0.954, PhyloVelo: 0.859, Fitch: 0.719) is substantially larger than
the proportion of 0.525 for Carta. Second, we calculate the support of the inferred progenitors,
i.e. the number of ancestral cells where the set of cell types of the descendants exactly match
the potencies of the inferred progenitors (Figure 3h). Progenitors inferred by Carta have much
higher support C = 1306 compared to existing methods (ICE-FASE: C = 382, EvoC: C = 41,
PhyloVelo: C = 360, Fitch: C = 459), indicating that Carta differentiation map provides a better
fit with the input cell lineage trees.

2.4 Carta reveals the hierarchy of progenitors during mouse hematopoiesis

We applied Carta and several existing methods to a single-cell lineage tracing dataset of mouse
hematopoiesis [30] and compared the resulting cell differentiation maps. This dataset was obtained
by inserting random and heritable lentiviral barcodes in mouse hematopoietic stem cells (HSCs),
which were then allowed to differentiate in vitro, with the culture sampled at days 2, 4 and 6.
Single-cell RNA sequencing was performed to simultaneously measure the barcodes and gene
expression of the 11778 sampled cells. The barcode measurements were used to construct 5624
star-shaped cell lineage trees, one for each unique barcode shared across multiple cells (Methods
Section 4.4.2). The cells were annotated into 9 observed cell types based on gene expression –
Megakaryoctyes (Meg), Erythrocytes (Ery), Mast cells (Ma), Basophils (Ba), Eosinophil (Eo),
Neutrophils (Neu), Monocytes (Mo), Dendritic cells (DC) and Lymphoid (L), with the remaining
22387 cells marked as undifferentiated (Figure 4a).
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Figure 4: Carta recapitulates canonical model of mouse hematopoiesis from lentiviral barcoding-
based lineage tracing data. (a) Low-dimensional visualization [58] of scRNA-seq of 43670 clonally bar-
coded cells in varying stages of mouse hematopoesis differentiation [30]. Cells are colored by cell type, and
legend contains the number of cells of each cell type. (b) Normalized discrepancy D̃(T, FS) of cell differ-
entiation maps inferred by Carta and existing methods with varying number of progenitors. (c) Canonical
model of the hierarchy of progenitors during mouse hematopoiesis from [59]. Dashed arrows show al-
ternate routes of differentiation that have been suggested in previous studies. (d) Cell differentiation map
inferred by Carta and (e) distance-based heuristic employed by Weinreb et al. [30]. Red indicates inferred
progenitors that are non-canonical, i.e. do not agree with the canonical model shown in (c).
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Figure 5: Carta predicts the fate of undifferentiated hematopoietic progenitor cells. (a) Progenitor
predictions given by Carta (colored dots) for undifferentiated cells sampled at day 2. (b) Potencies of the
inferred progenitor cell types. (c) The proportion of undifferentiated cells (from day 2, 4, and 6) that are
closest in transcriptional space to the indicated observed cell type for each predicted progenitor.

We compared the differentiation maps inferred by both modes of Carta, Carta-tree and Carta-
DAG, to cell differentiation maps published in the original study (Weinreb et al. [30]) and inferred
using existing methods – Fitch, PhyloVelo [52], ICE-FASE [47], and Evolutionary Coupling [39]
(Figure 4b) (Methods Section 4.5). Carta-tree and Carta-DAG both infer solutions with k∗ = 7
progenitors and normalized discrepancy of 0.154 and 0.762, respectively. PhyloVelo infers a cell
differentiation map with only 5 progenitors, but much higher normalized discrepancy 1.809, while
Fitch infers a map with 9 progenitors with low normalized discrepancy of 0.186. ICE-FASE, EvoC,
and Weinreb et al. [30] infer tree-structured cell differentiation maps comprising of 8 progenitors,
but with higher normalized discrepancy of 0.921, 3.598, 2.51, respectively compared to Carta-
tree with the same number (k = 8) of progenitors and normalized discrepancy = 0.738. Since
the canonical model of hematopoiesis [59] is also tree-structured, we focus our attention on the
optimal solution inferred by Carta-tree with k∗ = 7 progenitors (Methods Section 4.6).

The cell differentiation map inferred by Carta aligns more closely with the canonical model of
hematopoiesis [59] (Figure 4c) compared to the hierarchy of progenitors published in the original
study [30]. Carta infers that the myeloid cells (Ma, Ba, Eo, Neu and Mo) originate from a common
unobserved progenitor cell type, which we identify as the common myeloid progenitor (CMP) that
is consistent with the canonical model of hematopoiesis [59–61] (Figure 4d). Additionally, Carta
also infers an intermediate non-canonical progenitor, which we identify as myeloblast [62], with
potency for Ba, Eo, Neu and Mo cells. In contrast, Weinreb et al. [30] suggest that the myeloid
cells separate into two trajectories (first containing Ma, Ba, Eo and second containing Neu and Mo)
very early during differentiation when the cells are still multipotent progenitors (Figure 4e). Addi-
tionally, Carta identifies an unobserved progenitor restricted to megakaryocytes and eythrocytes,
known as the megakaryocyte-erythrocyte progenitor (MEP), which arises directly from multipotent
progenitor (MPP) cells. This finding is consistent with previous studies that have found evidence
that in mouse, MPP give rise to MEP without passing through the CMP [59, 63–66]. While Wein-
reb et al. [30] also identify MEP, they propose that it originates from a non-canonical progenitor
that is potent for megakaryocytes, eythrocytes and mast cells. Carta also correctly infers that lym-
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phoid and dendritic cells belong to a differentiation trajectory that separates early from the other
cell types (myeloids, megakaryocytes and erythrocytes) during hematopoiesis [59, 64]. However,
Carta is not able to identify the presence of the common lymphoid progenitor (CLP), possibly
due to low sampling of lymphoid and dendritic cells in the data (18 and 22 cells, respectively). In
contrast, Weinreb et al. [30] identify the CLP, but suggests that it originates from a non-canonical
hierarchy of progenitors with potency for Neutrophils and Monocytes. Finally, the Carta cell dif-
ferentiation tree has the lowest Robinson-Foulds distance [67] with the canonical tree (1; maximum
possible 7), compared to the tree inferred by Weinreb et. al (4; maximum possible 8), the ICE-
FASE tree (6; maximum possible 8), and the EvoC tree (2; maximum possible 8) (Supplementary
Figure 7).

We examine the concordance between the progenitor cell types of undifferentiated cells predicted
by Carta and the gene expression of these cells. Specifically, we defined the progenitor cell type
of undifferentiated cells sampled at day 2 based on the progenitor cell type inferred by Carta for
their ancestors in the cell lineage trees. We find that the undifferentiated cells have similar gene
expression to the observed cell types in the potency set; i.e. the cell types that Carta predicts the
undifferentiated cell will differentiate into (Figure 5a). We quantify this similarity by comparing
the predicted fate of undifferentiated cells to the cell type cluster of the closest cell in gene expres-
sion space (Methods Section 4.9). We observe a high degree of overlap between predicted potency
and closest mature cell type in the cases where the inferred progenitor is potent for that cell type
(Figure 5b-c). Since Carta uses only lineage information and not gene expression in inferring
progenitors, these results provide orthogonal validation for the progenitor cell types inferred by
Carta.

3 Discussion
We introduce Carta, an algorithm to infer cell differentiation maps from cell lineage trees while
accounting for limitations in high-throughput lineage tracing data such as limited sampling of cells.
Carta employs a new mathematical model of differentiation maps, in which progenitor cell types
are defined by their potency, i.e. the set of cell types that can be attained by their descendants. This
model allows for the inference of transient progenitor cell types that arise during development
but may not be observed in the lineage tracing data. A key insight of our work is that there
exists a trade-off between the number of progenitors in the cell differentiation map (a measure of
the complexity of the map) and how well the map fits the input cell lineage trees (discrepancy).
Carta explicitly evaluates this trade-off by deriving the Pareto front of cell differentiation maps
and selecting a map with an optimal number of progenitor cell types.

