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cOMMentArY

Artificial neural networks (ANNs)  
 are a class of powerful machine 

learning models for classification and 
function approximation which have 
analogs in nature. An ANN learns 
to map stimuli to responses through 
repeated evaluation of exemplars of 
the mapping. This learning approach 
results in networks which are recognized 
for their noise tolerance and ability to 
generalize meaningful responses for 
novel stimuli. It is these properties of 
ANNs which make them appealing 
for applications to bioinformatics 
problems where interpretation of data 
may not always be obvious, and where 
the domain knowledge required for 
deductive techniques is incomplete or 
can cause a combinatorial explosion 
of rules. In this paper, we provide an 
introduction to artificial neural network 
theory and review some interesting 
recent applications to bioinformatics 
problems.

Introduction

Artificial neural networks (ANNs) 
are statistical machine learning models 
which emulate the processing technique 
of biological neurons to perform function 
approximation and pattern recognition 
from a set of exemplars, in a way which 
can generalize its mapping to new data.1-3 
ANNs are finding use across a number of 
domains for classification4-7 and function 
approximation.8-10 Figure 1, which 
plots number of bioinformatics papers 
in PubMed11,12 that reference neural 

networks over the period 1994 to 2009, 
suggests that there is an increasing trend in 
the application of ANNs to bioinformatics 
problems.13

This paper begins with an introduction 
to neural networks, providing a 
description of what they are and how they 
are used, as well as a high level description 
of how they work. The advantages and 
disadvantages of ANNs are discussed, and 
information considered pertinent to their 
practical application is presented by way of 
a number of examples.

Further analysis of the literature 
available on PubMed, as shown in 
Figure 2, indicates that the 3 main 
bioinformatics topics which reference 
neural networks are:
• Gene identification/prediction (554 

papers)
• Protein secondary structure prediction 

(486 papers)
• Gene interaction (528 papers)

Accordingly, this review will examine 
recent and interesting applications of 
neural networks to these three problem 
areas. Chen and Kurgan provide a review 
of ANNs which focuses on protein 
bioinformatics.14 The application of 
ANNs to the analysis of (typically noisy) 
microarrays and mass spectra is reviewed 
by Lancashire, Lemetre, and Ball.15 A 
general discussion of the application 
of ANNs to the topics of Quantitative 
structure-activity relationship (QSAR), 
gene expression data analysis, protein 
structure data analysis, biomarker 
identification and sequence data analysis 
is provided in review format by Yang.16
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Artificial Neural Networks

Broadly speaking, the function of a 
neural network is to enact a meaningful 
mapping function from a stimulus 
(the inputs to the neural network) to 
an excepted response (the output of 
the neural network).17,18 For example, 
a neural network can map a nucleotide 
input sequence to a scalar output that 
differentiates between coding or non-
coding regions,19 or can predict how a 
peptide chain will twist and turn based 
on the physical properties of the amino 
acids and their interactions.20 In principle, 
a neural network with a sufficiently 
large number of processing elements can 
approximate any continuous functional 
mapping with an arbitrary level of 
accuracy.21

The ANN is a machine learning 
approach that has the ability to 
autonomously identify and model 
complex nonlinear patterns and relations 
from a data set, without the need for 
the context of the data, explicit domain 
knowledge or operator interaction.22 
The networks learn to carry out their 
desired mapping using exemplars of the 
inputs and expected outputs in a process 
referred to as “training.”23 The difference 
between the expected and actual output 
of the network for a given stimulus is 
referred to as the network error, and is 
calculated using an error function.24 In 
training, the parameters of the network 
are slowly adjusted such that the error of 
the network is iteratively reduced over 
the set of exemplars. A properly trained 
ANN will be robust and have the ability 
to generalize accurate output vectors given 
novel input vectors.25 However, neural 
networks operate as a black-box; how or 
why an output is achieved will not be 
directly interpretable.26

Architecture

Artificial neural network is an 
umbrella term covering a wide variety 
of graph based machine learning 
approaches. Here, we limit discussion 
to the common multilayer perceptron 
(MLP) architecture.18,27 The perceptron 
is a simple feedforward linear classifier 
analogous to a single biological neuron.28 

