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Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
Pulmonary sarcomatoid carcinoma (PSC) is a rare subset of NSCLC that

accounts for about 0.5-1% of all primary lung carcinoma, and its malignant

biological behavior is more aggressive than other pathological types of lung

cancer. Recent studies have reported a variety of gene mutations associated

with the occurrence, development and treatment of PSC, especially the

mesenchymal-epithelial transition (MET) proto-oncogene alterations,

including the exon 14 (METex14) skipping mutations as well as the

amplification and overexpression of MET gene, which are associated with

molecularly targeted therapy for PSC. METex14 skipping mutation is the most

common and well-studied mutation type, occurring in about 22-31.8% of PSC

patients, while the prevalence of MET amplification is reported as 4.8-13.6%

andMET ovexpression is about 20.2%. Molecular pathology tests, including IHC

and NGS, are valuable in determining the prognosis of patients with PSC and

helping to determine the treatment. The existing clinical data have confirmed

the efficacy of MET-TKI in PSC patients with MET alteration, among which the

clinical study of Savolitinib has enrolled the largest proportion of PSC patients

and achieved relatively good efficacy, but more clinical researches are still

needed. The multi-disciplinary team may maximize the optimal treatment

options for patients with the advanced PSC.
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Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer,

accounting for approximately 85% of all lung cancer with significant heterogeneity and it

may be associated with some known and/or unknown driver gene changes (1). According

to the Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines
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in Oncology, NSCLC can be further classified into

adenocarcinoma, squamous carcinoma, adenosquamous

carcinoma, large cell carcinoma, and sarcomatoid carcinoma

(2). Twenty years ago, there were limited treatments, such as

surgery, radiotherapy and chemotherapy for advanced NSCLC,

and the overall prognosis was dismal (3). However, the

prognosis of advanced NSCLC has improved dramatically.

And one of the important reasons is the discovery of the

driver genes, their somatic genomic alterations (also known as

molecular biomarkers) includes gene mutations and fusions, and

the emergence of molecular targeted drugs (2–4). In the NCCN

guidelines, the recommended genes for genetic testing in most

patients with advanced NSCLC include ALK, BRAF, EGFR,

KRAS, MET, NTRK1/2/3, RET and ROS1. The broad genomic

testing can be used to assess mechanisms of drug resistance in

patients who have relapsed after the targeted therapies, to

distinguish primary lung cancer from intrapulmonary

metastasis, and to help determining suitability for certain

molecular-driven clinical trials (2).

Pulmonary sarcomatoid carcinoma (PSC) is a rare subset of

NSCLC that accounts for about 0.5-1% of all primary lung

carcinoma, and its malignant biological behavior is more

aggressive than other pathological types of lung cancer (5–7).

According to the World Health Organization (WHO)

Classification of Lung Tumors (2015 version), PSC is defined

as a group of poorly differentiated NSCLC containing a

component of sarcoma-like elements or true sarcomatous

areas that is currently solely based on morphological

characteristics, and is divided into five subtypes such as

spindle cell carcinoma (a carcinoma almost completely

composed of epithelial spindle cells), giant cell carcinoma (a

carcinoma almost entirely composed of tumor giant cells),

pleomorphic carcinoma (a poorly differentiated NSCLC that

contains at least 10% spindle and/or giant cells or a carcinoma

consisting only of spindle and giant cells), carcinosarcoma (a

mix of NSCLC and true sarcoma) and biphasic pulmonary

blastoma (a tumor composed of embryonal-type epithelial

elements and primitive mesenchymal stroma) (6, 8).