We demonstrate the advantages of Carta compared to other methods on simulated and real data
from multiple single-cell lineage tracing technologies. On simulated lineage tracing data, Carta
reconstructs more accurate cell differentiation maps compared to existing methods under varying
simulation parameters. On CRISPR-Cas9-based lineage tracing data of Trunk-like Structures, an
in vitro model of mammalian trunk development, Carta provides insights into differentiation of
neuro-mesodermal progenitors (NMPs) and convergent differentiation of somites, features that
are not revealed by the restrictive frameworks of existing methods. Additionally, on lentiviral
barcoding-based lineage tracing data of mouse hematopoiesis, the cell differentiation map that
Carta infers has better agreement with canonical model of mouse hematopoiesis compared to maps
inferred by existing methods and has high concordance with the gene expression measurements.
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There are several limitations of Carta which present opportunities for future development. First,
Carta takes cell lineage trees derived from lineage tracing data as input, but these trees are not
always accurate [44]. Joint inference of cell lineage trees and a cell differentiation map might lead
to improvement in the accuracy of both the trees and the differentiation map. Second, we defined
the discrepancy by counting unsampled descendant resulting in a maximum parsimony framework
to infer cell differentiation maps. A promising direction for future research is derivation of a max-
imum likelihood-based framework that employs a probabilistic model for cell differentiation and
fate commitment during development. Third, Carta quantifies the complexity of the differentiation
map by the number of progenitors, but complexity could also be described in terms of the number
and type of transitions (See Supplementary Section A.1). Finally, Carta assumes that progenitors
do not regain potency for a cell type once it is lost during differentiation, and thus does not model
dedifferentiation. While this assumption is reasonable for most normal developmental systems,
it is not hold in aberrant systems such as cancer. Indeed, dedifferentiation has been recognised
as a major mechanism of cancer progression, cancer cell plasticity and immune evasion [68–71].
Extending Carta to allow dedifferentiation would enable further application to study cancer devel-
opment.

Finally, investigations of developmental systems are increasingly utilizing varied high-throughput
technologies including spatial RNA sequencing [31, 72, 73] and single-cell multi-modal sequenc-
ing [74]. Combining lineage tracing with multi-modal single-cell and spatial sequencing is crucial
for measuring the interplay between microenvironment, epigenetic regulation and lineage of the
cells. We envision that Carta will play a crucial role in distinguishing the relative contributions of
cell lineage, cell differentiation, and spatial location during development and provide a foundation
for future development of algorithms for cell differentiation mapping.
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4 Methods
4.1 Definition and inference of cell differentiation maps

A cell differentiation map FS describes the differentiation of cells into observed cell types S. Here,
we give a formal definition of a cell differentiation map FS and formulate the problem of inferring
a cell differentiation map from a set T of cell lineage trees (Problem 4.2).

We define a cell differentiation map FS to be a vertex-labeled directed graph whose sinks – i.e.
vertices with outdegree d = 0 – are the observed cell types S, and whose whose internal vertices –
i.e. vertices with outdegree d > 0 – are the progenitor cell types. The directed edges of FS describe
the cell type transitions that occurred during development. Each sink vertex (observed cell type)
t ∈ S is labeled by the singleton set {t} (or for simplicity by an element of S) and each internal
vertex (progenitor cell type) is labeled by a potency set, i.e. a subset of S.

We model development as a process in which cells progressively lose potency and do not regain
potency for a cell type once it is lost. Thus, FS is a directed acyclic graph – i.e. does not have
directed cycles – in which the root of FS has label S indicating the totipotent cell with potency S,
and the internal vertices have unique labels that satisfy the following two conditions. First, since
we assume cells only lose potency during development, every directed edge (P, P ′) in FS satisfies
P ′ ⊂ P . Second, by definition of potency, for each cell type t ∈ S there exists a directed path
in FS from a progenitor P to a observed cell type {t} if and only if it is potent for the cell type t,
i.e. t ∈ P . Consequentially, the vertex set PS of a cell differentiation map FS always contains the
totipotent cell S, and the singleton set {t} for each observed cell type t ∈ S.

The cell types of ancestral cells are determined by a labeling of the internal vertices of T (ancestral
cells) by the vertices of the cell differentiation map FS (cell types). Such a labeling must be
compatible with the trees T and cell differentiation map FS , i.e. it must satisfy the following two
conditions. First, each ancestral cell in a cell lineage tree must be labeled by a potency that contains
all the observed cell types of its descendants in the tree. Second, cell type transitions determined
by the labeling – i.e. edges in the lineage trees connecting vertices labeled by distinct cell types
– must be supported by the cell differentiation map FS . More formally, for every edge (u, v) in a
cell lineage tree, there must exist a path from ℓ(u) to ℓ(v) in FS .

For cell lineage trees T and a cell differentiation map FS , there may be multiple compatible label-
ings. We evaluate a labeling ℓ by its discrepancy, defined as the number of instances when a cell
type in the potency ℓ(v) of an ancestral cell v is not observed in its descendants, i.e. the leaves of
the subtree rooted at v. More formally,

D(T, FS, ℓ) =
∑
T∈T

∑
v∈V (T )

∑
t∈ℓ(v)

1(t /∈ B(v)),

where 1 is the indicator function and B(v) is the set of observed cell types of the descendants of
cell v.

We define the discrepancy between the cell lineage tree T and a cell differentiation map FS by the
minimum discrepancy obtained over all compatible labelings, i.e.

D(T, FS) = min
ℓ∈C(T,FS)

D(T, FS, ℓ),
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where C(T, FS) is the set of compatible labelings for cell lineage trees T and cell differentiation
map FS . A more general description of discrepancy is given in Supplementary Section A.1.

As such, evaluating the discrepancy of a given cell differentiation map FS with a set of cell lineage
trees T is equivalent to finding a compatible vertex labeling ℓ that minimizes the induced discrep-
ancy D(T, FS, ℓ). We refer to this as the Progenitor Labeling Problem (PLP) and formally pose it
as follows.

Problem 4.1 (Progenitor Labeling Problem (PLP)). Given a set T of cell lineage trees and cell
differentiation map FS , find a valid labeling ℓ that minimizes the discrepancy D(T, FS, ℓ).

This is an analog of the small parsimony problem [75], and we show that it can be solved by a
dynamic program by adapting the Sankoff’s algorithm [76] (Supplementary Section A.3).

In practice, we only observe the cell lineage trees T and must infer the cell differentiation map FS .
Due to technical limitations in current lineage tracing technologies, such as limited sampling of
cells, inferring a map FS with the minimum the discrepancy D(T, FS) may lead to large number of
progenitors, many of which may be false positives. As such, we pose the Cell Differentiation Map
Inference Problem (CDMIP) of inferring a cell differentiation map with minimum discrepancy for
a fixed number k of progenitors.

Problem 4.2 (Cell Differentiation Map Inference Problem (CDMIP)). Given cell lineage trees T
with observed cell types S, and integer k, find a cell differentiation map FS with k progenitors such
that D(T, FS) is minimized.

An interesting special case of the CDMIP problem is when the differentiation map is restricted to
be a tree. We define this problem as follows.

Problem 4.3 (Cell Differentiation Tree Inference Problem (CDTIP)). Given cell lineage trees T

with observed cell types S, and integer k, find a cell differentiation tree FS with k progenitors such
that D(T, FS) is minimized.

We show that both the CDMIP and CDTIP problems are NP-complete (see Supplementary Section
A.5, proofs in Supplementary Section A.6).

4.2 Carta: an algorithm for cell differentiation mapping

We develop Carta, an algorithm, to infer a cell differentiation map FS from cell lineage trees T that
balances the trade-off between the discrepancy D(T, FS) and the number k of progenitors in the
cell differentiation maps. Carta allows inference of DAG and tree-structured cell differentiation
maps by solving this multi-objective optimization problem in two steps, which we detail below.

First, Carta finds the cell differentiation map with minimum discrepancy for each number k of
progenitors across a range of values of k. This reveals the Pareto front indicating the minimum dis-
crepancy obtained over differentiation maps for each fixed number k of progenitors. Carta has two
modes, Carta-DAG for DAG-structured cell differentiation maps and Carta-tree tree-structured
cell differentiation maps. For a fixed number k of progenitors, Carta-DAG and Carta-tree use on
mixed integer linear programs (MILPs) to solve the Cell Differentiation Map Inference Problem
(CDMIP, Problem 4.2) and the Cell Differentiation Tree Inference Problem (CDTIP, Problem 4.3),
respectively. The MILPs are solved using the Gurobi optimizer [77] in Python and the details of
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the MILP formulations are described in the Supplementary Section A.2.

Second, Carta determines the optimal number k∗ of progenitors by identifying the elbow of the
Pareto front. To this end, we use kneedle [78], a heuristic algorithm that finds the point of maximum
curvature on the Pareto front (details in Methods Section 4.6). The edges of the cell differentiation
map are determined by including all cell type transitions that appear frequently in the labeled cell
lineage trees (details in Methods Section 4.7).