A perceptron accepts a number of input 
signals and fires (produces an output) 
if the combined input signal is above 
a threshold. The MLP architecture 
combines layers of perceptron-like 
processing elements (the neurons) 
connected by weighted connections (the 
synapses) to produce a network capable 
of dealing with complex nonlinearly 
separable mappings.29 The distributed 
nature of the processing which takes 
place in a neural network contributes to 
the robustness of the system.30,31

In the typical MLP architecture, the 
neurons are grouped into layers with full 
synaptic connections only between each 
successive layer, as shown in Figure 3. 
The first layer, referred to as the input 
layer accepts the stimulus. The signal is 
propagated along the synapses through the 
hidden layer(s) to the output layer, where 
the response of the network is presented. 
An MLP can contain zero32 or more 
hidden layers. The neurons of the hidden 
layer have no direct connection with the 
outside world, only with the preceding 
and succeeding layers. Each synapse has 
an associated weight, corresponding to 
synaptic strength in biologic systems,33 
which it uses to scale the signals passed 
through it. The neural networks are 
trained by adjusting these synaptic weights 
to perform different mappings.34,35

The inputs to a neuron are roughly 
analogous to the dendrites of a biological 
neuron, and the output of the neuron is 
comparable to an axon.36 The artificial 
neuron and its biological counterpart are 

shown graphically in Figure 4A and B 
respectively.

The neurons of the input layer carry 
out no processing on the values they 
receive, and merely pass the input values 
to the next layer along the synapses. Each 
neuron in the hidden and output layers 
take the sum of the values on each of its 
input synapses multiplied by the weight 
value associated with each synapse to 
generate the “activation” of the neuron. An 
“activation function” is applied to the sum 
to produce the output of each neuron.37

Many of the MLP training algorithms 
require the use of a differentiable 
activation function for calculating weight 
adjustments for hidden layer neurons. The 
sigmoid is usually favored as its derivatives 
and partial derivatives can be easily and 
efficiently produced, which are relevant to 
typical gradient descent approaches as will 
be discussed later. Efficiency is important 
as these values may need to be calculated 
thousands or perhaps millions of times 
in teaching an ANN for non-trivial 
problems. An example of a sigmoidal plot 
is given in Figure 5. The sigmoid maps 
the activation of a neuron to a continuous 
output value in the range 0 to 1 (although 
the value never reaches 0 or 1).38

Additional inputs with a constant 
value of 1 are connected to each hidden 
and output layer neuron. These inputs are 
referred to as biases. Adjusting the synaptic 
weight of the bias is equivalent to moving 
the center of the activation function.39

Alternative architectures to the 
feedforward MLP are available. For 

Figure  1. the number of bioinformatics papers in PubMed that reference neural networks, 
grouped by year.
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example, Chen and Lukasz provide an 
introduction to the application of two 
prominent alternative architectures 
to protein bioinformatics problems; 
recurrent and radial basis function 
(RBF) networks.14,40 In the generalized 
form of the MLP, synaptic connections 
are allowed between neurons in non-
successive layers.41

Training

There are many approaches to training 
neural networks, but the most typical is 
a supervised approach in which exemplars 
of the input to output mappings are used 
to train the network by adjusting the 
synaptic weights.18 Training is an iterative 
process. Weight updates can be made 
based on the error of each individual 
exemplar (online learning) or based on 
the error of a number of exemplars (batch 
learning). In each iteration;
• A set of exemplars is applied to the 

network and the output recorded
• The error of the network is quantified 

(using an error function)
• The weights of the synapses are then 

slightly adjusted so that the error of 
the network would be lower if the 
same set of training instances were 
re-applied

In machine learning, a single pass 
through the entire training set is referred to 
as an epoch. Through repeated adjustment 
of the synaptic weights, the network 
eventually settles on a configuration 
where no slight adjustments to the weights 

will result in a net decrease in the error 
value across the set of exemplars.42

Gradient descent learning is one 
approach to identifying how the synaptic 
weights should be adjusted.43 Gradient 
descent learning uses the idea of an 
“error surface” which maps the error of a 
network as a function of the weights.40 On 
the error surface, the slope of the partial 
derivative of the error of the network with 
relation to the value of a single weight can 
be used to identify if a weight should be 
increased or decreased to lower its error 
contribution.44 An example error surface 
is shown in Figure 6 for a single weight 
plotted against network error.