PSC usually occurs in older men with a history of smoking,

and its clinical symptoms are non-specific compared with other

types of NSCLC, such as cough, chest pain, hemoptysis, and

dyspnea, which makes early detection and diagnosis difficult to

some extent (5, 6). PSC has a very poor prognosis, with overall

survival (OS) and 5-year survival rate significantly lower than

other types of lung cancer. In different studies, 5-year survival for

sarcomatoid carcinoma has been reported ranging from 20.1%

to 36.1%, with less than 5% survival and less than 7 months

survival in advanced stage (5, 6). Due to the rapid progression of

PSC and its insensitivity to conventional chemotherapy agents,

previously, many patients with PSC do not have the opportunity

to receive a second-line chemotherapy or to try other novel

antitumor agents.
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Although the precise molecular characterization of PSC is

largely unexplored, many studies have found that a variety of

gene mutations may be associated with the occurrence,

development, and treatment of PSC. Several recent studies

have confirmed the mesenchymal-epithelial transition (MET)

proto-oncogene alterations in PSC, including MET exon 14

(METex14) skipping mutations and MET amplification, with

an incidence of approximately 22% and association with

molecular-targeted therapy for PSC (6). This review aims to

update the molecular pathology and clinical features of MET

gene alteration in PSC.
Wild type MET structure
and function

The MET gene is located on the long arm of human

chromosome 7q21-q31 (125kb long) and contains 21 exons.

The MET proto-oncogene encodes a membrane MET tyrosine

kinase receptor that mainly expressed in epithelial cells, also

known as hepatocyte growth factor (HGF) receptors, which have

been identified as a tumor driver gene and potential target of

NSCLC (9). MET can bind with HGF with high affinity and

induce a series of biological effects, and it is frequently associated

with and functionally supports the Epithelial-to-Mesenchymal

Transition, which is mainly manifested to stimulate cell

proliferation, survival, invasion and migration in tumors (8).

In other words, the ectopic activation of MET pathways can

drive the development, growth, and metastasis of various

malignancies, including lung cancer, breast cancer, cervical

cancer, gastric cancer and colon cancer (10).

Being structured with a 50kD a chain and a 145kD b chain

linked by disulfide bonds, MET protein also contain an N-

terminal extracellular binding domain, a transmembrane

helical domain, and an intracellular C-terminal domain with

tyrosine kinase activity (11). The extracellular domain

contains three distinct functional regions, including the

Semaphorin (SEMA) domain covering the whole a chain

and the N-terminal of some b chain, cystine-rich MET-

related domain (Plexins-semaphorins-Integrins, PSI)

containing four disulphide bonds and four immunoglobulin-

plexin transcription regions (IPT) (3). The intracellular

domain (957-1390 amino ac id res idues) af ter the

transmembrane helical domain also consists of three

regulatory regions, including the juxtamembrane (JM)

domain containing Tyr1003 and Ser985 phosphorylation

sites, the catalytic domain containing Y1234 and Y1235

phosphorylation sites, and the C-terminal multifunctional

binding region containing Y1349 and Y1356 acting as a

docking si te for adaptor proteins , which leads to

downstream signaling via phosphoinositide 3-kinase (PI3K)/

AKT (protein kinase B), signal transducer and activator of
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transcription protegins (STAT), mitogen-activated protein

kinase (MAPK), Wnt/beta-catenin, extracellular signal

regulated kinase (ERK), mammalian target of rapamycin

(mTOR)and nuclear factor-kB (NF-kB) (3, 11, 12).

HGF is the only known natural ligand of MET, and its

binding to MET leads to receptor dimerization and

phosphorylation of Y1234 and Y1235 tyrosine residues in the

kinase domain’s catalytic loop and autophosphorylation of the

carboxy-terminal bidentate substrate-binding sites 1349 and

1356, which can activates RTK-mediated downstream

signaling pathways mentioned above (3, 11). These signaling

transduction pathways are widely involved in cell proliferation,

survival, cell motility, embryogenesis, organogenesis,

angiogenesis, epithelial-mesenchymal transition and many

other important biological behaviors in normal cells (13).