4.3 Simulation details

4.3.1 Simulating DAG cell differentiation maps

As described in 2.2, we generated two sets of simulations, one where the ground truth cell differ-
entiation map is a DAG and the other where it is a tree. We generated a random DAG-structure
cell differentiation map as follows. For a fixed number k of progenitors and set S of observed cell
types, we randomly sampled k progenitors from the power set of S. These progenitors, along with
each observed cell type t ∈ S and S (the totipotent root progenitor), form the vertices in the cell
differentiation map. We defined the edges by first build a graph with a directed edge (P, P ′) in the
graph if P ⊆ P ′ and then taking the transitive reduction of this graph.

We generated a random tree-structured cell differentiation maps with k internal vertices (progeni-
tors) and S observed cell types using the following iterative process. We initialized the cell differ-
entiation tree as a single vertex. At each iteration, we added a child to an existing vertex chosen
uniformly at random. We terminated the process when the map had exactly k internal vertices
and |S| leaves after collapsing unifurcations. The cell types are assigned to these leaves with a
one-to-one mapping uniformly at random.

4.3.2 Simulating cell lineage tree from a given cell differentiation map

For each simulated cell differentiation map FS , we simulated time-resolved binary cell lineage
trees that follow the differentiation routes specified by that map. To generate tree topologies, we
used the generalized forward-time birth-death simulator included in the Cassiopeia platform [40].
Let z be the number of cells sampled per extant cell type and let α be the subsampling rate. The
process terminates when |S|∗z

α
extant tips are sampled. We drew birth waiting times from a shifted

exponential distribution with a shift constant of c = 0.01, and estimated the birth and death rates to
produce trees with total times of around 1 for the given number of extant tips. We then normalized
the branch lengths of T such that the longest path from the root to one of a leaf of the tree is of
length 1 to match the times on FS .

We simulated cell type differentiation in two steps. First, we assigned a differentiation time for
each cell type transition in the cell differentiation map. Specifically, we annotated each vertex of
the cell differentiation map by a time between 0 and 1 representing the time of arrival of that cell
type such that if vertex u precedes vertex v, then τ(u) < τ(v). These times are determined by a
process in which we iterated through paths in the cell differentiation map from root to sink, and on
each iteration annotated the length of each edge in a path by evenly splitting the remaining length
of that path amongst its edges. The time of each vertex is the sum of the path length from the root.
Second, we randomly labeled the ancestral cells of each cell lineage tree T with cell types such
that cell type transitions in T are consistent with the cell type transitions in the cell differentiation
map FS . To achieve this, we first initialized the label ℓ(r(T )) of the root vertex r of cell lineage
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tree T as the totipotent progenitor S. Let τT and τFS
be the timepoint annotation function for

the cell lineage tree T and cell differentiation map FS , respectively. We performed a depth-first,
preorder traversal of the edges (u, v) ∈ E(T ) of the lineage tree such that we annotate ℓ(v) as ℓ(u)
if τT (v) > τFS

(ℓ(u)) and otherwise a randomly sampled descendant of ℓ(u) in the FS . Finally,
once each cell in the cell lineage is annotated with a progenitor label, we randomly sampled the
specified number z = 50, 100, or 150 of cells labeled with each extant cell type in S. We took the
subtree induced by the sampled cells as well as the cell type labelings of the leaves of this tree as
the final inputs to our cell differentiation map inference algorithms (Section 2.2).

4.3.3 Simulation metrics

We evaluate the inferred cell differentiation maps against the simulated ground-truth cell differen-
tiation maps using two metrics that quantify the difference in the progenitors in each:

1) Jaccard distance dJ(P,P
∗) [51]:

dJ(P,P
∗) = 1− |P∗ ∩ P|

|P∗|+ |P|
,

where P∗ and P are the ground-truth and the inferred set of progenitors, respectively.

The Jaccard distance dJ(P,P
∗) is 0 if and only if the set P of inferred progenitors exactly match

the set P∗ of ground-truth progenitors.

2) The normalized minimum Hamming distance dH(P,P
∗):

dH(P,P
∗) =

1

|P∗||S|
∑

P ∗∈P∗

min
P∈P

dH(P
∗, P ),

where Hamming distance [79] dH(P ∗, P ) = |P ∗ \ P |+ |P \ P ∗|.

Intuitively, the Hamming distance of two progenitors is defined as the size of the symmetric dif-
ference of the two progenitors and would be 0 if and only if the two progenitors are identical. The
normalized minimum Hamming distance is the sum of the minimum Hamming distance between
an inferred progenitor and all of the progenitors in the ground-truth, normalized by the number
|P∗| of ground-truth progenitors and number |S| of observed cell types. As such, dH(P,P∗) is 0 if
and only if each ground-truth progenitor is present in the inferred set P of progenitors.

4.4 Data processing details

4.4.1 Processing of TLS data

We obtained 14 cell lineage trees (Table 1) that record the cell division of 14 Trunk-like struc-
tures generated in [29] (Section 2.3). These lineages were generated using scRNA-seq readout
from mouse embryonic stem cells engineered with CRISPR-Cas9 lineage tracing technology. This
scRNA-seq data was then input to the Cassiopeia lineage pre-processing and reconstruction pack-
age [40]. The branch lengths are not given by Cassiopeia, and hence we used unit branch lengths.
Each observed cell (leaf) in each cell lineage tree was assigned a cell type by a previously published
reference [48]. We grouped all somite cell subtypes (Somite (-1), Somite 0, Somite, Sclerotome-
like, and Dermomyotome-like) into one umbrella type “somite”, and we grouped NeuralTube1 and
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NeuralTube2 cell types into one umbrella type “neural tube”. We then pruned from our trees each
leaf labeled with a cell type not included in our analysis (aPSM, pPSM).

As a pre-processing step to Carta only, we collapsed each clade in each cell lineage tree comprised
of extant cells that share a cell type into a single extant cell with that cell type. These clades do not
contribute to cell type transitions nor the objective score of Carta.

# After Pre-
Processing

Trees
Cell
Types
(Max)

Cell
Types
(Min)

Cell
Types
(Avg)

Cells
(Max)

Cells
(Min)

Cells
(Avg)

Edges
(Max)

Edges
(Min)

Edges
(Avg)

TLS 14 6 3 4.79 1723 15 336.36 2267 23 468.50
Table 1 Summary statistics on post-processing cell lineage trees from TLS

4.4.2 Processing of data in Weinreb et. al by study

We obtained the in vitro differentiation time course data generated by Weinreb et. al [30] from
their public repository (https://github.com/AllonKleinLab/paper-data/tree/
master/Lineage_tracing_on_transcriptional_landscapes_links_state_
to_fate_during_differentiation). The associated metadata includes the lentiviral
barcode and cell type of each cell. Each of the 5864 barcodes corresponds to a star-shaped cell
lineage tree, where the leaves represent the sequenced cells that contain that barcode and are
annotated by cell types (Section 2.4). Of the 130887 cells in the dataset, 49297 have an associated
barcode. We observed 107 distinct potencies in the data, defined by the set of cell types of the
descendants of a cell, even though the data only has 9 mature cell types. This is possibly due to
cell sampling limitations, as illustrated in Section 2.1. As such, we performed a mild filtering of
the data by removing barcodes in which the observed potency occurs less than 10 times in the data.
This step removes only 4.1% of the barcodes, resulting in 5642 cell lineage trees totaling 43670
cells. We merged the “pDC” and “Ccr7 DC” cell types into one “DC” cell type, and removed cells
with the undifferentiated cell type from the cell lineage trees. These cell lineage trees are provided
as input for Carta and the other existing methods.

4.5 Implementation and application of existing methods

4.5.1 Fitch’s Algorithm

Fitch’s Algorithm solves the small parsimony problem [75] which can be applied to lineage tracing
data to build cell differentiation maps under the assumption that all the progenitor cell types are
observed in the data. Briefly, given a phylogeny with each leaf labeled with one of a set of states,
the small parsimony problem seeks to find the labeling of internal nodes of a phylogeny with those
states such that the fewest number of transitions in state between parent and child nodes is obtained
[75]. The frequency of transition from cell type i to cell type j can then be counted as the number
of transitions from an internal cell labeled i to one labeled j in this labeled phylogeny.

For the dataset from Weinreb et. al (Section 2.4), we directly applied Fitch’s Algorithm and totaled
the number of transitions between cell types across the Fitch labeling for each star-shaped cell
lineage tree. We then stored these totals in a cell type transition matrix and row-normalized the
matrix, converting transition frequencies to transition proportions that sum to 1 for each cell type
of origin.
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For the TLS dataset (Section 2.3), to account for the often large number of equally parsimonious
Fitch labelings for large trees, we used FitchCount [38], which efficiently counts the total number
of transitions between cell types in all equally minimal Fitch labelings. As the total number of
transitions counted by FitchCount increases rapidly by the size of the cell lineage tree, the transition
counts on large trees would dominate the transition count totaled over all trees. Thus, we computed
a normalized sum of the transitions over all trees. For each tree we generated a row-normalized
cell type transition matrix from the FitchCount transitions, and then computed the sum of these
matrices as the final cell type transition matrix. This final matrix is then row-normalized.

