
Bioengineered 5:2, 80–95; March/April 2014; © 2014 Landes Bioscience

 ArticLe AddenduM

80 Bioengineered Volume 5 issue 2

cOMMentArY

Artificial neural networks (ANNs)
 are a class of powerful machine

learning models for classification and
function approximation which have
analogs in nature. An ANN learns
to map stimuli to responses through
repeated evaluation of exemplars of
the mapping. This learning approach
results in networks which are recognized
for their noise tolerance and ability to
generalize meaningful responses for
novel stimuli. It is these properties of
ANNs which make them appealing
for applications to bioinformatics
problems where interpretation of data
may not always be obvious, and where
the domain knowledge required for
deductive techniques is incomplete or
can cause a combinatorial explosion
of rules. In this paper, we provide an
introduction to artificial neural network
theory and review some interesting
recent applications to bioinformatics
problems.

Introduction

Artificial neural networks (ANNs)
are statistical machine learning models
which emulate the processing technique
of biological neurons to perform function
approximation and pattern recognition
from a set of exemplars, in a way which
can generalize its mapping to new data.1-3
ANNs are finding use across a number of
domains for classification4-7 and function
approximation.8-10 Figure 1, which
plots number of bioinformatics papers
in PubMed11,12 that reference neural

networks over the period 1994 to 2009,
suggests that there is an increasing trend in
the application of ANNs to bioinformatics
problems.13

This paper begins with an introduction
to neural networks, providing a
description of what they are and how they
are used, as well as a high level description
of how they work. The advantages and
disadvantages of ANNs are discussed, and
information considered pertinent to their
practical application is presented by way of
a number of examples.

Further analysis of the literature
available on PubMed, as shown in
Figure 2, indicates that the 3 main
bioinformatics topics which reference
neural networks are:
• Gene identification/prediction (554

papers)
• Protein secondary structure prediction

(486 papers)
• Gene interaction (528 papers)

Accordingly, this review will examine
recent and interesting applications of
neural networks to these three problem
areas. Chen and Kurgan provide a review
of ANNs which focuses on protein
bioinformatics.14 The application of
ANNs to the analysis of (typically noisy)
microarrays and mass spectra is reviewed
by Lancashire, Lemetre, and Ball.15 A
general discussion of the application
of ANNs to the topics of Quantitative
structure-activity relationship (QSAR),
gene expression data analysis, protein
structure data analysis, biomarker
identification and sequence data analysis
is provided in review format by Yang.16

Biologically inspired intelligent decision making
A commentary on the use of artificial neural networks in bioinformatics

Timmy Manning1, Roy D Sleator2,*, and Paul Walsh3

1Department of Computer Science; Cork Institute of Technology; Cork, Ireland; 2Department of Biological Sciences; Cork Institute of Technology;

Cork, Ireland; 3NSilico Ltd; Rubicon Innovation Centre; Cork, Ireland

Keywords: artificial neural networks,
multilayer perceptron, bioinformatics,
protein structure prediction, gene-gene
interaction, gene identification, genome
wide association study

Abbreviations: ANNs, artificial neural
networks; MLP, multi-layer perceptron;
BP, backpropagation; TWEANNs,
topology and weight evolving artificial
neural network algorithms; NEAT,
NeuroEvolution of augmenting
topologies; CGPANN, Cartesian
genetic programming evolved artificial
neural network; BLAST, Basic Local
Alignment Search Tool; PSI-BLAST,
Position specific iterated-BLAST;
GWAS, Genome wide association
studies; ATHENA, Analysis Tool for
Heritable and Environmental Network
Associations; GENN, grammatical
evolution neural networks; HTM,
Hierarchical Temporal Memory; RBM,
Restricted Boltzmann machine; PPI,
protein-protein interaction; ROC,
receiver operating characteristic; HTM,
hierarchical temporal memory; DNN,
deep neural network; PSSM, position-
specific scoring matrix

*Correspondence to: Roy D Sleator;
Email: roy.sleator@cit.ie

Submitted: 25/10/2013; Accepted: 30/10/2013;
Published Online: 16/12/2013

http://dx.doi.org/10.4161/bioe.26997

www.landesbioscience.com Bioengineered 81

Artificial Neural Networks

Broadly speaking, the function of a
neural network is to enact a meaningful
mapping function from a stimulus
(the inputs to the neural network) to
an excepted response (the output of
the neural network).17,18 For example,
a neural network can map a nucleotide
input sequence to a scalar output that
differentiates between coding or non-
coding regions,19 or can predict how a
peptide chain will twist and turn based
on the physical properties of the amino
acids and their interactions.20 In principle,
a neural network with a sufficiently
large number of processing elements can
approximate any continuous functional
mapping with an arbitrary level of
accuracy.21

The ANN is a machine learning
approach that has the ability to
autonomously identify and model
complex nonlinear patterns and relations
from a data set, without the need for
the context of the data, explicit domain
knowledge or operator interaction.22
The networks learn to carry out their
desired mapping using exemplars of the
inputs and expected outputs in a process
referred to as “training.”23 The difference
between the expected and actual output
of the network for a given stimulus is
referred to as the network error, and is
calculated using an error function.24 In
training, the parameters of the network
are slowly adjusted such that the error of
the network is iteratively reduced over
the set of exemplars. A properly trained
ANN will be robust and have the ability
to generalize accurate output vectors given
novel input vectors.25 However, neural
networks operate as a black-box; how or
why an output is achieved will not be
directly interpretable.26

Architecture

Artificial neural network is an
umbrella term covering a wide variety
of graph based machine learning
approaches. Here, we limit discussion
to the common multilayer perceptron
(MLP) architecture.18,27 The perceptron
is a simple feedforward linear classifier
analogous to a single biological neuron.28

A perceptron accepts a number of input
signals and fires (produces an output)
if the combined input signal is above
a threshold. The MLP architecture
combines layers of perceptron-like
processing elements (the neurons)
connected by weighted connections (the
synapses) to produce a network capable
of dealing with complex nonlinearly
separable mappings.29 The distributed
nature of the processing which takes
place in a neural network contributes to
the robustness of the system.30,31

In the typical MLP architecture, the
neurons are grouped into layers with full
synaptic connections only between each
successive layer, as shown in Figure 3.
The first layer, referred to as the input
layer accepts the stimulus. The signal is
propagated along the synapses through the
hidden layer(s) to the output layer, where
the response of the network is presented.
An MLP can contain zero32 or more
hidden layers. The neurons of the hidden
layer have no direct connection with the
outside world, only with the preceding
and succeeding layers. Each synapse has
an associated weight, corresponding to
synaptic strength in biologic systems,33
which it uses to scale the signals passed
through it. The neural networks are
trained by adjusting these synaptic weights
to perform different mappings.34,35

The inputs to a neuron are roughly
analogous to the dendrites of a biological
neuron, and the output of the neuron is
comparable to an axon.36 The artificial
neuron and its biological counterpart are

shown graphically in Figure 4A and B
respectively.

The neurons of the input layer carry
out no processing on the values they
receive, and merely pass the input values
to the next layer along the synapses. Each
neuron in the hidden and output layers
take the sum of the values on each of its
input synapses multiplied by the weight
value associated with each synapse to
generate the “activation” of the neuron. An
“activation function” is applied to the sum
to produce the output of each neuron.37

Many of the MLP training algorithms
require the use of a differentiable
activation function for calculating weight
adjustments for hidden layer neurons. The
sigmoid is usually favored as its derivatives
and partial derivatives can be easily and
efficiently produced, which are relevant to
typical gradient descent approaches as will
be discussed later. Efficiency is important
as these values may need to be calculated
thousands or perhaps millions of times
in teaching an ANN for non-trivial
problems. An example of a sigmoidal plot
is given in Figure 5. The sigmoid maps
the activation of a neuron to a continuous
output value in the range 0 to 1 (although
the value never reaches 0 or 1).38

Additional inputs with a constant
value of 1 are connected to each hidden
and output layer neuron. These inputs are
referred to as biases. Adjusting the synaptic
weight of the bias is equivalent to moving
the center of the activation function.39

Alternative architectures to the
feedforward MLP are available. For

Figure 1. the number of bioinformatics papers in PubMed that reference neural networks,
grouped by year.

82 Bioengineered Volume 5 issue 2

example, Chen and Lukasz provide an
introduction to the application of two
prominent alternative architectures
to protein bioinformatics problems;
recurrent and radial basis function
(RBF) networks.14,40 In the generalized
form of the MLP, synaptic connections
are allowed between neurons in non-
successive layers.41

Training

There are many approaches to training
neural networks, but the most typical is
a supervised approach in which exemplars
of the input to output mappings are used
to train the network by adjusting the
synaptic weights.18 Training is an iterative
process. Weight updates can be made
based on the error of each individual
exemplar (online learning) or based on
the error of a number of exemplars (batch
learning). In each iteration;
• A set of exemplars is applied to the

network and the output recorded
• The error of the network is quantified

(using an error function)
• The weights of the synapses are then

slightly adjusted so that the error of
the network would be lower if the
same set of training instances were
re-applied

In machine learning, a single pass
through the entire training set is referred to
as an epoch. Through repeated adjustment
of the synaptic weights, the network
eventually settles on a configuration
where no slight adjustments to the weights

will result in a net decrease in the error
value across the set of exemplars.42

Gradient descent learning is one
approach to identifying how the synaptic
weights should be adjusted.43 Gradient
descent learning uses the idea of an
“error surface” which maps the error of a
network as a function of the weights.40 On
the error surface, the slope of the partial
derivative of the error of the network with
relation to the value of a single weight can
be used to identify if a weight should be
increased or decreased to lower its error
contribution.44 An example error surface
is shown in Figure 6 for a single weight
plotted against network error.