MET dysfunction is considered to be one of the driver event

of lung cancer, which is often caused by gene copy number

amplification, receptor protein overexpression, genetic sequence

variations; exon 14 JM skipping mutations cause alternative

splicing variant, and MET gene fusions (14). Many studies

have reported that the frequency of MET alteration in PSC is

higher than that in other types of lung cancer. At present,

the most important MET alteration in the field of PCS is

MET overexpression, MET amplification, and METex14

skipping mutations. At the same time, routine application of

genetic testing in clinical practice can identify potential

genetic biomarkers for developing targeted treatments and

provide treatment options in addition to surgery, radiation,

and chemotherapy.
MET mutations

METmutations can be detected in 3% to 5% of patients with

non-small cell lung cancer (mainly adenocarcinoma) and occur

more frequently in PSC, and METex14 skipping mutation is the

most common and well-studied mutation type, occurring in

about 3%-4% of adenocarcinoma patients and 22% of PSC

patients (15, 16). Therefore, we will focus on the MET14 exon

skipping mutation, including the biology, genetic testing,

diagnosis and related molecular targeted therapy strategies of

METex14 skipping mutation in this section.

The molecular mechanism of METex14 skipping mutation

in NSCLCs was reported by Kong Beltran et al. in 2006 (17).

Exon 14 encodes the 47-amino acid JM domain of the MET

receptor, a key regulatory region that prevents MET

hyperactivation. When MET mutation occurs, the binding

sites for Y1003 and c-CBL are lost and the process of CBL-

mediated MET protein degradation is impaired, MET receptors

are aggregated, and MET oncogenic signals are overactivated

(18). METex14 skipping mutation is considered to be an

independent lung cancer driver, which is usually mutually

exclusive with other lung cancer driver genes such as EGFR,
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ALK and ROS1, and is also associated with poor prognosis of

lung cancer, including sarcomatoid cancer (19). Therefore, some

studies recognized the lung cancer with METex14 skipping

mutation as an independent molecular subtype and carried out

individualized treatment (20).

Compared with the common type of non-small cell lung

cancer, the incidence of METex14 skipping mutation is

significantly higher in PSC (7). It is important to improve the

sensitivity and specificity of the genetic testing for METex14

skipping mutation, which is an independent driver mutation of

NSCLC without exception for PSC and its clinical significance is

more prominent. Reverse transcriptase polymerase chain reaction

(RT-PCR) and Sanger sequencing have both been used to detect

MET mutations, but these targeted methods are rarely used

because of the efficiency of detection (21). Compared with

testing other lung cancer driver genes, such as EGFR and KRAS,

the application of NGS in the diagnosis of MET alterations is not

very efficient, especially for METex14 skipping mutation. The

main reason is that DNA sequencing can only detect the genomic

sequence alterations to predict or postulate a possible splicing

result, which will not confirm the actualMETex14 skipping event.

There are two DNA-based NGS technologies commonly

used for genetic diagnosis of tumors currently. The first

method is amplicon-based methods, which uses primers to

capture the sequences of target genes in genomic regions by

multiplex polymerase chain reaction (PCR) amplification (22).

This method has a relatively shorter detection time and can

better capture some regions that are difficult to sequence, but it is

prone to sequencing distortion for regions with small insertion/

deletions (indels), homopolymers, and allele loss. Amplicon-

based method may fail to identify all METex14 skipping

mutation, mainly because amplification primers are not

designed for high-quality sequencing and fail to capture key

mutation sites. In the case of single-nucleotide variant or small

indels in the primer region, the primers may not bind due to

mismatches, eventually leading to allele dropout (20). In

addition, the binding site of the primer may also be lost if

there is an entire deletion in the genomic region. In other words,

the location and size of the genetic alterations that cause the

METex14 skipping mutation may lead to allelic dropout and

false-negative results, which ultimately lead to a low detection

rate of METex14 skipping mutation using the Amplicon-based

method (23). Another approach is hybrid capture-based

method, which uses long biotinylated oligonucleotides to

hybridize target regions in the genome and enable flanking

regions to be sequenced (22). These probes are significantly

longer than the PCR primers used in the amplicon-based

method and thus can tolerate binding site mismatches without

interfering with target hybridization, which can avoid the

problem of allelic deletions seen in amplicon based methods

(22). Chen et al. (24) reported that hybrid capture-based method

is the preferred method to avoid common allele deletions caused

by amplicon-based assays.
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Unlike the detection mechanism of DNA NGS, RNA NGS