4.5.2 Evolutionary Coupling (EvoC)

Evolutionary Coupling is defined as the normalized phylogenetic distance between any pair of cell
annotations on a tree [39]. We extend the definition given in Yang et al. [39] to multiple trees T.
Given cell types M and K, the average phylogenetic distance between leaves (extant cells) labeled
by these cell types on the cell lineage tree is defined as:

Devo(M,K) =
1∑

Ti∈T |{m, k}Ti
|
∑
Ti∈T

∑
{m,k}Ti

dTi
(m, k)

where {m, k}Ti
is the set of all pairwise combinations of leaves with type M and K on tree Ti and

dTi
(i, j) denotes the phylogenetic distance between leaves on tree Ti. Intuitively, this metric calcu-

lates the average phylogenetic distance between two cells of cell types M and K. We then perform
hierarchical clustering on the cell types based on Devo using the UPGMA (Unweighted Pair Group
Method with Arithmetic Mean) algorithm [80], yielding a tree-structure cell differentiation map.

4.5.3 ICE-FASE

ICE-FASE calculates the average times at which cell types separate across given time-resolved cell
lineage trees, and performs hierarchical clustering between these cell types to form the resultant
cell differentiation map [47]. To run ICE-FASE, we used the implementation in the QFM package
in R [47]. In addition to cell type annotations, ICE-FASE requires time-resolved phylogenies with
branch lengths as input. For the TLS cell lineage trees, we estimated the branch lengths using
the Maximum Likelihood Branch Length Estimator implemented in Cassiopeia [40]. The lineage
tracing data from Weinreb et al. [30] is already annotated with time.

We implemented several workarounds in the analysis of both datasets due to limitations in the ICE-
FASE codebase. Firstly, since the ICE-FASE code crashes when multiple trees are given as input,
we created a single tree by connecting the root of each input tree by a 0-length branch to a dummy
root node. Secondly, the ICE-FASE code is not equipped to handle trees that have polytomies,
i.e. vertices with more than two children. Since the TLS trees (Section 2.3) and the Weinreb et. al
trees (Section 2.4) both have such polytomies, we arbitrarily binarized these trees by creating edges
with 0-length. Importantly, since ICE-FASE depends only on the timing at which cells separate,
the introduction of these 0-length branches should not affect the analysis. Moreover, combining
multiple trees into a single tree should not be problematic, as all pairs of cells in different trees
now connected by the dummy root have a separation time of 0.

4.5.4 PhyloVelo

PhyloVelo attempts to learn the differentiation trajectories of a system from gene expression data
that is informed by the lineage depth of each cell. To run PhyloVelo, we utilized the PhyloVelo
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package as provided in [52]. We performed the analysis very closely to the analysis of PhyloVelo
performed in that study. For both datasets, we utilized the “velocity inference” and “veloc-
ity embedding” embedding functions to calculate the PhyloVelo trajectories, and then passed the
output of these functions to the “state graph” function in Dynamo [81] to obtain the cell type tran-
sition matrix. We then transposed this matrix as PhyloVelo reverses directionality in its transitions,
and row normalized it as well.

For the TLS dataset (Section 2.3), we provided an anndata object generated by a standard Seurat
RPCA integration pipeline of the scRNA-seq data for the sequenced TLS experiments [29]. This
pipeline normalizes counts for 22291 genes and generates UMAP coordinates for each cell. We
subsetted the anndata object to cells that are in the cell lineage trees, and calculated the depth of
each cell as the number of edges from the root that have at least one mutation. We further removed
genes with a count lower than 50 across all cells.

For the dataset from Weinreb et. al (Section 2.4), we generated an anndata object using the nor-
malized gene counts from the publicly available data in the original study [30]. We included
only cells with barcodes. We then closely followed the analysis suggested in the documen-
tation of [52] (https://phylovelo.readthedocs.io/en/latest/notebook/in_
vitro_hematopoiesis.html), using largely the same parameter choices. One notable dif-
ference is we used n neigh = 500 in the “velocity embedding” function, as using the originally
specified 100 generates an error in state graph construction.

4.6 Choosing the optimal number of progenitors in Carta for real data

We selected the number k∗ of progenitors by finding a elbow in the k vs. minimum discrepancy
graph, using the kneedle algorithm. Initially, the kneedle algorithm found elbow points with very
few progenitors (k = 4 for the DAG curve for the TLS data (Section 2.3) and k = 3 for the tree
curve for the data from Weinreb et. al (Section 2.4), respectively). These elbows provided cell
differentiation maps that included too few progenitors to fully capture the complex dynamics in
the developmental systems we explored. We found kneedle to be conservative, selecting an elbow
at the first point with a significant reduction in the difference in discrepancy with the previous
point. Hence, we sought to select an elbow amongst the “flat” region of each curve to determine
which progenitors whose inclusion yields the lowest value in terms of reduced discrepancy while
maintaining a useful number of progenitors. Thus we applied kneedle to the regions where the
curve flattens out (k = 4, . . . 11 for the DAG curve for the TLS data and k = 5, . . . 11 for the tree
curve for the data from Weinreb et. al), giving elbows at k = 7 for both datasets et. al.

4.7 Choosing the edges in the cell differentiation maps inferred by Carta for real data

For the Carta-DAG cell differentiation map with k = 7 inferred for TLS (Figure 3d) (Section 2.3),
we include all transitions that appear frequently in the cell lineage trees. Specifically, we define
the cellular flow w(P, P ′) for a transition (P, P ′) as the number of cells across the given set of cell
lineage trees that traverse through that transition. To calculate the cellular flow for a transition,
we counted the instances in which ℓ(v) = P, ℓ(u) = P ′ for each edge (u, v) in a cell lineage
tree T , weighting by the number of leaf descendants of v. This weighting preserves flow in the
map such that the cellular flow entering a progenitor is equal the the cellular flow exiting it, i.e.∑

(P ′,P )∈FS
w(P ′, P ) =

∑
(P,P ′′)∈FS

w(P, P ′′). We keep an edge in the cell differentiation map in
Figure 3d if: (1) the edge is necessary to ensure that an extant state is reachable by a progenitor
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that includes that in its potency; or (2) the edge has a cellular flow that is > 0.2∗deg+(P ) meaning
that the edge accounts for more than 20% of the cellular flow from its parent progenitor. Note that
this criterion also removes 0-flow edges. For the Carta-tree cell differentiation map with k = 7
inferred for the data from Weinreb et. al (Section 2.4), we only include edges such that the the map
has a tree structure.

4.8 Discrepancy of differentiation maps inferred by existing methods

The first step in calculating the discrepancy of cell differentiation maps inferred by existing meth-
ods is determining the potencies of progenitors in the inferred cell differentiation maps. For meth-
ods that produce binary tree-structured cell differentiation maps (ICE-FASE and EvoC), the po-
tency of a progenitor – i.e. an internal vertex v of the map – is the set of observed cell types – i.e.
leaves – in the subtree rooted at v. As Fitch and PhyloVelo do not explicitly infer progenitors, we
devise a scheme to obtain progenitors from their cell differentiation maps. The output of Fitch and
PhyloVelo is a normalized transition frequency (f(ti, tj)) between each pair of states ti, tj ∈ S.
For each observed cell type ti, we introduce a progenitor as {tj : f(ti, tj) ≥ ϵ}. This is the set of
each cell type j for which the transition frequency from a cell type i exceeds threshold ϵ. In this
work we chose ϵ = 1

|S| , and thus ϵ = 0.166 for the TLS data (Section 2.3) and ϵ = 0.111 for the
data from Weinreb et. al (Section 2.4).

We computed the discrepancy for each method by solving the Progenitor Labeling Problem (PLP;
Problem A.1) using the dynamic programming algorithm outlined in Supplementary Section A.3.
The number of cell type transitions (Figure 3f,g) are determined by the inferred minimum discrep-
ancy labeling of the cell lineage trees.