The initial values of a synaptic weight
give a point on the error function (e.g.,
0.35 in Fig. 6). The slope of the derivate
of the initial weight value is shown as the
dashed red line. A positive slope (as in
Fig. 6) indicates that the error contribution
can be reduced by reducing the weight
value slightly (moving the weight value
left along the x-axis). Conversely, a
negative slope indicates that the weight
value should be increased. By iteratively
adjusting the value of the each weight
slightly in the direction of its negative of
the gradient of the error surface, the error
produced by the network can be reduced
to a point.43 For Figure 6, the value of the
weight would be reduced gradually until
it reaches a minimum of the error surface
at a value of 0.24. At this point, any
small change to the value of the weight
should increase the error produced by the
network on the training set.

A learning rate, α, is specified to set
how much the weights are adjusted each
generation. The learning rate should be
low to allow the learning algorithm to
edge toward the optimal solution.45 A
learning rate that is too high will cause
the adjustments to overshoot minima,
making optimization difficult for the
algorithm. Of course, a learning rate that
is too low will cause slow convergence
of the weights, and perhaps lead to the
algorithm being unable to escape shallow
local minima. A momentum rate can also
be specified to increase learning speed
by increasing weight adjustment size if
consecutive adjustments are in the same
direction.46

The Feedforward
Backpropagation

Learning Algorithm

The contribution of a neuron on the
output layer to the error of the network
can be easily calculated as the difference
between the expected and actual output.
The contribution of the hidden layer
neurons to the error is more difficult
as they can may partially contribute to
the error of many neurons in successive
layers. The back propagation of errors
(backpropagation, “Back-Prop” or BP)
is a common mathematically provable
gradient descent learning algorithm which
uses differentiable activation functions to
calculate the error of neurons and produce
synaptic weights adjustments which
reduce this error.18

Figure 2. Breakdown of bioinformatics topics identified across a number of analyzed papers available on PubMed which reference neural networks.

www.landesbioscience.com Bioengineered 83

If a sigmoid activation function is
employed for the neurons of the hidden
and output layers, the error signal and
weight adjustment calculations can be
reduced mathematically to the efficient
forms given in Equations 1–4.38 For a
more in-depth discussion of how these
equations are derived, and a walk through
of the first two iterations of weight
updating for a simple example network,
see the text “Neural Networks” by Phil
Picton.47 For an output layer neuron k,
the error signal, e

k
 can be calculated using

Equation 1 as a function of the difference
between the expected output, t

k
, and the

observed output, o
k
. New values for the

synaptic weights feeding into k can then
be calculated using Equation 2.36

e
k
 = (t

k
 − o

k
)o

k
(1 − o

k
) Eq. 1

w
ik
 = w

ik
 + αe

k
x

i
 Eq. 2

Where w
ik
 and x

i
 are the weight and

input signal respectively of a single
synaptic input to the output neuron k, and
α is the value of the learning rate constant.

The error signal of a hidden layer
neuron must be considered respective
of the error of all output layer and other
hidden layer neurons to which it feeds
its own output.18,48 To calculate the error
signal, e

i
, for a hidden layer neuron i, we

first define the variable errSum as the
summation of the error of each neuron
to which i feeds its output, scaled by the
synaptic weight connecting them. The
error of i can be calculated using Equation
3, and the new synaptic weights feeding
into i can be generated using Equation 4.36

e
i
 = y

i
 (1- y

i
) * errSum Eq. 3

w
ji
 = w

ji
 + αe

i
x

i
 Eq. 4

Where w
ji
 and x

i
 are the weight and

input signal respectively of a single
synapse input to the hidden layer neuron
i, y

i
 is the output of neuron i, and α is

the value of the learning rate constant.
For a more in depth discussion of the
mathematical principles and theory of the
back propagation algorithm, the reader is
directed to the paper “Neural Networks,”
by Yang.16

An interesting variation of
backpropagation is the quick prop
algorithm.49 In quick prop, two iterations
of BP are run and the points on the
error surface are recorded. Under the
assumption that error surfaces are elliptical

in shape, quick prop uses the identified
two points to estimate where the nadir of
the error surface would be located. The
synaptic weights can then be adjusted to
jump to the expected optimized value.
For many problems, the use of quick prop
can reduce the processing power and the
number of generations required relative to
standard BP.

Stopping Criteria

A number of approaches can be used
to decide on the number of iterations
for which to run a training algorithm. A
simple approach is to continue for only
a predetermined number of generations,
normally set using domain knowledge
or experience, above which it can be
reasonable assumed no improvement
will be observed, or as the amount of
available time or resources allows.50 A
more dynamic approach is to continue
iteratively until the error on the training
set drops below a threshold specified
a priori, or alternatively, until the error
of the network over the entire training
set drops by less than a specified value
(for example 0.01%) over several
generations.51

These simple approaches are however
susceptible to “overtraining,” where the
performance observed on the training
data may not be representative of the
performance of the network on novel
data.52 As training proceeds, the training
algorithm, in an attempt to reduce
the error, may start to learn decision
boundaries which over-fit the training

data. This results in reduced error on the
training data set at the expense of the
ability to generalize to novel exemplars
from outside the training data.53 This
implies that the training data are not an
accurate gauge of the ANNs error on
novel data (resubstitution error).

To address this problem, it is common
to divide the available exemplars into two
independent sets; the training and testing
set.54 During training (on the training set),
the testing set is continually evaluated by
the network, but it is not used to affect the
weight adjustment of the synapses. The
testing set gauges the generalization ability
of the network. If the error on the testing
set increases over several epochs, while
the error on the training set continues to
decrease, it is considered an indication
that overtraining is occurring. Training
can then be stopped and the network
weights reverted to the values at which the
testing error was minimized.

The performance of the ANN on the
testing data cannot be used as an accurate
gauge of accuracy either, as the training
may have stopped at a point at which
the ANN overfits the testing data. For
this reason, a third independent set of
exemplars, referred to as the validation
set, is required to accurately measure
the ANN error.54

Training an ANN for non-trivial
problems can be computationally
expensive, perhaps requiring thousands
of updates to each synaptic weight. This
can correspond to long training times.
Florido et al. have described a method
of sampling representative exemplars

Figure 3. Structure of a typical 3 layer feed forward multilayer perceptron artificial neural network.

84 Bioengineered Volume 5 issue 2

suitable for training an ANN from data
sets. It is claimed that such a reduced (but
representative) set of training data has the
potential to improve training time and
reduce overfitting.55

Advantages and Disadvantages
of ANNs for Bioinformatics

The case for the use of ANNs can
be made by their proven successful
application to a number of challenging
problems in bioinformatics and other
domains. Here, the strengths of ANNs,
weaknesses, and reasons why they are
appealing for bioinformatics problems are
discussed.

Advantage: Generalization

Generalization in machine learning
refers to the ability of the solution to
extrapolate good outputs for unseen data or
new combinations of inputs based on what
it has been trained on. The generalization
ability of ANNs is well documented, and
is one of the strongest and most desirable
qualities for bioinformatics, although it is
a quality shared with many other machine
learning and model based approaches.

Strong generalization is a highly
desirable in many situations in the
bioinformatics domain. For example,
often experiments can produce gigabytes
of data, but diseases and conditions
can present differently in different
environments. Expression levels of a
biomarker gene, for example, may vary
depending on the age, gender, health,
race, etc. of a patient. Generating data
to cover all permutations of even these

four contributing factors may be time
consuming, expensive or just not possible
for rare conditions. Using only a sampling
of these permutations, an ANN can
often learn how these attributes affect the
observed biomarkers, and learn to correctly
classify (or at least make a very well
informed guess) as to the classification of
patients whose combination of attributes
were not covered by the training data.

Advantage: No Need
for Complete Domain Knowledge

Another appealing property of
ANNs for bioinformatics is that domain
knowledge does not need to be complete.
There are also situations where exact
solutions exist, but ANNs can be used
to estimate the desired output where
generating the exact solution is prohibitive
in terms of cost or time. Protein folding is
an example of a problem which is not fully
understood, but to which ANNs have
been applied with a good level of success.
The 3D structure of a protein can be
generated using X-ray crystallography, but
this is a very time consuming approach,
so not suitable for the vast amount of
sequences which can be generated in a
single bioinformatics experiment.

An ANN can be trained to hypothesize
protein structure based on primary
sequence alone (which can be identified
much more quickly and cheaply), given
the structure of a number of exemplars
which may have been identified using
X-ray crystallography. ANNs achieve this
success without the need to understand
the underlying mechanisms, but can
examine how known contributing factors

have affected the structure of proteins with
identified form to conjecture how a novel
chain will be affected. The application of
ANNs to protein folding is discussed in
more detail in the case studies section.

Advantages: Robust Solutions
to Complex Problems

The third main advantage of ANNs
for bioinformatics that we will discuss is
the general robustness of the solutions that
can be produced and the complexity of
the problems to which it can successfully
be applied. We demonstrate these points
collectively by considering an example of
how neural networks have been applied to
microarray data.

Generic microarrays covering a large
number of genes can have a low statistical
power due to the small sample sizes (number
of arrays available) and high levels of noise
(mismatch binding and contamination)
typical in microarray experiments. Genes
identified as differentially expressed in one
experiment may not appear differentially
expressed in another experiment. In fact,
it has been demonstrated that thousands
of microarray samples may be required
to define reproducible biomarkers with
confidence in some situations.56

ANNs are a technology which
has provided good performance on
microarray data in spite of the limitations
of the arrays, by using readily available
information from multiple heterogeneous
sources to place meaning on the
observed experimental results. Using the
assumption that deregulated proteins are
as a result of, or cause, deregulation of the
proteins with which they interact, Chuang

Figure 4. neurons. (A) An artificial neuron from the hidden or output layer of an MLP, and (B) a simplified depiction of a naturally occurring biological
neuron.35

www.landesbioscience.com Bioengineered 85

et al. demonstrated that the information in
protein-protein interaction (PPI) networks
can be combined with microarray data to
define more robust biomarkers.57 This
approach evaluates the aggregate behavior
of sub-networks of interacting genes
(connected within the PPI network),
allowing the relevance of genes with subtle
differential expression can be combined
to produce more reproducible and robust
biomarkers.