can detect fusion of METex13 to 15, which is a common

consequence of any altered splicing mechanism or deletion

(13). Thus, it has the advantage of theoretically detecting all

genomic events that lead to METex14 skipping mutation (15).

Subramanian et al. (22) and Socinski et al. (21) reported that the

accuracy and detection rate of RNA NGS were higher than that

of DNA NGS in the detection ofMET14 mutations. Davies et al.

(15) found that the detection rate of RNA NGS was 4.2% (17/

404) for METex14 skipping mutation, which was significantly

higher than DNA NGS (1.3%, 11/856). But there are also

problems with RNA NGS. RNA is less stable than DNA,

which limits the shelf life of the tissue. In addition,

interpretation of RNA NGS results poses challenges due to the

high variability of mRNA expression between nonmalignant and

tumor tissues (25). Teishikata et al. (26) also reported that the

differences of METex14 skipping mutation detection not only

exist between different sequencing technologies, but also

between different NGS platforms. In short, the detection of

METex14 skipping mutation by DNA NGS and RNA NGS has

its own advantages and disadvantages, and it is possible to obtain

more comprehensive and accurate information about METex14

skipping mutation by using dual-omics detection for some lung

sarcomatoid carcinomas.

As mentioned above, the incidence of METex14 skipping

mutation ranged from 22% to 31.8% in PSC, a higher mutation

rate than in other types of NSCLC (16, 27). Li et al. (28) reported

that in a study of 77 PSC patients, patients with advanced PSC

and a positive METex14 skipping mutation had a faster rate of

disease progression than patients without any driver gene

mutation, and they have a median PFS of not yet reached vs.

3.97 months during follow-up (P =0.017). Therefore, the efficacy

of molecular targeted therapy for MET is a hot topic at present,

and many clinical studies of drugs are being carried out.

Crizotinib, a multi-target TKI covering MET, has been

reported in some small retrospective studies to treat advanced

PSC with METex14 mutation. Unfortunately, these data have

not been analyzed independently from other non-small cells (5).

Capmatinib is an oral, potent, and selective MET inhibitor that

has been approved by the FDA for the treatment of NSCLC

patients with the METex14 mutation. A phase I single-arm trial

(NCT01324479) enrolled four PSC patients with METex14

mutations, including one with stable disease and three with

partial response (29). Tepotinib, the first highly selective TKI for

METex14 mutation approved for marketing in the world,

enrolled 2 patients with PSC out of 152 patients in the

VISION study (open-label, phase 2), but the trial data were

not analyzed by pathological type (30). Savolitinib is a highly

selective MET TKI, which is the first and currently the only

approved selective MET inhibitor in China. A multicenter,

single-arm, open-label, phase 2 study of savolitinib enrolled a

total of 70 patients with NSCLC who had METex14 skipping

mutation (25 of whom were patients with PSC). The mPFS of
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PSC subgroup was 5.5 months, mOS was 10.6 months, ORR was

50%, and disease control rate (DCR) was 90% (31). It is the only

MET inhibitor with PSC population data, which has brought a

breakthrough for the treatment of PSC patients.
MET amplification

MET amplification is also known as MET gene replication,

mainly acquired by chromosomal 7 or local regions duplication.

Aberrant chromosomal 7 replication, containing MET gene,

always results in segmental chromosomal polysomy. The

presence of polysomy can lead to the contiguous gene

amplification, including MET and other genes on the affected

chromosomal region. However, local amplification is usually

caused by regionally cryptic copy number gain, but not

microscopic chromosomal duplication.