4.9 Calculating distances for undifferentiated cells in the data from Weinreb et. al

We labeled each undifferentiated cell (cells labeled with the “undifferentiated” cell type in [30])
in the data from Weinreb et. al (Section 2.4) with the progenitor type that Carta assigns to the
ancestral cell of its star-shaped cell lineage tree – these are the labels shown in Figure 5a. We
next describe how we calculate the distance of each undifferentiated cell to the closest observed
cell type cluster in gene-expression space. First, we obtained the normalized counts for 25289
genes across all cells in this dataset from the publicly available in vitro differentiation time course
data from Weinreb et. al [30] (https://github.com/AllonKleinLab/paper-data/
tree/master/Lineage_tracing_on_transcriptional_landscapes_links_
state_to_fate_during_differentiation). We then removed cells with counts = 0
or counts >1, 000, 000 and performed principal components analysis with n = 50 components.
We next calculated a 50 PC centroid for each observed cell type by averaging across the PC
values of cells of that type, and then calculated the euclidean distance in PC values between each
undifferentiated cell and each centroid. Finally, in Figure 5c, for each observed cell type cluster,
we calculated the proportion of undifferentiated cells labeled with each progenitor cell type by
Carta that is closest to that cluster.
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A Supplementary Information
A.1 Definition of discrepancy

Let T := {T1, . . . , Tm} be m cell lineage trees, each describing the cell division history of a distinct
biological replicate that belong to the same developmental system. Let FS be a cell differentiation
map for the set S of observed cell types. FS is a directed graph whose vertices represent observed
cell types and unobserved progenitors – and are labeled by either an elements of S or a subset of
S – and whose edges represent cell type transitions that occurred during development.

We first define a progenitor labeling ℓ that, for a given cell differentiation map FS , labels the cells
(vertices of T) with cell types (vertices of FS). Let ℓt denote the cell type labeling of the leaves of
cell lineage trees T. The progenitor labeling must follow constraints imposed by the differentiation
map and cell lineage trees. First, the progenitor type of a cell must contain the cell types of the
descendants of the cell in the cell lineage tree. More formally, we require that for each vertex v of
tree T ∈ T, ℓ(v) ⊇ B(v), where B(v) is the set of observed cell types of the leaves in the subtree
of T rooted at vertex v. Second, since the cells differentiate under the model described by the cell
differentiation map FS , for any edge (u, v) ∈ ET in a lineage tree T ∈ T, there must be a directed
path from the progenitor ℓ(u) to the progenitor ℓ(v) in the cell differentiation map FS . We formally
describe these conditions on the progenitor labeling as follows.

Definition A.1. A progenitor labeling ℓ is compatible with a cell lineage tree T and a cell differ-
entiation map FS = (PS, EF ) if and only if (i) ℓ(v) ∈ P for each vertex v of T ; (ii) ℓ(v) ⊇ B(v)
for each vertex v of T ; (iii) there is a directed path from ℓ(u) to ℓ(v) in FS for each edge (u, v) in
T .

For cell lineage trees T and a cell differentiation map FS , there may be multiple compatible pro-
genitor labelings ℓ. Each compatible labeling ℓ induces a discrepancy D(T, FS, ℓ) between the
trees T and the map FS which arises from two limitations of current lineage tracing data.

First, all of the observed cell types in the potency of each cell will not necessarily be observed
in each cell lineage. This may lead to a mismatch between the potency ℓ(v) of an ancestor cell v
and the observed cell types B(v) of its descendants. We quantify this mismatch by the sampling
discrepancy Ds(T, FS, ℓ) which penalizes the absence of feasible cell types in the descendants of
a progenitor as,

Ds(T, FS, ℓ) =
∑
T∈T

∑
v∈V (T )

∑
t∈ℓ(v)

1(t /∈ B(v))ws(t),

where ws(t) is the weight associated with cell type t that can reflect the relative sampling abun-
dance of different cell types. In this work, we use ws(t) = 1 for all t.

Second, instances in which cell divisions that are accompanied by a differentiation event are not
resolved in the inferred cell lineage tree will lead to discrepancy Dr(T, FS, ℓ) between the observed
and the true transitions between cell types during development. We call this resolution discrepancy
and quantify it as,

Dr(T, FS, ℓ) =
∑
T∈T

∑
(u,v)∈ET

1((ℓ(u), ℓ(v)) /∈ EF )wr(ℓ(u), ℓ(v))
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where wr(P, P
′) is the weight associated with cell type transition (P, P ′) that can reflect the likeli-

hood of that transition occurring. We introduce a parameter λ to reflect the relative likelihood of the
occurrence of sampling and resolution discrepancies, and define the total discrepancy D(T, FS, ℓ)
as follows.

D(T, FS, ℓ) = Ds(T, FS, ℓ) + λDr(T, FS, ℓ).

We refer to the problem of finding a progenitor labeling ℓ that induces the minimum discrepancy
between cell lineage trees T and cell differentiation map FS as the Progenitor Labeling Problem
(PLP), which we define as follows.

Problem A.1 (Progenitor Labeling Problem (PLP)). Given a set T of cell lineage trees and cell dif-
ferentiation map FS , find a progenitor labeling ℓ that is compatible with T and FS , and minimizes
the discrepancy D(T, FS, ℓ).

This is an analog of the small parsimony problem [75], and we show that this problem can be
solved by a dynamic program by adapting Sankoff’s algorithm [76] (Supplementary Section A.3).

We define the discrepancy D(T, FS) between cell lineage trees T and a cell differentiation map FS

as

D(T, FS) = min
ℓ∈C(T,FS)

D(T, FS, ℓ) = min
ℓ∈C(T,FS)

Ds(T, FS, ℓ) + λDr(T, FS, ℓ). (1)

where C(T, FS) is the set of progenitor labelings that are compatible with cell lineage tree T and
cell differentiation map FS . As discussed, naively minimizing the discrepancy may lead to in-
ference of a large cell differentiation map with false positive progenitors and cell type transitions
(Figure 1c). To prevent this, we impose constraints on the size of the cell differentiation map.
Specifically, we find a cell differentiation map with k progenitors, and k′ edges (cell type transi-
tions) that has the minimum discrepancy with given cell lineage trees T.

The discrepancy D(T, FS) between cell lineage trees T and a cell differentiation map FS depends
on the choice of λ (Equation 1), which reflects the relative likelihood of the sampling and the
resolution discrepancies. Most current lineage tracing technologies, such as CRISPR-Cas9 based
lineage tracers [28, 39, 40], utilize a limited number (10-30) of sites where mutations are induced
and each site can acquire only one mutation along a lineage in the cell lineage tree. This limits the
depth and resolution of the reconstructed cell lineage tree, leading to several resolution discrep-
ancies. In contrast, a sampling discrepancy of a cell type in the potency of a progenitor cell only
occurs when none of the descendants with that cell type are sequenced. Given the high throughput
(thousands of cells) [28, 30, 36] of current lineage tracing technologies, this makes the occurrence
of resolution discrepancies much more likely compared to sampling discrepancies. As such, in this
study, we set the parameter λ = 0 to reflect the relative likelihood of the two kinds of discrepancies.

A.2 Carta: mixed integer linear programming (MILP)

A.2.1 Carta-DAG MILP formulation

To solve the CDMIP problem, for a given cell lineage trees T the Carta-DAG MILP finds a cell
fate map FS with k progenitor cell types and the progenitor labeling ℓ with the minimum induced
discrepancy Ds(T, FS, ℓ).
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Progenitor labeling We start by introducing binary variables xp,t for p ∈ {1, . . . , k} and t ∈ S
to represent the set of k progenitors in the cell fate map, such that xp,t = 1 if cell type t is in
the potency of progenitor p and xp,t = 0 otherwise. The assignment of each vertex to one of
the progenitors is encoded by binary variables yv,p for each vertex v in cell lineage tree T and
progenitor p, such that yv,p = 1 if v is labeled by p. Since each vertex v can only be labeled by one
progenitor, we enforce the following constraint for each vertex v.

k∑
p=1

yv,p = 1.

Compatibility constraints We must enforce constraints to ensure compatibility of the progenitor
labeling with the cell lineage tree and the cell fate map (Definition A.1). We require that (i) if vertex
v is labeled by progenitor p then p must have the potency for all the cell types in B(v) and (ii) for
each edge (u, v) in each tree T ∈ T, progenitor ℓ(v) is reachable from progenitor ℓ(v) in FS .

We introduce continuous variables zv,t ∈ [0, 1] for each vertex v of each tree T ∈ T and cell type
t to indicate if cell type t belongs in the potency of progenitor ℓ(v). Specifically, we introduce
constraints to ensure that zv,t = 1 if t ∈ ℓ(v) and zv,t = 0 otherwise. We achieve this by enforcing,

zv,t ≥ xp,t + yv,p − 1, for all p ∈ {1, . . . , k},

each vertex v and cell type t to make sure that zv,t = 1 if xp,t = 1 and yv,p = 1 for some progenitor
p. Note that we do not need to introduce additional constraints to bound zv,t from above since
minimizing the sampling discrepancy will ensure that zv,t = 0 if either xp,t = 0 or yv,p = 0 for all
p ∈ {1, . . . , k}.