The CRANE algorithm is an example
of such an approach, which employs an
ANN to perform classifications based on
identified disregulated PPI subnetworks.58
The expression levels of the genes in
the subnetworks form the inputs to the
ANN. The use of these subnetworks
of related genes is shown to outperform
groups of genes selected based on
experimentally observed differential
expression alone in classification
problems. This example demonstrates
how ANNs applied in the bioinformatics
domain can:
• Consider the impact of many

attributes (capable of relatively
high dimensionality) from multiple
heterogeneous sources

• Work with multiple patterns (can use
multiple PPI networks in generating
its output, with potentially both
positive and negative biomarkers)

• Consider the impact of even low impact
attributes which may or may not even
be present.

• Can produce robust fault tolerant
solutions which, to a degree, can
handle contamination, low statistical
power, effects of machine calibration,
background noise, and repeatability of
experiments observed in the data sets,
all of which can be inherent in data
generated from generic microarrays

• As discussed earlier, gene expression
levels can also be impacted the gender,
age, race, etc. of the patient, but
this can be addressed by the strong
generalization ability of ANNs.

For a detailed discussion of the
application of ANNs to microarrays
we suggest the paper “An introduction
to artificial neural networks in
bioinformatics-application to complex
microarray and mass spectrometry

datasets in cancer studies” by Lancashire,
Lemetre and Ball.15

Disadvantage: Local Minima

Learning algorithms such as back
propagation are applied with the caveat
that solutions may only be locally as
opposed to globally optimal.59 In Figure 6
it can be seen that gradient descent starting
at the initial point on the error surface
(weight value 0.35) will adjust the weight
value to a point where the error is reduced
(weight value 0.24), but not necessarily to
the value of the weight where the error is
minimized. The point of lowest error on
the error surface is referred to as the global
minimum of the error surface and is given

by a weight value of 0.66 for the example
of Figure 6. The inability of gradient
descent algorithms to consistently identify
global minima is referred to as the local
minima problem.60,61

This problem can be lessened by
repeating training several times with
different initial weight values (and
therefore different starting points on the
error surface),62 or through processes
such as simulated annealing59 or
neuroevolution.63

Disadvantage: Selecting
the Architecture

Whereas the number of input and
output neurons is prescribed by the

Figure 5. A sigmoid function. if this sigmoid was used as an activation function, the activation of
the neuron would be a value on the x-axis and the corresponding output of the neuron is mapped
to the y-axis.

Figure 6. An example of a simulated error surface. the value of a weight (on the x-axis) plotted
against the error of the network (the y-axis). the solid red line represents the initial value of a
synaptic weight. the dashed red line represents the slope of the error. the green line is a locally
minima, a locally optimal weight value. the blue line is the globally optimal value for the weight at
which the error contribution is minimized.

86 Bioengineered Volume 5 issue 2

cardinality of the required mapping, the
number of hidden layers and the number
of neurons in each hidden layer is dictated
by the complexity of the problem, and
is typically empirically defined.64-66
Although this is still considered an
unsolved task, Xu and Chen overview
several opinions and approaches to the
selection of appropriate architectures.67 If
too few neurons are present the potential
complexity of the decision boundaries
produced by the network will be limited
(“under-fitting”),68 while too many
neurons will encourage the network to
overtrain by allowing overly intricate
decision boundaries.69

One approach to this problem is
neuroevolution; the use of evolutionary
algorithms to discover good neural
network architectures in an automated
fashion.70 These evolutionary algorithms
are not guaranteed to find the optimal
solution, but should find a good solution
in a reasonable amount of time.71 Topology
and weight evolving artificial neural
network (TWEANN) algorithms such
as the NeuroEvolution of Augmenting
Topologies (NEAT)63 and Cartesian
Genetic Programming Evolved Artificial
Neural Network (CGPANN)72 variations
have recently shown good performance on
bioinformatics data sets.73-75

Disadvantage: Not Always
the Best Approach

In comparative analyses, ANNs
generally perform well, but do not
necessarily offer the best performance.
For example, in the paper “Why neural
networks should not be used for HIV-1
protease cleavage site prediction” it is
demonstrated that although ANNs are
capable of classifying linearly separable
data, superior performance is achieved by
linear classifiers when applied to linear
problems.76

Additionally, alternative machine
learning approaches exist which have
proven more effective than ANNs on
a number of problems. Isroy et al. have
performed a survey of papers dealing with
machine learning based classification from
three bioinformatics journals over 2010
and 2011.77 It was observed that, of the
papers surveyed, 13% employed artificial
neural networks, while 57% employed
Support Vector Machines (SVM). The
findings of Isroy et al. are presented in
Table 1.

Chan et al. compared the relative
performance of the MLP and two SVM
variations in terms of receiver operating
characteristic (ROC) and sensitivity
at set specificity levels on a glaucoma

diagnosis data set.78 The approaches are
evaluated using the full set of attributes
and a reduced set identified using
principal component analysis (PCA).
The results (presented in Table 2) show
the SVM out-performing the MLP on
this problem.

ANNs are however still a very powerful
tool, and numerous papers can be identified
where the ANN matches or outperforms
the SVM approach. Chowdhury et al.,
for example, in describing the CRANE
algorithm discussed previously, argue that
how ANNs deal with sub-patterns makes
them better suited to that problem than
SVMs.58

Cho and Ryu compared the
performance of MLPs and two variations
of the SVM in combination with a
number of feature selection algorithms
on gene expression profiles.79 These
results are presented in Table 3. It is
noted that, on this data set, the MLP
consistently performed as well as or
better than the SVM approaches. The
MLP also performed favorably compared
with the self-organizing map (SOM),
decision tree (DT) and k-nearest neighbor
(KNN) algorithms (data not shown).
Further work by Cho and Won produced
similar results for Leukemia, colon and
lymphoma data sets.80

Table 1. use rates of different machine learning algorithms in a sampling of bioinformatics papers, as presented by isroy et al.75

Algorithm Percentage (2010) Percentage (2011) Percentage (2010–2011)

decision tree (dt) 26 24 26

Support Vector Machine (SVM) 51 69 57

rule Based Learning 4 3 4

Artificial neural network (Ann) 10 17 13

naive Bayes (nB) 16 14 15

k-nearest neighbor (Knn) 15 17 15

Table 2. Performance of the MLP and SVM on Glaucoma diagnosis, as presented by chan et al.76

Sensitivity at specificity of

rOc area 0.9 0.75

Full MLP 0.883 0.66 0.859

Gaussian SVM 0.914 0.776 0.878

Linear SVM 0.893 0.66 0.853

PcA MLP 0.898 0.713 0.846

Gaussian SVM 0.904 0.744 0.833

Linear SVM 0.888 0.667 0.853

www.landesbioscience.com Bioengineered 87

Chang et al. directly compared the
performance of the MLP and SVM on
the classification of breast tumor images.
Their results noted that the MLP and
SVM have comparable accuracy (see
Table 4), but the SVM could be trained
much quicker.81

Implementations

There are a number of freely available
open-source ANN implementations
(in many programming languages)
available through sites such as Google
Code, Sourceforge and Github. The
WEKA project (Waikato Environment
for Knowledge Analysis) is an open-
source implementation of a library of
different machine learning algorithms.
Implementations in the R programming
language are hosted on the site http://
cran.r-project.org/.

Case Studies

In the following section, we present a
number of varied example applications of
ANNs to bioinformatics problems. We
do not advocate that these approaches
necessarily represent the best approaches
or practices, but rather they serve as

examples of how the principles of ANNs
can be applied to different real world
bioinformatics problems.

Peptide Secondary
Structure Prediction

A protein comprises of a chain or
multiple chains of amino acid residues.82
The chemical properties of the amino
acids in the peptide cause the chain
to twist and fold into a number of
regular structures to form a stable three-
dimensional conformation.83,84 It is this
three-dimensional conformation of the
chains which designate the function of the
protein.85,86 The structure of a protein is
defined at several levels;87

• Primary structure: the order of the
amino acid residues which constitute
the protein

• Secondary structure: the locations
and identities of a number of regular
local secondary structures along the
primary structure of the protein (such
as the α helix and the β strand)

• Tertiary structure: the overall three-
dimensional conformation taken by a
single peptide chain

• Quaternary structure: complexes
formed from several peptide chains

link together which act as a single
protein

Example: Sequence
Similarity Based Secondary

Structure Prediction

Rao et al.88 gave an approach to
identifying the secondary structure of a
peptide given its primary structure using an
ANN. The main idea behind the approach
is that segments of a peptide chain with
similar primary sequence are assumed
to have similar secondary structure
expressions. Under this assumption, the
secondary structures for novel amino
acid sequences can be generalized from
similar amino acid sequences with known
secondary structure classifications.

To identify the secondary structure of
an amino acid, a window of between 15
and 29 neighboring amino acids are used
as the input to a neural network. The
identity of each amino acid in the window
is encoded using 20 inputs to the network.
For a window of size W, the ANN is a
single layered MLP with W*20 input
neurons, W*2 + 1 hidden layer neurons,
and 8 output neurons representing
different structural designations. The
secondary structure classification for an

Figure 7. Generating a Q3 classification for a specific amino acid (in the dashed box) using the first Ann of PSiPred.

Table 3. comparing the performance of the MLP with the SVM on gene expression data in combination with different feature selection algorithms

Pearson Spearman euclidean distance cosine coefficient information gain Mutual information S/n ratio

MLP 97.1 70.6 97.1 79.4 72.9 62.1 94.1

SVMrBF 97.1 70.6 91.2 70.6 58.8 58.8 94.1

SVMlinear 79.4 70.6 88.2 58.8 58.8 58.8 94.1

88 Bioengineered Volume 5 issue 2

amino acid residue is therefore given as the
classification corresponding to the highest
output on the network. For example, if the
first output of the network has the highest
output, the amino acid residue under
investigation is designated as an α-helix.
If the last output of the network has the
highest value, the amino acid residue
is designated as a coil. The network is
trained using the scaled conjugate gradient
descent algorithm.89

The network was trained using data
taken from the DSSP database, which
contains peptide sequences and their
corresponding secondary structure
classifications.90 In evaluations on a single
sequence, the network achieved a Q

8
 score

of 72.3%, meaning it correctly classified
72.3% of the amino acid residues as
belonging to the correct one of the eight
possible secondary structure classes.