Now there is no unified diagnostic criterion for MET

amplification, with different cut-offs for different detection

methods, such as immunohistochemistry (IHC), fluorescence

in situ hybridisation (FISH), quantitative Real-Time reverse

transcriptase-PCR (qRT-PCR), or NGS (Next Generation

Sequencing). However, IHC appears to be a poor screen for

MET amplification since MET IHC-positive cases may be MET

amplification negative and vice versa (32). qRT-PCR has been

used to detect MET amplification, although it isn’t well

characterized compared to FISH and NGS (33).

Traditionally,MET amplification was detected by FISH with

MET gene copy number (GCN) or the ratio of MET to

chromosome enumerating probe against chromosome 7

(CEP7). Generally, MET GCN≥5 or MET : CEP7≥2.0 is used

as the FISH criteria forMET amplification (3, 11).MET : CEP7 is

more accurate than GCN, for MET : CEP7 is able to distinguish

the true MET amplifications and MET polysomy. The degree of

amplification were categorized into three groups byMET : CEP7,

low (≥1.8 to ≤2.2), intermediate (>2.2 to <5) and high (≥5) or

low (≥1.8 to ≤2.2), intermediate (>2.2 to <4) and high (≥4) (34,

35). In general, the MET : CEP7 ≥5 was identified as an

appropriate cut-off with no overlap with other oncogenes

compared with low and intermediate groups and seems to be

the strongest predictor of MET-driven tumors (13, 36).

Additionally, the targeted therapies, like crizotinib, showed

more effective in patients with high MET amplification than

low and intermediate categories (35). Now, NGS is widely used

in detecting MET amplification. MET amplification was

commonly defined by copy number fold change of 1.8x or

more by NGS. Similar to FISH, the cut-offs may vary

significantly between different assays. The main limitation of

NGS is that the result is highly dependent on the quality of the

sample and, more importantly, the amount of non-tumor DNA

from the non-tumor cells in the sample (37).

De novo MET amplification (primary MET amplification)

occurs in about 1-5% of non-small-cell lung cancers (NSCLC),
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and acquiredMET amplification (secondaryMET amplification)

are typically identified in about 5-20% patients with oncogene-

positive NSCLC following resistance to tyrosine kinase

inhibitors (TKIs), such as EGFR TKIs (38, 39). Until now,

there was no large-scale prospective or retrospective studies of

PSC with MET amplification. The frequency of MET

amplification in PSC has rarely been reported. Mignard et al.

(40) reported MET amplification in about 8.5% of PSC patients,

Tong et al. (41) about 13.6%, and Liu et al. (42) about 4.8%.

These variations may depend on the sample size and different

methods used in each study.

MET amplification is a type of confirmed mechanisms of

acquired resistance to EGFR-TKIs and ALK inhibitors in

NSCLC (43). Several case reports of MET amplification with

PSC have been published. Wang et al. reported a 74-year-old

female PSC patient with co-existing mutation in exon 21 L858R

of EGFR andMET amplification at diagnosis (44). Combination

of EGFR and MET inhibitors, gefitinib and crizotinib,

respectively, were used. The patient acquired a partial response

and remained stable for 9.7 months after terminated treatment.

This observation highlights the importance of genetic testing

and paves the way for combined targeting strategies in PSC. This

was the first reported case of PSC patient with concurrent EGFR

mutation and MET amplification prior to treatment, who may

benefit from combination EGFR and MET inhibitors.