The initial values of a synaptic weight 
give a point on the error function (e.g., 
0.35 in Fig. 6). The slope of the derivate 
of the initial weight value is shown as the 
dashed red line. A positive slope (as in 
Fig. 6) indicates that the error contribution 
can be reduced by reducing the weight 
value slightly (moving the weight value 
left along the x-axis). Conversely, a 
negative slope indicates that the weight 
value should be increased. By iteratively 
adjusting the value of the each weight 
slightly in the direction of its negative of 
the gradient of the error surface, the error 
produced by the network can be reduced 
to a point.43 For Figure 6, the value of the 
weight would be reduced gradually until 
it reaches a minimum of the error surface 
at a value of 0.24. At this point, any 
small change to the value of the weight 
should increase the error produced by the 
network on the training set.

A learning rate, α, is specified to set 
how much the weights are adjusted each 
generation. The learning rate should be 
low to allow the learning algorithm to 
edge toward the optimal solution.45 A 
learning rate that is too high will cause 
the adjustments to overshoot minima, 
making optimization difficult for the 
algorithm. Of course, a learning rate that 
is too low will cause slow convergence 
of the weights, and perhaps lead to the 
algorithm being unable to escape shallow 
local minima. A momentum rate can also 
be specified to increase learning speed 
by increasing weight adjustment size if 
consecutive adjustments are in the same 
direction.46

The Feedforward 
Backpropagation 

Learning Algorithm

The contribution of a neuron on the 
output layer to the error of the network 
can be easily calculated as the difference 
between the expected and actual output. 
The contribution of the hidden layer 
neurons to the error is more difficult 
as they can may partially contribute to 
the error of many neurons in successive 
layers. The back propagation of errors 
(backpropagation, “Back-Prop” or BP) 
is a common mathematically provable 
gradient descent learning algorithm which 
uses differentiable activation functions to 
calculate the error of neurons and produce 
synaptic weights adjustments which 
reduce this error.18

Figure 2. Breakdown of bioinformatics topics identified across a number of analyzed papers available on PubMed which reference neural networks.
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If a sigmoid activation function is 
employed for the neurons of the hidden 
and output layers, the error signal and 
weight adjustment calculations can be 
reduced mathematically to the efficient 
forms given in Equations 1–4.38 For a 
more in-depth discussion of how these 
equations are derived, and a walk through 
of the first two iterations of weight 
updating for a simple example network, 
see the text “Neural Networks” by Phil 
Picton.47 For an output layer neuron k, 
the error signal, e

k
 can be calculated using 

Equation 1 as a function of the difference 
between the expected output, t

k
, and the 

observed output, o
k
. New values for the 

synaptic weights feeding into k can then 
be calculated using Equation 2.36

e
k
 = (t

k
 − o

k
)o

k
(1 − o

k
)  Eq. 1

w
ik
 = w

ik
 + αe

k
x

i
  Eq. 2

Where w
ik
 and x

i
 are the weight and 

input signal respectively of a single 
synaptic input to the output neuron k, and 
α is the value of the learning rate constant.

The error signal of a hidden layer 
neuron must be considered respective 
of the error of all output layer and other 
hidden layer neurons to which it feeds 
its own output.18,48 To calculate the error 
signal, e

i
, for a hidden layer neuron i, we 

first define the variable errSum as the 
summation of the error of each neuron 
to which i feeds its output, scaled by the 
synaptic weight connecting them. The 
error of i can be calculated using Equation 
3, and the new synaptic weights feeding 
into i can be generated using Equation 4.36

e
i
 = y

i
 (1- y

i
) * errSum  Eq. 3

w
ji
 = w

ji
 + αe

i
x

i
  Eq. 4

Where w
ji
 and x

i
 are the weight and 

input signal respectively of a single 
synapse input to the hidden layer neuron 
i, y

i
 is the output of neuron i, and α is 

the value of the learning rate constant. 
For a more in depth discussion of the 
mathematical principles and theory of the 
back propagation algorithm, the reader is 
directed to the paper “Neural Networks,” 
by Yang.16

An interesting variation of 
backpropagation is the quick prop 
algorithm.49 In quick prop, two iterations 
of BP are run and the points on the 
error surface are recorded. Under the 
assumption that error surfaces are elliptical 

in shape, quick prop uses the identified 
two points to estimate where the nadir of 
the error surface would be located. The 
synaptic weights can then be adjusted to 
jump to the expected optimized value. 
For many problems, the use of quick prop 
can reduce the processing power and the 
number of generations required relative to 
standard BP.