Example: PSIPRED

PSIPRED is an application which
predicts a proteins secondary structure
from its primary structure using a pair of
artificial neural networks trained using
BP. For a given sequence, PSIPRED uses

a “sequence profile” to examine how
highly preserved elements of the sequence
are relative to homologs and distant
homologs identified from a database.
Matching against the sequence profile is
more relevant than the sequence itself,
as functional regions of peptides tend
to display a high level of preservation,
but also as regions with high sequence
similarity identified in the database may
be purely coincidental. PSIPRED uses
position specific scoring matrixes (PSSMs)
generated as a by-product of another
program, PSI-BLAST, to present this
information to the first neural network.

BLAST is a tool for finding
homologous multiple sequence alignments
from a database for a given sequence.91 For
a sequence of length n, n − w + 1 words of
length w can be generated. The database
is then searched against each word using a
finite state machine. Words are evaluated
using a substitution matrix, and words
scoring above a threshold T are extended in
both directions. Position specific iterated
BLAST (PSI-BLAST) makes a number
of improvements over standard BLAST.92
One of the improvements is that once the
original sequence alignment is completed,
the identified similar sequences are used
to form a PSSM of size 20× n. The process
can then be repeated iteratively, where the
PSSM generated in each iteration is used
in place of the original substitution matrix.
This iterative process allows the discovery
of distant homologs from a database.

PSIPRED generates a classification for
an amino acid as one of three secondary

structure states (Q
3
); a helix, strand, or

loop.93 The Q
3
 training and testing data

are generated from the DSSP database Q
8

classifications (as used in the sequence
similarity based approach) using the
approach specified by Rost and Sander.94
To generate the Q

3
 value for an amino

acid in a given sequence, a sub-sequence
is first generated comprising the amino
acid and a window of seven amino acids to
either side.95 This subsequence is then fed
into PSI-BLAST. The values of the PSSM
generated by PSI-BLAST after three
iterations are used to generate 300 inputs
(15 × 20) to the first ANN. An additional
input is associated with each amino
acid in the window representing if that
amino acid spans the N or C terminus.
The first ANN has a single hidden layer
with 75 neurons, and 3 output layer
neurons each representing an individual
Q

3
 classification. The output with the

highest evidential response is taken as
the classification of the amino acid at
the center of the window. This process is
shown in Figure 7.

Once the first network has been
applied to classify the entire sequence, a
second neural network with 60 hidden
layer neurons and 3 outputs is used to
further refine the results.95 To classify an
amino acid in the sequence, the outputs
of the first network for the window of 15
amino acids is used as input to the second
network. Again, an additional input is
added as previously for each amino acid
in the window representing if the amino
acid spans the N or C terminus. The

Figure 8. improving the accuracy of the Q3 score using a second Ann.

Table 4. the performance of the MLP and SVM
on the task of identifying breast cancer from
image data

SVM MLP

Accuracy (%) 85.60 84.80

Sensitivity (%) 95.45 84.55

Specificity (%) 77.86 77.14

www.landesbioscience.com Bioengineered 89

output of the second network is still the
Q

3
 classification of the central amino acid,

but this network tends to be more accurate
in deciding a conformation for an amino
acid given likely conformations of its
direct neighbors. These steps are shown
graphically in Figure 8.

PSIPRED was independently
evaluated in the CASP3 (Third Critical
Assessment of Structure Prediction)
competition, where it was identified as the
top performing approach across a number
of blind evaluations.96 PSIPRED version
2.0 also performed well in CASP4.97
PSIPRED 3.2 claims to achieve an average
Q

3
 score of 81.6% (http://bioinf.cs.ucl.

ac.uk/index.php?id=779).

Gene Identification

Neural networks have previously
been applied for the categorization of
coding (exons) and non-coding (introns
and intragenic spacer data) regions of a
DNA. For an overview of eukaryote gene
prediction strategies see Sleator.98

Example: Gene Identification
Using Coding Measures

An interesting example of this is the
approach taken by Fogel, Chellapilla,
and Fogel, who construct an ANN using
neuroevolution to classify nucleotides
as coding or non-coding.99,100 This work
builds on network inputs identified by
Uberbacher and Mural for the GRAIL
application.19

As for many gene identification
techniques, the window is pre-processed
to extract features of the sequence, known
as “coding measures.”101 Coding measures
are statistical observations on the
differences in distribution and repeated
patterns of the nucleotides in coding
and non-coding regions of DNA. These
statistics present an opportune training
set for neural network architectures; an
established mapping that can be used for
training a network to differentiate coding
gene sequences on novel input. As such,
the neural network is employed to define a
nonlinear weighting for each of the coding
measures, and allowing the consideration
of how these coding measures can affect
probability when observed under various
combinations.

The “frame bias matrix” is an example
of a coding measure that works at the
nucleotide level. The frame bias matrix
works on the observation that the four
nucleotides (ACGT) have different
probabilities of being observed in the three
codon positions for both coding and non-
coding regions.102 Therefore, the presence
of specific nucleotides in codon locations
can be considered as positive or negative
indicators for the codon being in a coding
region.

The “coding sextuple word
preferences” coding measure works on the
principle that certain sextuple nucleotide
combinations can be identified which
occur more frequently in coding regions of
DNA.103 An instance of this would be the
sextuple ACCGTA in the coding sequence

C A C A C G A C C G T A C T C A C A T.
Through examining known coding and
non-coding regions, n-tuples words can be
identified which have higher probabilities
of being observed in either coding or non-
coding regions of DNA.

Many coding measures are available,
but this approach specifies the use of nine
to form the input to the ANN; 2 at the
nucleotide level and 7 at the word (n-tuple)
level.
• Frame bias matrix
• Fickett Feature
• Coding Sextuple word preferences
• Coding sextuple in-frame

word preferences
 o Word preferences in frame 1
 o Word preferences in frame 2
 o Word preferences in frame 3
• Maximum word preferences in frames
• Sextuple word commonality
• Repetitive Sextuple word

To evaluate a nucleotide, a window of
99 nucleotides is isolated. The nucleotides
in the window are pre-processed to
generate the coding measures, which are
then fed into the ANN. The network is a
fully connected MLP with 14 hidden layer
neurons and a single output representing the
derived classification. The flow of data for
this approach is demonstrated in Figure 9.
Post-processing is performed on the
output of the network to improve
performance using domain knowledge.

The synaptic weights of the ANN,
in this situation, were trained using an
evolutionary algorithm, which is itself
a nature inspired machine learning

Figure 9. classifying a nucleotide (in the dashed box) as coding or non-coding using an Ann.

90 Bioengineered Volume 5 issue 2

algorithm. In this evolutionary algorithm,
large populations of potential solutions
(in this case, sets of synaptic weights) are
created and evaluated. In each generation,
half of the potential solutions with lower
performance are purged, and the survivors
are used as the basis for a new population of
the original size. The candidate solutions
for the new population are created by
modifying a single weight from a solution
of the previous generation which showed
good performance. In this way, over many
generations useful elements of successful
solutions be propagated and increasingly
more successful networks should be
created. The large space of potential
solutions evaluated tend to produce an
optimal (if not the optimal) network
solution. 250 000 examples of coding
and non-coding nucleotides were used to
train the network, with the mean squared
error and correct classification percentages
used to select the best performing each
generation.

The performance of this ANN based
approach to gene identification was
evaluated on two sets of human DNA
sequences taken from GenBank. It has
been reported that the network classified
the majority of coding nucleotides
correctly with sensitivity (the ratio of true
positives to the number of true positives
and false negatives) of 74% and 64%,
outperforming a number of other systems.
In particular, the authors of this study
note that 1.4 times more true positives
were observed for this approach compared
with the GRAIL server on the same data.
However, it was also reported that the
network had a high false positive rate
(some non-coding regions incorrectly as

coding regions), resulting in a specificity
(the ratio of true negatives to the number
of true negatives and false positives) of
only 38% and 42%. The authors attribute
this over sensitivity to coding sub-
sequences on the composition of the data
used to train the network, as it was split
equally between coding and non-coding
exemplars, which does not reflect real
world sequences where it is estimated that
only 2% is coding.104

It is noted by the authors that a system
that reports false positives is preferential to
a system that reports false negatives as it
will be less likely to miss coding regions.
On the other hand, a system that has a
higher ratio of false negatives will report
coding regions as being non-coding and
so they will be potentially excluded by
researchers from further study.

Example: Neural Network
for Promoter Prediction (NNPP)

A common problem for neural networks
is detecting transient patterns which
can occur at any point over a subsection
of an input signal. An example of this is
promoter binding sites, which can occur
anywhere in a window of nucleotides
relative to the transcription start site (TSS).
Typically, this problem can be addressed by
(1) training a network with exemplars of
the pattern at all possible locations, or (2)
training a network on specific exemplars of
the pattern and applying the network brute
force to every point in the input space where
the pattern may occur. The Time delay
neural network (TDNN) is a structured
approach to this problem, which combines
elements of both these methods.105

TDNN was originally applied
for detecting the presence of specific
phonemes from speech samples. The
TDNN operates by learning feature
detectors (the hidden layer neurons) for
patterns which are replicated to cover the
input signal in a continuous overlapping
manner.106 Each feature detector examines
only a subsection of the input signal,
referred to as the detector’s receptive field.
The activation of all the feature detectors
is then combined to determine if the
desired pattern is identified anywhere in
the signal.