We ensure that the progenitor label of each vertex v contains B(v) by encoding the following
constraints,

zv,t = 1, if t ∈ B(v).

Further, for each edge (u, v) of T ∈ T, we introduce the following constraints that ensure that the
progenitor label of u contains the progenitor label of v,

zu,t ≥ zv,t, for all t ∈ S.

Objective function Our goal is to find a cell fate map that minimizes D(T, FS) for cell lineage
trees T. This is equivalent to finding a cell fate map FS and progenitor labeling ℓ such that the
induced discrepancy Ds(T, FS, ℓ) is minimized. In the case of λ = 0, we only need to minimize
the induced sampling discrepancy which can be described in terms of variables zv,t as,

Ds(T, FS, ℓ) =
∑
T∈T

∑
v∈V (T )

∑
t∈S−B(v)

ws(t)zv,t

where ws(t) is the penalty of not sampling cell type t. Note in this work we use ws(t) = 1 for all t.
We minimize the above objective in the MILP that has O(n|S| + |S|k) binary variables, O(n|S|)
continuous variables and O(n|S|k) constraints, where n is the total number of vertices across all
cell lineage trees.
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A.2.2 Carta-tree MILP formulation

To solve the CDTIP problem (Problem 4.3), we show that there is an equivalence (Theorem A.1)
between the CDTIP problem (Problem 4.3) and the Weighted Insertion Flip Problem (WIFP)
(Problem A.2) (see Supplementary Section A.4). We thus formulate an mixed integer linear prob-
lem (MILP) for the WIFP problem to solve the CDTIP problem.

We introduce binary variables a′i,j for each row i and column j to encode the binary matrix A′.
Since we only allow 0 → 1 flips, we enforce that a′i,j = 1 if ai,j = 1 using the following constraint,

a′i,j = 1, if ai,j = 1.

We require that A′ must admit a perfect phylogeny. We use the set inclusion and disjointness (SID)
formulation described in Chimani et al. [82]. This formulation uses a characterization of perfect
phylogeny matrices that states that for any two columns, we require the 1-sets, i.e. set of rows i
such that a′i,j = 1, of any two columns should either be disjoint or related by containment [83]
(Theorem A.3). We introduce continuous variables yj,j′ and zj,j′ for each pair of columns j and
j′. We force yj,j′ = 0 if the 1-set of column j is not contained in 1-set of column j′ using the
following constraint for each row i,

yj,j′ ≤ 1− a′i,j + a′i,j′ .

Along the same vein, we enforce zj,j′ = 0 if the 1-set of column j is not disjoint with 1-set of
column j′ using the following constraint for each row i,

zj,j′ ≤ 2− a′i,j − ai,j′ .

Finally, we enforce that for any two columns j and j′, at least one of yj,j′ , yj′,j and zj,j′ must be 1
using the following constraint.

yj,j′ + yj′,j + zj,j′ ≥ 1.

We penalize the weighted sum of the 0 → 1 flips by minimizing the following objective function,∑
{(i,j):ai,j=0}

ws(j)a
′
i,j.

A.3 Dynamic programming algorithm to solve the PLP problem

We consider a single tree T ∈ T. For differentiation map FS , let Ds(T (v), F, ℓ(v)) be the number
of discrepancies in the subclade of T rooted at vertex v if it has progenitor label ℓ(v) ∈ FS . For
each v that is a leaf of T , we initialize Ds(T (v), FS, ℓ(v)) as 0 if the observed state at v is ℓ(v) and
∞ otherwise.

The recurrence relation is:

Ds(T (v), FS, ℓ(v)) =

∞ if ℓ(v) ̸⊇ B(v)

|ℓ(v)| − |B(v)|+
∑

v′∈C(v) min
ℓ(v)⊇ℓ(v′)

Ds(T (v
′), FS, ℓ(v

′)) otherwise
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Where C(v) denotes the direct descendants of v in T .

We can then find the total discrepancy over all cell lineage trees as D(T, FS) =∑
T∈T min

ℓ(r)
Ds(T (r), FS, ℓ(r)) where r is the root of T .

The labeling ℓ that minimizes Ds(T, FS, ℓ(v)) for each tree T can then be acquired by taking a
subsequent top-down pass through T as in Sankoff’s algorithm. Start by labeling r as ℓ(r) =
min
ℓ(r)

Ds(T (r), FS, ℓ(r)). Then for each vertex v′, let ℓ(v) be the chosen progenitor label of parent

v in T , and take ℓ(v′) as min
ℓ(v)⊇ℓ(v′)

D′
s(T (v), FS, ℓ(v

′)).

This algorithm operates in O(nm) time, where n is the number of vertices across all cell lineage
trees in T and m is the number of vertices in FS .

A.4 Equivalence of Cell Differentiation Tree Inference Problem and the Weighted Insertion
Flip Problem

To derive a characterization of cell differentiation trees (cell differentiation maps constrained to
have tree structures), we draw a connection to two-state perfect phylogenies [84]. Specifically, we
show that the Cell Differentiation Tree Inference Problem (Problem 4.3) is equivalent to a weighted
version of the Minimum Insertion Flip Problem [85].

We begin by showing that when the cell differentiation map is a tree, the Progenitor Labeling
Problem (PLP) (Problem A.1) can be solved more efficiently than in the general case when the cell
differentiation map is a directed acyclic graph (DAG). The Progenitor Labeling Problem (PLP) is a
special case of the small parsimony problem in phylogenetics [75] and can be solved using dynamic
programming by adapting the Sankoff’s Algorithm [76] (details in Section A.3). However, when
the cell differentiation map is a tree, the PLP problem can be solved even more efficiently by
labeling each vertex v of the cell lineage tree T by the smallest feasible progenitor. This labeling
ℓ̂p is obtained if we label each vertex v by the lowest common ancestor (LCA) of the cell types in
the observed potency B(v) in the cell differentiation tree FS . More formally, we have the following
lemma.

Lemma A.1. Given lineage trees T and a cell fate tree FS , the progenitor labeling ℓ̂p that labels
each vertex v by the lowest common ancestor (LCA) of the observed potency B(v) in FS yields the
minimum induced discrepancy, i.e. D′(T, FS, ℓ̂p) = D(T, FS).

The proof for this lemma is given in Supplementary Section A.6.1.

Next, we derive the constraints on the set of progenitors in a cell differentiation tree. Specifically,
we show that the set of progenitors in a cell differentiation tree must be laminar, i.e. the potencies
of each pair of progenitors are either disjoint or related by containment.

Lemma A.2. The set P of progenitors in a cell differentiation tree FS is laminar, i.e. for any two
distinct progenitors P and P ′, either P ∩ P ′ = ∅ or P ⊂ P ′ or P ′ ⊂ P .

The proof for this lemma is given in Supplementary Section A.6.2.

Laminar set families are closely connected to perfect phylogenies [84]. A phylogeny is a tree
whose leaves represent the extant taxa and the internal vertices represent ancestral taxa, and is
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called a perfect phylogeny if each character changes states according to the infinite sites model [86].
Specifically, each character is allowed to change from state 0 to state 1 exactly once and never
changes from state 1 to state 0 along the edges of the phylogeny. The taxa can be represented
by a binary matrix, called the character matrix, where each row is a taxon and each column is a
character. It has been shown that a character matrix admits a perfect phylogeny if and only if the
sets of taxa with state 1 for each character form a laminar family of sets [84]. As such, not all
character matrices will admit a perfect phylogeny and a standard problem in phylogenetics, called
the Minimum Flip Problem [85], is to find the smallest number of flips (both 0 → 1 and 1 → 0)
that must be made in a given character matrix for it to admit a perfect phylogeny. When only
0 → 1 flips are allowed, this problem is referred to as the Insertion Flip Problem (IFP) [85, 87].
We formally pose the weighted version of the IFP problem as follows.

Problem A.2 (Weighted Insertion Flip Problem (WIFP)). Given a m × n binary matrix A, find
binary matrix A′ by only doing 0 → 1 flips such that the following weighted sum of the flips

n∑
i=1

m∑
j=1

wf (j)(a
′
j,i − aj,i)

is minimized, where wf (j) is the weight associated with flipping an entry in row j.

The IFP problem is a special case of the WIFP problem where wf (j) = 1 for all rows j ∈
{1, . . . ,m}.

We derive a connection between the CDTIP problem (Problem 4.3) and the Weighted Insertion
Flip Problem (WIFP) using Lemma A.1 and Lemma A.2. Specifically, we show that any instance
of the CDTIP problem can be transformed in polynomial time to an instance of the WIFP problem.