Stopping Criteria

A number of approaches can be used 
to decide on the number of iterations 
for which to run a training algorithm. A 
simple approach is to continue for only 
a predetermined number of generations, 
normally set using domain knowledge 
or experience, above which it can be 
reasonable assumed no improvement 
will be observed, or as the amount of 
available time or resources allows.50 A 
more dynamic approach is to continue 
iteratively until the error on the training 
set drops below a threshold specified 
a priori, or alternatively, until the error 
of the network over the entire training 
set drops by less than a specified value 
(for example 0.01%) over several 
generations.51

These simple approaches are however 
susceptible to “overtraining,” where the 
performance observed on the training 
data may not be representative of the 
performance of the network on novel 
data.52 As training proceeds, the training 
algorithm, in an attempt to reduce 
the error, may start to learn decision 
boundaries which over-fit the training 

data. This results in reduced error on the 
training data set at the expense of the 
ability to generalize to novel exemplars 
from outside the training data.53 This 
implies that the training data are not an 
accurate gauge of the ANNs error on 
novel data (resubstitution error).

To address this problem, it is common 
to divide the available exemplars into two 
independent sets; the training and testing 
set.54 During training (on the training set), 
the testing set is continually evaluated by 
the network, but it is not used to affect the 
weight adjustment of the synapses. The 
testing set gauges the generalization ability 
of the network. If the error on the testing 
set increases over several epochs, while 
the error on the training set continues to 
decrease, it is considered an indication 
that overtraining is occurring. Training 
can then be stopped and the network 
weights reverted to the values at which the 
testing error was minimized.

The performance of the ANN on the 
testing data cannot be used as an accurate 
gauge of accuracy either, as the training 
may have stopped at a point at which 
the ANN overfits the testing data. For 
this reason, a third independent set of 
exemplars, referred to as the validation 
set, is required to accurately measure  
the ANN error.54

Training an ANN for non-trivial 
problems can be computationally 
expensive, perhaps requiring thousands 
of updates to each synaptic weight. This 
can correspond to long training times. 
Florido et al. have described a method 
of sampling representative exemplars 

Figure 3. Structure of a typical 3 layer feed forward multilayer perceptron artificial neural network.
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suitable for training an ANN from data 
sets. It is claimed that such a reduced (but 
representative) set of training data has the 
potential to improve training time and 
reduce overfitting.55

Advantages and Disadvantages 
of ANNs for Bioinformatics

The case for the use of ANNs can 
be made by their proven successful 
application to a number of challenging 
problems in bioinformatics and other 
domains. Here, the strengths of ANNs, 
weaknesses, and reasons why they are 
appealing for bioinformatics problems are 
discussed.

Advantage: Generalization

Generalization in machine learning 
refers to the ability of the solution to 
extrapolate good outputs for unseen data or 
new combinations of inputs based on what 
it has been trained on. The generalization 
ability of ANNs is well documented, and 
is one of the strongest and most desirable 
qualities for bioinformatics, although it is 
a quality shared with many other machine 
learning and model based approaches.

Strong generalization is a highly 
desirable in many situations in the 
bioinformatics domain. For example, 
often experiments can produce gigabytes 
of data, but diseases and conditions 
can present differently in different 
environments. Expression levels of a 
biomarker gene, for example, may vary 
depending on the age, gender, health, 
race, etc. of a patient. Generating data 
to cover all permutations of even these 

four contributing factors may be time 
consuming, expensive or just not possible 
for rare conditions. Using only a sampling 
of these permutations, an ANN can 
often learn how these attributes affect the 
observed biomarkers, and learn to correctly 
classify (or at least make a very well 
informed guess) as to the classification of 
patients whose combination of attributes 
were not covered by the training data.