TDNN weights are learned using a
modified BP algorithm. An input signal
is applied to the network in the standard
feed-forward manner and BP used to
calculate the error and identify the weight
adjustment for each synapse. As a set of
replicated feature detectors are all looking
for the same pattern (but at different
points in the signal), a synaptic weight
is actually updated as the average weight
adjustment (Δ) generated by BP for the
corresponding synapse across all copies
of that feature detector. This approach
means that the actual offset of the pattern
in the exemplar signals does not affect
training or recognition.

The Neural Network for Promoter
Prediction (NNPP) approach employs two
of these TDNNs.107 Given a nucleotide
sequence, each TDNN will each examine
a different overlapping window of
nucleotides for patterns representing a
TATA box and initiator box respectively.
Both TDNNs are trained separately and
subsequently combined to form a super
network which can consider the presence
or absence of both binding sites and their

Figure 10. the windowed subsection of the input sequence and the receptive frames for the initiator box. each receptive field frame is connected to a
separate feature detector.

www.landesbioscience.com Bioengineered 91

relative positions to decide if a point in the
sequence is a TSS.

The input to the TDNN for identifying
an initiator box is a window of 25 base pairs,
ranging from 14 base pairs upstream to 11
base pairs downstream of the point in the
sequence under investigation. Instead of a
time delay as for the standard TDNN, each
nucleotide in the window is considered as
a time slice in a signal. The initiator box
detector TDNN employs a receptive field
size of 15 base pairs. Therefore, 11 feature
detectors are required to cover all possible
15 nucleotide frames in the window, as
demonstrated in Figure 10. Each base
pair is encoded in four binary bits, so each
feature detector will receive 60 (4*15)
synaptic connections, connecting it to
a subset of the window. The TDNN for
detecting TATA boxes works in exactly
the same manner, but examines a window
of between 40 base pairs upstream to 10
base pairs upstream of the point in the
sequence under investigation.

The NNPP was tested on the Adh
region of the Drosophila genome.
The data set comprised 2.9 million
nucleotides with 92 annotated promoters.
The NNPP super-network accepts a
window of 51 bases comprising the two
overlapping windows used by the pair
of hidden layers. The window is moved
along the entire sequence and a score
generated for each nucleotide as a TSS.
The scores are post-processed using a
simple smoothing function as part of the
NNPP process. The NNPP approach
correctly identified 69 of the 92 known
promoters (Sensitivity of 75%), and
achieved 99.82% specificity. If a more
exacting threshold was applied to only
accept promoter classifications where the
NNPP has a confidence in the prediction
of greater than or equal to 97%, the
specificity increased to 99.96% (1 false
positive per 2416 nucleotides), but the
NNPP could still successfully detect
38% of the known promoters.

Although the results produced cannot
account for all promoter regions, the low
levels of false positives observed have
helped NNPP find a great number of
applications in identifying and verifying
putative TSSs, often to complement other
TSS identification approaches.108-112

Gene-Gene Interaction

Genome wide association studies
(GWAS) are used to identify genetic risk
factors for common diseases. Genetic
association studies directly compare
the sequences of genotypes between
target (displaying a specific trait or
condition) and control populations. Any
single nucleotide polymorphisms (SNP)
common in the target group and rare in
the other is taken as a likely contributing
factor. Although examining individual
SNPs in isolation has identified many
genetic risk factors across a range of
conditions such as type II diabetes and
HDL-cholesterol, this approach has
not been able to explain much of the
causation thought to be attributable to
genetic variation. Examining the target
population in terms of epistasis (two or
more interacting genes) is significantly
more difficult because of the “curse of
dimensionality”; as the pre-requisite for the
situation (disease) becomes more complex,
the amount of representative data becomes
reduced and more difficult to identify.
Additionally, epistatic interactions are
typically observed with low effect sizes.

Example: ATHENA

ATHENA (Analysis Tool for Heritable
and Environmental Network Associations)
employs a neural network as a means of
data mining such gene-gene interactions
from genome wide association studies.113
Data mining is the process of discovering
unknown patterns from large data sets, in
this case the identification of the epistatic
SNPs among a large number of unrelated
SNPs.114,115 This approach uses a form of
neuroevolution, grammatical evolution
neural networks (GENN), to efficiently
search the space of possible network inputs
(feature selection) without the need for
brute-force trial of all possible two locus
SNP combinations.

Similar to the approach of Corne et al.
described previously, the GENN used
in ATHENA is a form of evolutionary
algorithm which evolves a population
of differing neural network solutions,
but GENN also attempts to evolve
the architecture of the network.116

Combinations of inputs and hidden
layer neurons which show relevance
to predicting potential disease cases
are replicated and disseminated across
increasing solutions over the following
generations. Crossover and mutation are
used to evolve new generations of the
population. Allele variations, which form
the inputs to the network are encoded as
(-1, 0, +1) representing the three forms of
a gene with an SNP (AA, Aa, aa).

The process was evaluated in silico
using a simulation study for accurate
evaluations of the process such that
the true effect of each SNP is known
and understood. The exemplars were
generated with epistasis occurring under
two models; the additive and dominant
models. Under the additive model for
example, the penetrance of a disease is
increased as a function of the number of
recessive alleles; i.e., for AABB penetrance
will be at a minimum, but at a maximum
for aabb. Two thousand exemplars are
generated using the genomeSIMLA
application. Each exemplar consisted of
2 epistatic SNPs and 498 irrelevant (to
the particular disease penetrance) SNPs.
Narrow-sense heritability was set at only
5% in the generated data, meaning very
few of the case exemplars display the
epistatic trait. The low epistatic effect size
is typical of real world data. A 1% main
effect is simulated for each of the epistatic
loci.

In some of the trials, a hybrid learning
approach was used in which the BP
algorithm trained the initial network
population, and again after a number of
generations. BP was run for a maximum
of 100 epochs on each network. The
authors also investigate the use of existing
domain knowledge as a means of filtering
the search space. This domain knowledge
for the experiment is again simulated,
mimicking the scores produced for SNP
pairs generated by the Biofilter application.
Biofilter examines available databases for
published information which supports
the selection of pairs of SNPs.117 The
higher the implication score generated by
Biofilter, the more support that can be
found for that SNP pair. This implication
level is simulated in the data by generating
4000 random edges.

92 Bioengineered Volume 5 issue 2

Trials were performed under differing
implication levels, differing proportions
of the population intelligently initialized
using the domain knowledge, and in the
presence of absence of backpropagation.
To test each combination of these
parameters 100 data sets were generated.
Sensitivity was defined as the proportion
of those 100 data set for which the best
performing network identified (accepted
as inputs) only the two SNPs generating
the epistasis in the data set. The results
attained by Turner et al.:
• Demonstrate the ability of neural

networks to identity and model
nonlinear interaction in data sets in
spite of low effect levels (5%) and in
the presence of substantial levels of
noise

• Display the potential for efficiency
gains when domain knowledge is
incorporated into large search spaces,
which is extremely important in the
case of large scale problems such as
genome wide association studies

Conclusions

Neural networks are a potentially
powerful tool for bioinformatics, with
reported successful applications across
many areas and levels of the domain.
The example applications given here
show ANNs as being able to identify
and model complex patterns and manage
large data sets, which can be both sparse
and noisy.

The theory of neural networks is
still evolving as the problems faced
are changing. For example, Hawkins’s
Hierarchical Temporal Memory (HTM) is
an ANN model suggested as an alternative

to storing large amounts of data common
in commercial and bioinformatics
domains.118 Built on an improving
understanding of how the brain works,
the HTM is a rough approximation of
how layer 3 of the neocortex operates. It is
a more biologically plausible ANN, which
attends that the brain is a memory system
as opposed to a processor (as with MLPs).
The approach postulates that data in many
domains decreases in relevance as it ages.
Instead of storing all the data, the HTM
builds a model encoding the patterns
in the data, and constantly updates the
model as new data becomes available.
The HTM is capable of Identifying and
modeling spatial (combinations that
occur together) and temporal (spatial
patterns occur together over time)
patterns, and detecting anomalies in large
data sets.119

Another area of ANN research which
is gaining in popularity as its power
is being full understood, is the idea of
a “deep neural network”120 (DNN);
neural networks comprising many
hidden layers. These deep network
architectures can be powerful, but the
typical backpropagation algorithm can
struggle or become intractable when
it is required to learn many hidden
layers, as the error signal being back
propagated is constantly reducing.121,122
Hinton et al. describe a variation of the
restricted Boltzmann machine (RBM)
neural network approach capable of
learning many layers,123 where each
layer is a further abstraction of features
in the training data.124,125 These feature
abstractions of the network are trained
to encode an input signal (the training
exemplars) through a number of layers,

and decode it back through the network to
be able to replicate a good approximation
of the original signal. In bioinformatics,
a common problem is the lack of
classified data. Generative models, such
as Hinton’s RBM can be used to mitigate
this issue, as it can handle the difficult
problem of learning these abstractions
without the need for labeled data.126 A
smaller amount of labeled exemplars can
be used to train the network to act as a
classifier.

ANNs may not always be the best
approach to solving a problem. Although
ANNs work in the absence of key
domain knowledge, significant domain
knowledge can be required in selecting
the inputs and knowing how best to
pre-process the input values. However,
identifying what is relevant is often an
easier task than defining how these values
should be interpreted. If a problem is well
understood, and can be addressed using a
set of known and understood rules, this
can be favorable or less error prone than
the decisions or interpretations of stimuli
produced by a neural network. There is
also the need for a sufficient amount of
accurately classified training data to be
available to adequately describe the remit
of situations the network must learn,
which may not be readily available.

Disclosure of Potential conflicts of Interest

No potential conflicts of interest were
disclosed.

Acknowledgments

This work was funded by the FP7-
PEOPLE-2012-IAPP grant ClouDx-i to
R.D.S. and P.W., and a Cork Institute of
Technology Rísam Scholarship to M.T.

References
1. Durda K, Buchanan L, Caron R. Grounding

co-occurrence: Identifying features in a lexical
co-occurrence model of semantic memory. Behav
Res Methods 2009; 41:1210-23; PMID:19897830;
http://dx.doi.org/10.3758/BRM.41.4.1210 .