He et al. (44) Reported that a 62-year-old male patient

carrying two rare EGFR mutations, exon 18 L719S and exon

19 L797S. After application of afatinib for 6 months, the patient

experience disease progression. NGS found new acquired MET

amplification with original mutations of EGFR exon 18 L719S

and exon 19 L797S. Then the patient was treated with afatinib

combined with crizotinib, with a result of a partial response of

the disease. Combined therapies may be efficient for the MET

amplification PSC patients with concurrent mutation of other

oncogenes or secondary to resistance of previous treatment of

TKIs. More large-scale clinical trials are required to confirm

the findings.
MET overexpression

MET ovexpression is thought to be one of the earliest MET

dysregulation event in oncogenic process. MET can be found

transcriptionally overexpressed in the presence of hypoxia and

inflammation, thereby activating proliferation, reducing

apoptosis, promoting migration, these all contributing to

tumorigenesis (45). MET overexpression is present in many

types of cancers, such as epithelial, mesenchymal and

hematological malignancies. In addition, MET can be

overexpressed in cancers with activated genomic signature,

including those with primary and/or secondary MET

amplifications or METex14 skipping mutation. Until now,

MET TKIs showed little effect on patients with MET
Frontiers in Oncology 05
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Fortunately, new therapeutic targets forMET are being explored,

including biparatopic antibodies (targeting two different

epitopes on the same target protein), antibodies and

ADCs combinations.

The most commonly used detection method of MET

expression is IHC with kinds of antibodies, consisted of

monoclonal antibodies, polyclonal antibodies and antibodies to

phosphorylated MET (46). Generally, the IHC staining of MET

were always assessed by the pathologists, providing the basis for

various semiquantitative scoring systems of MET protein

expression and overexpression. The degree of MET expression

is usually quantified as a staining score from 0 to 3+ (47). IHC 1+

indicates MET expression, while MET overexpression is defined

as IHC 2+ and 3+ (47). The H-score is another typical scoring

system calculated by multiplying the percentages of cells of MET

expression with their staining intensity score, and ranging from

0 to 300 (43). The score ≥200 usually indicates MET

overexpression, but different thresholds vary between different

clinical studies (43).

MET overexpression has been reported with high

frequencies in NSCLC, ranging from 22.2-74.5%, and seems to

portend poorer prognosis (4). In contrast, studies on MET

overexpression in PSCs are limited. Liu et al. (42) found MET

overexpression in 20.2% PSCs and carried survival analysis of

MET gene alterations and protein expression in Chinese PSCs

with only surgery but no MET TKI treatment. They found that

MET amplification suffered shorter mOS, while METex14

skipping mutation and overexpression didn’t affect patients’

survival. The studies showed different prognostic value of

MET overexpression between PSCs and NSCLCs.

Xavier Mignard et al. (40) found MET overexpression as a

poor predictor of MET amplifications or exon 14 mutations in

PSCs. They reported that MET exon 14 mutations could cause

loss of ubiquitination and improve the presence of c-MET

membrane, while lack of association between them and MET

overexpression remains to be understood. These results may be

induced by the different genomic backgrounds between PSCs

and NSCLCs, or other mechanisms in the oncogenesis of MET

exon 14 mutations. The lack of clinical trials about PSCs results

in the limited understanding of the biological mechanisms,

development, diagnosis, prognosis and treatment of the

tumors (48). We are looking forward to more relevant

clinical studies.
Conclusion

PSC is a subtype of NSCLC with unique malignant biological

behavior. The symptoms are not specific, and PSC is often found

in the advanced stage. It is not sensitive to traditional

chemotherapy and radiotherapy, and the expected survival

time is short, and the prognosis is poor. It is most likely that
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the treatment of PSC should continue to follow the treatment

guidelines for advanced NSCLC. Molecular pathology tests,

including IHC and NGS, are valuable in determining the

prognosis of patients with PSC and helping to determine the

treatment of NSCLC patients. MET alterations occur more

frequently in PSC than in other types of NSCLC, and

METex14 skipping mutation is the most common type. The

existing clinical data have preliminarily confirmed the efficacy of

MET-TKI in PSC patients with MET alteration, among which

the clinical study of Savolitinib has enrolled the largest

proportion of PSC patients and achieved relatively good

efficacy, but more clinical research is still needed. The multi-

disciplinary team may maximize the optimal treatment options

for patients with advanced PSC.
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