Theorem A.1. The CDTIP and WIFP problems are m-equivalent, i.e. these problems are polyno-
mial time mapping reducible to each other.

The proof for this theorem is given in Supplementary Section A.6.3.

Theorem A.1 implies that algorithms and heuristics that have been developed to solve the WIFP
problem [87, 88] can be used to solve the CDTIP problem.

A.5 Characterizing the complexity of the CDTIP and CDMIP problems

Since it has been shown that the IFP problem is NP-complete [85], as a corollary of Theorem A.1,
we have that CDTIP problem is also NP-complete.

Corollary A.1. The CDTIP problem is NP-complete.

Interestingly, since the CDTIP problem minimizes the discrepancy between multiple trees, namely
the cell lineage trees T and the cell differentiation tree FS , it belongs to the large class of problems
called the Tree Reconciliation Problem [89]. In the Tree Reconciliation Problem, the discrepancy
between trees is quantified using a mapping between the vertex sets of the trees, which in our case
is the progenitor labeling ℓ.

Using a parsimonious reduction from the Minimum Vertex Cover problem [90], we also show that
the more general CDMIP problem, where the cell differentiation map is a directed acyclic graph,
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is also NP-hard and counting the number of solutions of the CDMIP problem, which we refer to
as the #CDMIP problem, is #P-hard.

Theorem A.2. The CDMIP problem is NP-hard and the #CDMIP problem is #P-hard.

The proof for this theorem is given in Supplementary Section A.6.4.

A.6 Proofs

A.6.1 Proof for Lemma A.1

Here, we provide a proof for Lemma A.1. Specifically, we show that for a given cell lineage tree
T and cell fate tree FS , the progenitor labeling ℓ̂p that labels each vertex v by the lowest common
ancestor (LCA) of the observed potency B(v) in FS yields the minimum induced discrepancy, i.e.
D′(T, F, ℓ̂p) = D(T, F ). Recall that observed potency B(v) for a vertex v of lineage tree T is
defined by the set of cell types of the leaves in the subtree of T rooted at v. We re-state Lemma A.1
here for completeness and then provide the proof.

Lemma A.1. Given lineage trees T and a cell fate tree FS , the progenitor labeling ℓ̂p that labels
each vertex v by the lowest common ancestor (LCA) of the observed potency B(v) in FS yields the
minimum induced discrepancy, i.e. D′(T, FS, ℓ̂p) = D(T, FS).

Proof. Since each vertex is labeled by the smallest feasible set of cell types that contains the
observed potency, labeling ℓ̂p clearly minimizes the sampling discrepancy which penalizes the de-
viation of the progenitor from the observed potency. To complete the proof, we must show that
progenitor labeling ℓ̂p is compatible with the cell lineage tree T and cell fate tree FS (Defini-
tion A.1). There are three conditions of compatibility. By definition of ℓ̂p, it is clear the ℓ̂p satisfies
condition (i), which states that ℓ̂p(v) must be a progenitor in the cell fate tree FS for each vertex
v, and condition (ii), which states that ℓ̂p(v) must contain B(v) for each vertex v. We now show
that ℓ̂p satisfies condition (iii), which states that ℓ̂p(u) must contain ℓ̂p(v) for each edge (u, v) in
T . Since (u, v) is an edge of T , we have B(u) ⊃ B(v). Since FS is a tree, this implies that
lowest common ancestor of B(u) precedes the lowest common ancestor of B(v). Therefore, ℓ̂p(v)
is reachable from ℓ̂p(u) in FS .

A.6.2 Proof for Lemma A.2

Here we show that the progenitors in a cell differentiation tree are laminar, i.e. the potencies for
each pair of progenitors are either disjoint or related (Lemma A.2). For completeness, we restate
the lemma here and then provide a proof.

Lemma A.2. The set P of progenitors in a cell differentiation tree FS is laminar, i.e. for any two
distinct progenitors P and P ′, either P ∩ P ′ = ∅ or P ⊂ P ′ or P ′ ⊂ P .

Proof. We prove this by contradiction. Suppose there are two progenitors P and P ′ that are neither
disjoint nor related by containment. Then, there exists distinct cell types a, b and c such that
a ∈ P \ P ′, b ∈ P ∩ P ′ and c ∈ P ′ \ P . By definition of cell differentiation map there must exist
a path from progenitor S (totipotent cell) to {b} going through P and a path from S to {b} going
through P ′. Since P and P ′ are not related by containment, this violates the premise that FS is a
tree.
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A.6.3 Proof for Theorem A.1

As we have seen in Lemma A.1 that the labeling ℓ̂p(v) that induces the minimum discrepancy
between a cell fate tree FS cell lineage tree T completely characterized by the observed potency
B(v). We use this property to show that the WIFP and the CDTIP problems are equivalent.

We start by stating the following well-known characterization of perfect phylogeny matrices [83].

Theorem A.3. Suppose A ∈ {0, 1}n×m is a binary character-matrix and I(j) := {i : ai,j = 1, i ∈
[n]} is the set of indices of the ‘1’ entries in the j th column of A. A admits a perfect phylogeny
if and only if for each pair j, j′ of characters, either: (i) I(j) ⊆ I(j′); (ii) I(j′) ⊆ I(j); or (iii)
I(j) ∩ I(j′) = ∅.

This theorem states that the a binary matrix A is a perfect phylogeny matrix if and only if the
one-sets I(j) of the columns j ∈ {1, . . . ,m} of A are laminar.

We restate the theorem for completeness and then proceed with a proof.

Theorem A.1. The CDTIP and WIFP problems are m-equivalent, i.e. these problems are polyno-
mial time mapping reducible to each other.

Proof. We start by showing a polynomial-time reduction from the WIFP problem to the CDTIP
problem.

Let m × n binary matrix A and weight function wf form an instance of the WIFP problem. We
build a corresponding instance of the CDTIP problem as follows. We start with constructing a cell
lineage tree T . T has a root r with n children v(1), . . . , v(n), each corresponding to a row of A.
Vertex v(i) has one child v(i,j) for each column j in A such that aj,i = 1. As such, the tree T has
one leaf for each entry (j, i) of A such that aj,i = 1. The set S of observed cell types is given by
{1, . . . ,m} where m is the number of columns of A. We construct a weight function ws for the
sampling discrepancy such that ws(j) = wf (j) for all j ∈ S. We set the number k of progenitors
as m. Clearly this construction can be performed in polynomial-time.

We now show that the constructed instance of the CDTIP problem admits a solution with discrep-
ancy at most γ if and only if there exists a solution to the WIFP problem with total weight of flip
of at most γ.

(⇒) Let ℓ be the progenitor labeling in the solution of the CDTIP problem. We get the solution
A′ to the WIFP problem by setting a′j,i = 1 if j ∈ ℓ(v(i)). Clearly, a′j,i = 1 if aj,i = 1, because if
aj,i = 1, we have j ∈ B(v(i)) and as such j ∈ ℓ(v(i)). Therefore, A′ is derived from A using only
0 → 1. Since FS is a cell differentiation tree, the set of progenitors induced by ℓ are laminar (by
Lemma A.2). Since the progenitors induced by the labeling ℓ correspond to one-set of columns of
A′, by Theorem A.3 we have that A′ is a perfect phylogeny. Lastly, since each flip corresponds to
a sampling discrepancy and ws(j) = wf (j), the total cost of flips is equal to the total discrepancy
which bounded from above by γ.

(⇐) Let A′ be the solution to the WIFP problem. We get a corresponding solution to the corre-
sponding CDTIP problem by the progenitors induced by the labeling ℓ, where ℓ(vi) = {j : a′i,j =

1}. Since A′ is obtained from only 0 → 1 flips from A, we have ℓ(v(i)) ⊇ B(v(i)). Since the
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progenitors are given by the one-sets of columns of A′ and A′ is a perfect phylogeny matrix, by
Theorem A.3, we have that the progenitors are laminar. As such, the induced cell differentiation
map FS is a tree. Finally, we observe that the sampling discrepancy is equal to the total weight of
all the flips which is γ. This concludes the proof.

We now show a polynomial-time reduction from the CDTIP problem to the WIFP problem. Let
cell lineage tree T with n vertices, set of observed cell types S and integer k be an instance of the
CDTIP problem. We construct a m × n character matrix A for an instance of the WIFP problem
as follows. We set aj,i = 1 if cell type j is observed in the descendants of cell i. As such, the
one-set of column i is the same as the observed potency B(i) in the cell lineage tree. Additionally,
we set wf (j) = ws(j) for each cell type j. We show that there exists a solution A′ of the WIFP
problem with weighted sum γ of the 0 → 1 flips if and only if the CDTIP problem has a solution
with discrepancy γ.