2. Hinton GE, Srivastava N, Krizhevsky A, Sutskever
I, Salakhutdinov RR. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv
preprint arXiv:12070580 2012.

3. McEvoy FJ, Amigo JM. Using machine learning
to classify image features from canine pelvic
radiographs: evaluation of partial least squares
discriminant analysis and artificial neural network
models. Vet Radiol Ultrasound 2012; 54:122-
6; PMID:23228122; http://dx.doi.org/10.1111/
vru.12003.

4. Acharya UR, Vinitha Sree S, Mookiah MR, Yantri R,
Molinari F, Zieleznik W, Małyszek-Tumidajewicz J,
Stepien B, Bardales RH, Witkowska A, et al. Diagnosis
of Hashimoto’s thyroiditis in ultrasound using tissue
characterization and pixel classification. Proc Inst
Mech Eng H 2013; 227:788-98; PMID:23636761;
http://dx.doi.org/10.1177/0954411913483637 .

5. Mariani S, Grassi A, Mendez MO, Milioli G, Parrino
L, Terzano MG, Bianchi AM. EEG segmentation
for improving automatic CAP detection. Clin
Neurophysiol 2013; 124:1815-23; PMID:23643311;
http://dx.doi.org/10.1016/j.clinph.2013.04.005 .

6. Sachdeva J, Kumar V, Gupta I, Khandelwal N,
Ahuja CK. Segmentation, feature extraction, and
multiclass brain tumor classification. J Digit Imaging
2013; 26:1141-50; PMID:23645344; http://dx.doi.
org/10.1007/s10278-013-9600-0 .

7. Zhao Y, Chen D, Luo Y, Li H, Deng B, Huang
SB, Chiu TK, Wu MH, Long R, Hu H, et al. A
microfluidic system for cell type classification based
on cellular size-independent electrical properties. Lab
Chip 2013; 13:2272-7; PMID:23640025; http://
dx.doi.org/10.1039/c3lc41361f .

8. Elfwing S, Uchibe E, Doya K. Scaled free-energy
based reinforcement learning for robust and efficient
learning in high-dimensional state spaces. Front
Neurorobot 2013; 7:3; PMID:23450126

9. Firoozpour L, Sadatnezhad K, Dehghani S,
Pourbasheer E, Foroumadi A, Shafiee A, Amanlou
M. An efficient piecewise linear model for predicting
activity of caspase-3 inhibitors. Daru 2012; 20:31;
PMID:23351435

10. Leite D, Costa P, Gomide F. Evolving granular neural
networks from fuzzy data streams. Neural Netw
2013; 38:1-16; PMID:23201554; http://dx.doi.
org/10.1016/j.neunet.2012.10.006 .

www.landesbioscience.com Bioengineered 93

11. Plake C, Schiemann T, Pankalla M, Hakenberg J,
Leser U. AliBaba: PubMed as a graph. Bioinformatics
2006; 22:2444-5; PMID:16870931; http://dx.doi.
org/10.1093/bioinformatics/btl408 .

12. Roberts RJ. PubMed Central: The GenBank of
the published literature. Proc Natl Acad Sci USA
2001; 98:381-2; PMID:11209037; http://dx.doi.
org/10.1073/pnas.98.2.381 .

13. Sleator RD. Digital biology: a new era has begun.
Bioengineered 2012; 3:311-2; PMID:23099453;
http://dx.doi.org/10.4161/bioe.22367 .

14. Chen K, Kurgan LA. Neural Networks in
Bioinformatics. Handbook of Natural Computing:
Springer, 2012:565-83.

15. Lancashire LJ, Lemetre C, Ball GR. An introduction
to artificial neural networks in bioinformatics-
-application to complex microarray and mass
spectrometry datasets in cancer studies. Brief
Bioinform 2009; 10:315-29; PMID:19307287;
http://dx.doi.org/10.1093/bib/bbp012 .

16. Yang Z. Neural Networks. In: Carugo O, Eisenhaber
F, eds. Data Mining Techniques for the Life Sciences:
Humana Press, 2010:197-222.

17. Meireles MR, Almeida PE, Simões MG. A
comprehensive review for industrial applicability of
artificial neural networks. Industrial Electronics.
IEEE Transactions on 2003; 50:585-601

18. Rumelhart DE, Hintont GE, Williams RJ.
Learning representations by back-propagating
errors. Nature 1986; 323:533-6; http://dx.doi.
org/10.1038/323533a0.

19. Uberbacher EC, Mural RJ. Locating protein-coding
regions in human DNA sequences by a multiple
sensor-neural network approach. Proc Natl Acad Sci
USA 1991; 88:11261-5; PMID:1763041; http://
dx.doi.org/10.1073/pnas.88.24.11261 .

20. Qian N, Sejnowski TJ. Predicting the secondary
structure of globular proteins using neural
network models. J Mol Biol 1988; 202:865-84;
PMID:3172241; http://dx.doi.org/10.1016/0022-
2836(88)90564-5 .

21. Bishop CM. Neural networks for pattern recognition.
Oxford university press, 1995.

22. Kotsiantis S, Zaharakis I, Pintelas P. Supervised
machine learning: A review of classification
techniques. Frontiers in Artificial Intelligence and
Applications 2007; 160:3

23. Montana DJ, Davis L. Training feedforward neural
networks using genetic algorithms. Proceedings
of the eleventh international joint conference on
artificial Intelligence: San Mateo, CA, 1989:762-7.

24. Baba N. A new approach for finding the global
minimum of error function of neural networks.
Neural Netw 1989; 2:367-73; http://dx.doi.
org/10.1016/0893-6080(89)90021-X.

25. Sietsma J, Dow RJ. Creating artificial neural networks
that generalize. Neural Netw 1991; 4:67-79; http://
dx.doi.org/10.1016/0893-6080(91)90033-2.

26. Razavi S, Tolson BA. A new formulation for
feedforward neural networks. IEEE Trans Neural
Netw 2011; 22:1588-98; PMID:21859600; http://
dx.doi.org/10.1109/TNN.2011.2163169 .

27. Gardner M, Dorling S. Artificial neural networks
(the multilayer perceptron)–a review of applications
in the atmospheric sciences. Atmos Environ
1998; 32:2627-36; http://dx.doi.org/10.1016/
S1352-2310(97)00447-0.

28. Rosenblatt F. The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychol Rev 1958; 65:386-408; PMID:13602029;
http://dx.doi.org/10.1037/h0042519 .

29. Widrow B, Lehr MA. 30 years of adaptive
neural networks: perceptron, madaline, and
backpropagation. Proc IEEE 1990; 78:1415-42;
http://dx.doi.org/10.1109/5.58323.

30. Arad BS, El-Amawy A. On fault tolerant training
of feedforward neural networks. Neural Netw
1997; 10:539-53; http://dx.doi.org/10.1016/
S0893-6080(96)00089-5.

31. Hughes VF, Melvin DG, Niranjan M, Alexander GA,
Trull AK. Clinical validation of an artificial neural
network trained to identify acute allograft rejection in
liver transplant recipients. Liver Transpl 2001; 7:496-
503; PMID:11443576; http://dx.doi.org/10.1053/
jlts.2001.24642 .

32. Sontag ED, Sussmann HJ. Backpropagation can give
rise to spurious local minima even for networks
without hidden layers. AIP Conf Proc 1989; 3:91-106

33. Djavan B, Remzi M, Zlotta A, Seitz C, Snow P,
Marberger M. Novel artificial neural network for
early detection of prostate cancer. J Clin Oncol
2002; 20:921-9; PMID:11844812; http://dx.doi.
org/10.1200/JCO.20.4.921 .

34. Funahashi K-I. On the approximate realization
of continuous mappings by neural networks.
Neural Netw 1989; 2:183-92; http://dx.doi.
org/10.1016/0893-6080(89)90003-8.

35. Happel BL, Murre JM. Design and evolution of
modular neural network architectures. Neural
Netw 1994; 7:985-1004; http://dx.doi.org/10.1016/
S0893-6080(05)80155-8.

36. Homaei H. Design a PID controller for suspension
system by back propagation neural network. J Eng
2013; 2013:421543

37. Cybenko G. Approximation by superpositions of a
sigmoidal function. Math Contr Signals Syst 1989;
2:303-14; http://dx.doi.org/10.1007/BF02551274.

38. Hecht-Nielsen R. Theory of the backpropagation
neural network. Neural Networks, 1989 IJCNN,
International Joint Conference on: IEEE,
1989:593-605.

39. Nissen S. Implementation of a fast artificial neural
network library (fann). Report, Department of
Computer Science University of Copenhagen
(DIKU) 2003; 31.

40. Sussillo D, Nuyujukian P, Fan JM, Kao JC,
Stavisky SD, Ryu S, Shenoy K. A recurrent neural
network for closed-loop intracortical brain-machine
interface decoders. J Neural Eng 2012; 9:026027;
PMID:22427488; http://dx.doi.org/10.1088/1741-
2560/9/2/026027 .

41. Rodríguez-González A, García-Crespo Á, Colomo-
Palacios R, Guldrís Iglesias F, Gómez-Berbís JM.
CAST: Using neural networks to improve trading
systems based on technical analysis by means
of the RSI financial indicator. Expert Syst Appl
2011; 38:11489-500; http://dx.doi.org/10.1016/j.
eswa.2011.03.023.

42. Sjöström PJ, Frydel BR, Wahlberg LU. Artificial
neural network-aided image analysis system
for cell counting. Cytometry 1999; 36:18-26;
PMID:10331623; http://dx.doi.org/10.1002/
(SICI)1097- 0320 (19990501) 36 :1<18 : : A ID -
CYTO3>3.0.CO;2-J .

43. Taylor JA, Hieber LL, Ivry RB. Feedback-dependent
generalization. J Neurophysiol 2013; 109:202-
15; PMID:23054603; http://dx.doi.org/10.1152/
jn.00247.2012 .