(⇒) Let FS be the solution of the CDTIP problem. Let ℓ̂p be the progenitor labeling that admits
the minimum discrepancy where, from Lemma A.1, each cell i is labeled by the LCA of the cell
types B(i) in FS . We construct a solution A′ for the WIFP problem as follows. For each column
j, we get a′j,i = 1 if i ∈ ℓ̂p(j). Clearly, a′j,i = 1 if aj,i = 1 since ℓ̂p(j) ⊃ B(j). Therefore, A′ can
be obtained from A by only dong 0 → 1 flips such that the total weight of the flips is γ. Moreover,
the one-set of each column of A′ is one of the progenitors in FS Since FS is a cell differentiation
tree, from Lemma A.2 the progenitors are laminar. As such, the one-set of columns of A′ are also
laminar and therefore A′ is a perfect phylogeny matrix from Theorem A.3.

(⇐) Let A′ be the solution of the WIFP problem, i.e. A′ is a perfect phylogeny obtained from
A by performing only 0 → 1 flips such that the total weight of all the flips is γ. Since A′ is a
perfect phylogeny, the one-set of the columns of A′ are laminar and can be used to construct a cell
differentiation tree FS . We will show that FS admits a progenitor labeling such that the induced
discrepancy score is γ. Consider the progenitor labeling ℓ̂p defined in Lemma A.1 where each cell
of T is labeled by the LCA of the observed potency of the cell in FS . Since the one-set of A are the
same as the observed potency of the cells in the cell lineage tree T , the total discrepancy induced
by this labeling is γ. This concludes the proof.

A.6.4 Proof of Theorem A.2

Theorem A.2. The CDMIP problem is NP-hard and the #CDMIP problem is #P-hard.

Proof. We prove the hardness of the CDMIP problem by providing a parsimonious reduction from
the vertex cover problem [91]. In particular, given a G = (V,E) and a positive integer k ∈ N,
the vertex cover problem asks if there exists a cover C ⊆ V of size at most k such that each edge
e ∈ E has at least one endpoint in C.

Let G = (V (G), E(G)) and k ∈ N be an instance of the vertex cover problem. We assume that
there are strictly more than k vertices and k edges in G, since otherwise, there is a trivial vertex
cover of G. We construct a lineage tree T with the following vertex set V (T ), edge set E(T ), and
leaf labeling ℓt:

• A root vertex r ∈ V (T ).

• |E(G)||V (G)| children of r named v(i) ∈ V (T ) where v ∈ V (G) and i ∈ {1, . . . , |E(G)|}.
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• |E(G)| children of r named e ∈ E(T ) where e ∈ E(G).

• |V (G)|−1 children of each v(i) ∈ V (T ) named cuvi ∈ V (T ) where u ̸= v and ℓt(c
u
vi) = {u}.

• |V (G)| − 2 children of each e ∈ V (T ) named cue ∈ V (T ) where u /∈ e and ℓt(c
u
e ) = {u}.

The constructed tree T has depth 3, |E(G)||V (G)| + |E(G)| + 1 internal vertices,
|E(G)||V (G)|(|V (G)| − 1) + |E(G)|(|V (G)| − 2) leaves, and cell type set S = V (G). Now,
we will prove that there exists a vertex cover C of G of size at most k if and only if there exists
a labeling ℓ : V (T ) → PS of T with discrepancy at most (|V (G)| − k + 1)|E(G)| such that i)
ℓ(u) ⊇ ℓ(v) for all (u, v) ∈ E(T ) and ii) there are at most k + 1 distinct labels ℓ(v).

(⇒) Suppose G has a vertex cover C of size k. Define the labeling ℓ as

ℓ(v(i)) =

{
S if v /∈ C,

S − {v} otherwise
and ℓ({u, v}) = S − {u} where u ∈ C,

where ℓ(r) = S. This is a valid labeling since it satisfies property i) and C is a vertex cover, which
means ℓ({u, v}) is well- defined. Further, it uses at most k + 1 distinct labels as the size of C is
less than or equal to k. The discrepancy of ℓ at the root is 0, the discrepancy of ℓ at each vertex
e is 1, the discrepancy of ℓ at each vertex v(i) where v ∈ C is 0, and the discrepancy of ℓ is 1 at
every other vertex v(i). Thus, the total discrepancy is |E(G)| + (|V (G)| − k)|E(G)|, proving the
first direction of the theorem.

(⇐) Let ℓ : V (T ) → PS be a labeling satisfying i) and ii) with discrepancy at most (|V (G)| − k+
1)|E(G)|. Define the set C as

C = {u ∈ S − ℓ(v) | v ∈ V (T ), ℓ(v) ̸= S, v is internal}.

We will show that C is a vertex cover for G of size at most k. First, suppose that ℓ({u, v}) =
S − {u, v} for some vertex {u, v} ∈ V (T ). Then, since there are at most k + 1 labels of ℓ and
ℓ(r) = S, there are at most k − 1 labels of the form S − {u}. However, this implies that at least
(|V (G)| − (k− 1))|E(G)| vertices v(i) are labeled by S, contradicting the fact that ℓ has the stated
discrepancy. Thus, ℓ(v) has the form S or S−{u} for all internal vertices v ∈ V (T ). This implies
that the size of C is at most k.

Now, we will show that C is a vertex cover of G. To see this, observe that the discrepancy of all
vertices v(i) is at least (|V (G)|−k)|E(G)|, since there are only k distinct labels of the form S−{u}.
By the stated discrepancy bound, the total discrepancy of the vertices e can be at most |E(G)|.
However, since the discrepancy of each vertex e is at least 1, this implies that ℓ(e) = S − {u} for
some u ∈ e, proving that C is a vertex cover of G.

A.7 Additional Figures

41

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.09.611835doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.611835
http://creativecommons.org/licenses/by-nc/4.0/


M

N S

D

T P

d Fitch

MS D T P

M,T

N,S,M

Multipotent Progenitor

a Carta-tree

N M DT P

S,T

Multipotent Progenitor

b ICE-FASE

N S

N,M

N,M,S,T,D

S,T,D

0.187
0.260

0.568

0.559

0.429

0.239

0.191

0.501

0.550

0.221

0.462

0.191

0.477

0.231

M S DT P

M,T D,P

S,D,P

N,S,D,P

Multipotent Progenitor

c EvoC

N

N,M,S,T,D

N,S,M,D

M

N

S

D

T

P

NMP [513]
Neural Tube [2289]
Somite [3188]

Endoderm [233]
Endothelial [124]
PGCLC [223]

Cell Type [number]

Figure 6: Graphical representations of cell differentiation maps inferred for the TLS dataset by other
methods. (a) Carta-tree cell differentiation map. (b) ICE-FASE cell differentiation map. (c) EvoC cell
differentiation map. (d) Fitch cell differentiation map. Edge weights indicate the normalized transition
frequency from one observed cell type to another. Only edges with frequency ≥ 1

|S| = 0.166 are shown.
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Figure 7: Graphical representations of cell differentiation maps inferred for the dataset from Weinreb
et. al by other methods. (a) ICE-FASE cell differentiation map. Red indicates inferred progenitors that are
non-canonical, i.e. do not agree with the canonical model. (b) EvoC cell differentiation map. Red indicates
inferred progenitors that are non-canonical, i.e. do not agree with the canonical model. (c) PhyloVelo cell
differentiation map. Edge weights indicate the normalized transition frequency from one observed cell type
to another. Only edges with frequency ≥ 1

|S| = 0.111 are shown. (d) Fitch cell differentiation map. Edge
weights indicate the normalized transition frequency from one observed cell type to another. Only edges
with frequency ≥ 1

|S| = 0.111 are shown.

43

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.09.611835doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.611835
http://creativecommons.org/licenses/by-nc/4.0/


Figure 8: Additional metrics for simulated data. (a, d) Normalized minimum Hamming distance between
the progenitors inferred by each method to the ground-truth progenitors when the cell differentiation map is
(a) a DAG and (d) a tree. Box plots show the median and the interquartile range (IQR), and the whiskers
denote the lowest and highest values within 1.5 times the IQR from the first and third quartiles, respectively.
(b, e) Precision (the proportion of inferred progenitors that are in the ground truth cell differentiation map)
for each method when the cell differentiation map is (b) a DAG and (e) a tree. (c, f) Recall (the proportion
of progenitors in the ground truth cell differentiation map that are in the inferred set of progenitors) for each
method when the cell differentiation map is (c) a DAG and (f) a tree.
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