44. Jacobs RA. Increased rates of convergence
through learning rate adaptation. Neural
Netw 1988; 1:295-307; http://dx.doi.
org/10.1016/0893-6080(88)90003-2.

45. Jin W, Li ZJ, Wei LS, Zhen H. The improvements
of BP neural network learning algorithm. Signal
Processing Proceedings, 2000 WCCC-ICSP 2000
5th International Conference on: IEEE, 2000:1647-9.

46. Attoh-Okine NO. Analysis of learning rate and
momentum term in backpropagation neural network
algorithm trained to predict pavement performance.
Adv Eng Software 1999; 30:291-302; http://dx.doi.
org/10.1016/S0965-9978(98)00071-4.

47. Picton P. Neural networks. 2nd ed. Basingstoke:
Palgrave; 2000.

48. Werbos P. Beyond regression: New tools for
prediction and analysis in the behavioral sciences.
[doctoral thesis]. [Cambridge (MA)] Harvard
University; 1974.

49. Touretzky DS, Sejnowski TJ, Hinton GE, eds.
Proceedings of the 1988 Connectionist Models
Summer School; 1988 Jun 17-26.Carnegie Mellon
University, Pittsburgh, PA. San Mateo, CA: Morgan
Kauffman; 1988

50. Tu JV. Advantages and disadvantages of using
artificial neural networks versus logistic regression
for predicting medical outcomes. J Clin Epidemiol
1996; 49:1225-31; PMID:8892489; http://dx.doi.
org/10.1016/S0895-4356(96)00002-9 .

51. Shavlik JW, Mooney RJ, Towell GG. Symbolic
and neural learning algorithms: An experimental
comparison. Mach Learn 1991; 6:111-43; http://
dx.doi.org/10.1007/BF00114160.

52. Tetko IV, Livingstone DJ, Luik AI. Neural
network studies. 1. Comparison of overfitting and
overtraining. J Chem Inf Comput Sci 1995; 35:826-
33; http://dx.doi.org/10.1021/ci00027a006.

53. Atkinson PM, Tatnall A. Introduction neural networks
in remote sensing. Int J Remote Sens 1997; 18:699-
709; http://dx.doi.org/10.1080/014311697218700.

54. Prechelt L. Proben1: A set of neural network
benchmark problems and benchmarking rules.
Fakultät für Informatik, Univ Karlsruhe, Karlsruhe,
Germany, Tech Rep 1994; 21:94.

55. Florido J, Pomares H, Rojas I, Guillén A, Ortuno
F, Urquiza J. An effective, practical and low
computational cost framework for the integration of
heterogeneous data to predict functional associations
between proteins by means of artificial neural
networks. Neurocomputing 2013; 121:64-78; http://
dx.doi.org/10.1016/j.neucom.2012.11.040.

56. Ein-Dor L, Zuk O, Domany E. Thousands of samples
are needed to generate a robust gene list for predicting
outcome in cancer. Proc Natl Acad Sci USA 2006;
103:5923-8; PMID:16585533; http://dx.doi.
org/10.1073/pnas.0601231103 .

57. Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T. Network-
based classification of breast cancer metastasis. Mol
Syst Biol 2007; 3:140; PMID:17940530; http://
dx.doi.org/10.1038/msb4100180 .

58. Chowdhury SA, Nibbe RK, Chance MR, Koyutürk
M. Subnetwork state functions define dysregulated
subnetworks in cancer. J Comput Biol 2011; 18:263-
81; PMID:21385033; http://dx.doi.org/10.1089/
cmb.2010.0269 .

59. Szu H, Hartley R. Fast simulated annealing.
Phys Lett A 1987; 122:157-62; http://dx.doi.
org/10.1016/0375-9601(87)90796-1.

60. Chen X, Tang Z, Variappan C, Li S, Okada T.
A modified error backpropagation algorithm for
complex-value neural networks. Int J Neural Syst
2005; 15:435-43; PMID:16385633; http://dx.doi.
org/10.1142/S0129065705000426 .

61. Gori M, Tesi A. On the problem of local minima
in backpropagation. IEEE Trans Pattern Anal
Mach Intell 1992; 14:76-86; http://dx.doi.
org/10.1109/34.107014.

62. Pollack JB. Backpropagation is sensitive to initial
conditions. Complex Systems 1990; 4:269-80

63. Stanley KO, Miikkulainen R. Evolving neural
networks through augmenting topologies. Evol
Comput 2002; 10:99-127; PMID:12180173; http://
dx.doi.org/10.1162/106365602320169811 .

64. Bahri B, Aziz AA, Shahbakhti M, Muhamad Said
MF. Understanding and detecting misfire in an
HCCI engine fuelled with ethanol. Appl Energy
2013; 108:24-33; http://dx.doi.org/10.1016/j.
apenergy.2013.03.004.

94 Bioengineered Volume 5 issue 2

65. Mashhadi Meighani H, Dehghani A, Rekabdar F,
Hemmati M, Goodarznia I. Artificial intelligence vs.
classical approaches: a new look at the prediction of
f lux decline in wastewater treatment. Desalin Water
Treat 2013; 51:7476-89; http://dx.doi.org/10.1080/1
9443994.2013.773861

66. Surkan AJ, Singleton JC. Neural networks for bond
rating improved by multiple hidden layers. Neural
Networks, 1990, 1990 IJCNN International Joint
Conference on: IEEE, 1990:157-62.

67. Xu S, Chen L. A novel approach for determining the
optimal number of hidden layer neurons for FNN’s
and its application in data mining. International
Conference on Information Technology and
Applications: iCITA, 2008:683-6.

68. Shamseldin AY. Application of a neural network
technique to rainfall-runoff modelling. J Hydrol
(Amst) 1997; 199:272-94; http://dx.doi.org/10.1016/
S0022-1694(96)03330-6.

69. Bertin E, Arnouts S. SExtractor: Software for
source extraction. Astron Astrophys Suppl Ser
1996; 117:393-404; http://dx.doi.org/10.1051/
aas:1996164.

70. Floreano D, Dürr P, Mattiussi C. Neuroevolution:
from architectures to learning. Evolutionary
Intelligence 2008; 1:47-62

71. Manning T, Sleator RD, Walsh P. Naturally
selecting solutions: the use of genetic algorithms
in bioinformatics. Bioengineered 2013; 4:266-
78; PMID:23222169; http://dx.doi.org/10.4161/
bioe.23041 .

72. Khan MM, Khan GM, Miller JF. Evolution of neural
networks using cartesian genetic programming.
Evolutionary Computation (CEC), 2010 IEEE
Congress on: IEEE, 2010:1-8.

73. Manning T, Walsh P. Improving the performance
of CGPANN for breast cancer diagnosis using
crossover and radial basis functions. Evolutionary
Computation, Machine Learning and Data Mining
in Bioinformatics: Springer, 2013:165-76.

74. Ahmad AM, Khan GM, Mahmud SA, Miller JF.
Breast cancer detection using cartesian genetic
programming evolved artificial neural networks.
Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference: ACM, 2012:1031-8.

75. Manning T, Walsh P. Automatic task decomposition
for the neuroevolution of augmenting topologies
(NEAT) algorithm. Evolutionary Computation,
Machine Learning and Data Mining in
Bioinformatics: Springer, 2012:1-12.

76. Rögnvaldsson T, You L. Why neural networks should
not be used for HIV-1 protease cleavage site prediction.
Bioinformatics 2004; 20:1702-9; PMID:14988129;
http://dx.doi.org/10.1093/bioinformatics/bth144 .

77. Irsoy O, Yildiz OT, Alpaydin E. Design and analysis
of classifier learning experiments in bioinformatics:
survey and case studies. IEEE/ACM Trans Comput
Biol Bioinform 2012; 9:1663-75; PMID:22908127

78. Chan K, Lee T-W, Sample PA, Goldbaum MH,
Weinreb RN, Sejnowski TJ. Comparison of machine
learning and traditional classifiers in glaucoma
diagnosis. IEEE Trans Biomed Eng 2002; 49:963-
74; http://dx.doi.org/10.1109/TBME.2002.802012;
PMID:12214886

79. Cho S-B, Ryu J. Classifying gene expression data
of cancer using classifier ensemble with mutually
exclusive features. Proc IEEE 2002; 90:1744-53;
http://dx.doi.org/10.1109/JPROC.2002.804682.

80. Cho S-B, Won H-H. Machine learning in DNA
microarray analysis for cancer classification.
Proceedings of the First Asia-Pacific bioinformatics
conference on Bioinformatics 2003-Volume 19:
Australian Computer Society, Inc., 2003:189-98.

81. Chang R-F, Wu W-J, Moon WK, Chou Y-H, Chen
D-R. Support vector machines for diagnosis of breast
tumors on US images. Acad Radiol 2003; 10:189-97;
PMID:12583571; http://dx.doi.org/10.1016/S1076-
6332(03)80044-2 .

82. Sleator RD. Prediction of protein functions. Methods
Mol Biol 2012; 815:15-24; PMID:22130980; http://
dx.doi.org/10.1007/978-1-61779-424-7_2 .

83. Henry M, Coffey A, O’ Mahony J, Sleator
RD. Comparative modelling of LysB from the
mycobacterial bacteriophage Ardmore. Bioeng Bugs
2011; 2:88-95; PMID:21636995; http://dx.doi.
org/10.4161/bbug.2.2.14138 .

84. Dobson CM. The structural basis of protein folding
and its links with human disease. Philos Trans R Soc
Lond B Biol Sci 2001; 356:133-45; PMID:11260793;
http://dx.doi.org/10.1098/rstb.2000.0758 .

85. Sleator RD. Proteins: form and function. Bioeng
Bugs 2012; 3:80-5; PMID:22095055; http://dx.doi.
org/10.4161/bbug.18303.

86. Rodrigues JP, Levitt M, Chopra G. KoBaMIN:
a knowledge-based minimization web server for
protein structure refinement. Nucleic Acids Res
2012; 40:W323-8; PMID:22564897; http://dx.doi.
org/10.1093/nar/gks376 .

87. Tsien RY. The green fluorescent protein. Annu Rev
Biochem 1998; 67:509-44; PMID:9759496; http://
dx.doi.org/10.1146/annurev.biochem.67.1.509 .

88. Rao PNDT, Kaladhar D, Sridhar G, Appa A.
Protein secondary structure prediction using pattern
recognition neural network. Int J Eng Sci 2010;
2:1752-7

89. Møller MF. A scaled conjugate gradient algorithm for
fast supervised learning. Neural Netw 1993; 6:525-33;
http://dx.doi.org/10.1016/S0893-6080(05)80056-5.

90. Kabsch W, Sander C. Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded
and geometrical features. Biopolymers 1983;
22:2577-637; PMID:6667333; http://dx.doi.
org/10.1002/bip.360221211 .

91. Altschul SF, Gish W, Miller W, Myers EW, Lipman
DJ. Basic local alignment search tool. J Mol Biol
1990; 215:403-10; PMID:2231712.

92. Altschul SF, Madden TL, Schäffer AA, Zhang J,
Zhang Z, Miller W, Lipman DJ. Gapped BLAST and
PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res 1997; 25:3389-
402; PMID:9254694; http://dx.doi.org/10.1093/
nar/25.17.3389 .

93. McGuffin LJ, Bryson K, Jones DT. The PSIPRED
protein structure prediction server. Bioinformatics
2000; 16:404-5; PMID:10869041; http://dx.doi.
org/10.1093/bioinformatics/16.4.404 .

94. Rost B, Sander C. Prediction of protein secondary
structure at better than 70% accuracy. J Mol Biol
1993; 232:584-99; PMID:8345525; http://dx.doi.
org/10.1006/jmbi.1993.1413 .

95. Jones DT. Protein secondary structure prediction
based on position-specific scoring matrices. J Mol
Biol 1999; 292:195-202; PMID:10493868; http://
dx.doi.org/10.1006/jmbi.1999.3091 .

96. Moult J, Hubbard T, Fidelis K, Pedersen JT. Critical
assessment of methods of protein structure prediction
(CASP): round III. Proteins 1999; 37(Suppl 3):2-6;
PMID:10526346

97. Moult J, Fidelis K, Zemla A, Hubbard T. Critical
assessment of methods of protein structure prediction
(CASP): round IV. Proteins 2001; 45(Suppl 5):2-7;
PMID:11835476

98. Sleator RD. An overview of the current status
of eukaryote gene prediction strategies. Gene
2010; 461:1-4; PMID:20430068; http://dx.doi.
org/10.1016/j.gene.2010.04.008 .

99. Bandyopadhyay S, Maulik U, Roy D. Gene
identification: classical and computational
intelligence approaches. IEEE SYS MAN CYBERN
C Appl Rev 2008; 38:55-68; http://dx.doi.
org/10.1109/TSMCC.2007.906066

100. Fogel GB, Chellapilla K, Fogel DB. Identification
of coding regions in DNA sequences using evolved
neural networks. Evolutionary Computation in
Bioinformatics 2003:193-218.

101. Fickett JW, Tung C-S. Assessment of protein
coding measures. Nucleic Acids Res 1992; 20:6441-
50; PMID:1480466; http://dx.doi.org/10.1093/
nar/20.24.6441 .

102. Wada K, Aota S, Tsuchiya R, Ishibashi F, Gojobori
T, Ikemura T. Codon usage tabulated from the
GenBank genetic sequence data. Nucleic Acids Res
1990; 18(Suppl):2367-411; PMID:2333226; http://
dx.doi.org/10.1093/nar/18.suppl.2367 .

103. Fickett JW. Recognition of protein coding regions in
DNA sequences. Nucleic Acids Res 1982; 10:5303-
18; PMID:7145702; http://dx.doi.org/10.1093/
nar/10.17.5303 .

104. Burset M, Guigó R. Evaluation of gene structure
prediction programs. Genomics 1996; 34:353-
67; PMID:8786136; http://dx.doi.org/10.1006/
geno.1996.0298 .

105. Waibel A, Hanazawa T, Hinton G, Shikano K,
Lang KJ. Phoneme recognition using time-delay
neural networks. IEEE Trans Acoust Speech
Signal Process 1989; 37:328-39; http://dx.doi.
org/10.1109/29.21701

106. Waibel A. Modular construction of time-delay
neural networks for speech recognition. Neural
Comput 1989; 1:39-46; http://dx.doi.org/10.1162/
neco.1989.1.1.39.

107. Reese MG. Application of a time-delay neural
network to promoter annotation in the Drosophila
melanogaster genome. Comput Chem 2001; 26:51-6;
PMID:11765852; http://dx.doi.org/10.1016/S0097-
8485(01)00099-7 .

108. Hayward JA, Tachedjian M, Cui J, Field H, Holmes
EC, Wang L-F, Tachedjian G. Identification of
diverse full-length endogenous betaretroviruses in
megabats and microbats. Retrovirology 2013; 10:35;
PMID:23537098; http://dx.doi.org/10.1186/1742-
4690-10-35 .

109. Lowery JW, Lavigne AW, Kokabu S, Rosen V.
Comparative genomics identifies the mouse
Bmp3 promoter and an upstream evolutionary
conserved region (ECR) in mammals. PLoS ONE
2013; 8:e57840; PMID:23451274; http://dx.doi.
org/10.1371/journal.pone.0057840 .

110. Nannapaneni K, Ben-Shahar Y, Keen HL, Welsh
MJ, Casavant TL, Scheetz TE. Computational
identification of operon-like transcriptional loci
in eukaryotes. Comput Biol Med 2013; 43:738-
43; PMID:23668349; http://dx.doi.org/10.1016/j.
compbiomed.2013.03.004 .

111. Van den Broeke A, Van Poucke M, Van Zeveren A,
Peelman L. Ribosomal protein SA and its pseudogenes
in ruminants: an extremely conserved gene family.
Czech J Anim Sci 2013; 58:79-90

112. Yao AI, Fenton TA, Owsley K, Seitzer P, Larsen DJ,
Sit H, Lau J, Nair A, Tantiongloc J, Tagkopoulos I,
et al. Promoter element arising from the fusion of
standard BioBrick parts. ACS Synth Biol 2013; 2:111-
20; PMID:23656374; http://dx.doi.org/10.1021/
sb300114d

113. Turner SD, Dudek SM, Ritchie MD. ATHENA:
A knowledge-based hybrid backpropagation-
grammatical evolution neural network algorithm for
discovering epistasis among quantitative trait Loci.
BioData Min 2010; 3:5; PMID:20875103

www.landesbioscience.com Bioengineered 95

114. Giacobini M, Vanneschi L, Bush W, eds. Proceedings
of the 10th European conference on Evolutionary
Computation, Machine Learning and Data Mining
in Bioinformatics, EvoBIO 2012; 2012 Apr 11 - 13.
University of Málaga, Málaga, Spain. Heidelberg,
Berlin: Springer; 2012

115. Holzinger ER, Dudek SM, Frase AT, Krauss RM,
Medina MW, Ritchie MD. ATHENA: A tool for
meta-dimensional analysis applied to genotypes and
gene expression data to predict HDL cholesterol
levels. Pacific Symposium on Biocomputing Pacific
Symposium on Biocomputing: World Scientific,
2013:385.

116. Holzinger ER, Buchanan CC, Dudek SM, Torstenson
EC, Turner SD, Ritchie MD. Initialization parameter
sweep in ATHENA: optimizing neural networks for
detecting gene-gene interactions in the presence of
small main effects. Proceedings of the 12th annual
conference on Genetic and evolutionary computation:
ACM, 2010:203-10.

117. Bush WS, Dudek SM, Ritchie MD. Biofilter: a
knowledge-integration system for the multi-locus
analysis of genome-wide association studies. Pacific
Symposium on Biocomputing Pacific Symposium on
Biocomputing: NIH Public Access, 2009:368.

118. Hawkins J, George D, Niemasik J. Sequence memory
for prediction, inference and behaviour. Philos
Trans R Soc Lond B Biol Sci 2009; 364:1203-
9; PMID:19528001; http://dx.doi.org/10.1098/
rstb.2008.0322 .

119. Hawkins J, Ahmad S, Dubinsky D. Hierarchical
temporal memory including HTM cortical learning
algorithms. Techical report, Numenta, Inc, Palto Alto
2010.

120. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-r,
Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath
TN. Deep neural networks for acoustic modeling
in speech recognition: the Shared Views of Four
Research Groups. Signal Processing Magazine, IEEE
2012; 29:82-97

121. Larochelle H, Bengio Y, Louradour J, Lamblin
P. Exploring strategies for training deep neural
networks. J Mach Learn Res 2009; 10:1-40

122. Fahlman SE, Lebiere C. The cascade-correlation
learning architecture. Pittsburgh (PA): Carnegie
Mellon University; 1989 Feb. 15 p. Report No.:
CMU-CS-90-100.

123. Hinton GE, Osindero S, Teh Y-W. A fast learning
algorithm for deep belief nets. Neural Comput
2006; 18:1527-54; PMID:16764513; http://dx.doi.
org/10.1162/neco.2006.18.7.1527 .

124. Mohamed A-r, Dahl GE, Hinton G. Acoustic
modeling using deep belief networks. IEEE T Audio
Speech 2012; 20:14-22; http://dx.doi.org/10.1109/
TASL.2011.2109382

125. Mohamed A-R, Sainath TN, Dahl G, Ramabhadran
B, Hinton GE, Picheny MA. Deep belief networks
using discriminative features for phone recognition.
Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on: IEEE,
2011:5060-3.

126. Salakhutdinov R, Hinton GE. Deep Boltzmann
machines. Proceedings of the international conference
on artificial intelligence and statistics: MIT Press
Cambridge, MA, 2009:448-55.