Advantage: No Need  
for Complete Domain Knowledge

Another appealing property of 
ANNs for bioinformatics is that domain 
knowledge does not need to be complete. 
There are also situations where exact 
solutions exist, but ANNs can be used 
to estimate the desired output where 
generating the exact solution is prohibitive 
in terms of cost or time. Protein folding is 
an example of a problem which is not fully 
understood, but to which ANNs have 
been applied with a good level of success. 
The 3D structure of a protein can be 
generated using X-ray crystallography, but 
this is a very time consuming approach, 
so not suitable for the vast amount of 
sequences which can be generated in a 
single bioinformatics experiment.

An ANN can be trained to hypothesize 
protein structure based on primary 
sequence alone (which can be identified 
much more quickly and cheaply), given 
the structure of a number of exemplars 
which may have been identified using 
X-ray crystallography. ANNs achieve this 
success without the need to understand 
the underlying mechanisms, but can 
examine how known contributing factors 

have affected the structure of proteins with 
identified form to conjecture how a novel 
chain will be affected. The application of 
ANNs to protein folding is discussed in 
more detail in the case studies section.

Advantages: Robust Solutions 
to Complex Problems

The third main advantage of ANNs 
for bioinformatics that we will discuss is 
the general robustness of the solutions that 
can be produced and the complexity of 
the problems to which it can successfully 
be applied. We demonstrate these points 
collectively by considering an example of 
how neural networks have been applied to 
microarray data.

Generic microarrays covering a large 
number of genes can have a low statistical 
power due to the small sample sizes (number 
of arrays available) and high levels of noise 
(mismatch binding and contamination) 
typical in microarray experiments. Genes 
identified as differentially expressed in one 
experiment may not appear differentially 
expressed in another experiment. In fact, 
it has been demonstrated that thousands 
of microarray samples may be required 
to define reproducible biomarkers with 
confidence in some situations.56

ANNs are a technology which 
has provided good performance on 
microarray data in spite of the limitations 
of the arrays, by using readily available 
information from multiple heterogeneous 
sources to place meaning on the 
observed experimental results. Using the 
assumption that deregulated proteins are 
as a result of, or cause, deregulation of the 
proteins with which they interact, Chuang 

Figure 4. neurons. (A) An artificial neuron from the hidden or output layer of an MLP, and (B) a simplified depiction of a naturally occurring biological 
neuron.35
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et al. demonstrated that the information in 
protein-protein interaction (PPI) networks 
can be combined with microarray data to 
define more robust biomarkers.57 This 
approach evaluates the aggregate behavior 
of sub-networks of interacting genes 
(connected within the PPI network), 
allowing the relevance of genes with subtle 
differential expression can be combined 
to produce more reproducible and robust 
biomarkers.

The CRANE algorithm is an example 
of such an approach, which employs an 
ANN to perform classifications based on 
identified disregulated PPI subnetworks.58 
The expression levels of the genes in 
the subnetworks form the inputs to the  
ANN. The use of these subnetworks 
of related genes is shown to outperform 
groups of genes selected based on 
experimentally observed differential 
expression alone in classification 
problems. This example demonstrates 
how ANNs applied in the bioinformatics 
domain can:
• Consider the impact of many 

attributes (capable of relatively 
high dimensionality) from multiple 
heterogeneous sources

• Work with multiple patterns (can use 
multiple PPI networks in generating 
its output, with potentially both 
positive and negative biomarkers)

• Consider the impact of even low impact 
attributes which may or may not even 
be present.

• Can produce robust fault tolerant 
solutions which, to a degree, can 
handle contamination, low statistical 
power, effects of machine calibration, 
background noise, and repeatability of 
experiments observed in the data sets, 
all of which can be inherent in data 
generated from generic microarrays

• As discussed earlier, gene expression 
levels can also be impacted the gender, 
age, race, etc. of the patient, but 
this can be addressed by the strong 
generalization ability of ANNs.

For a detailed discussion of the 
application of ANNs to microarrays 
we suggest the paper “An introduction 
to artificial neural networks in 
bioinformatics-application to complex 
microarray and mass spectrometry 

datasets in cancer studies” by Lancashire, 
Lemetre and Ball.15

Disadvantage: Local Minima

Learning algorithms such as back 
propagation are applied with the caveat 
that solutions may only be locally as 
opposed to globally optimal.59 In Figure 6 
it can be seen that gradient descent starting 
at the initial point on the error surface 
(weight value 0.35) will adjust the weight 
value to a point where the error is reduced 
(weight value 0.24), but not necessarily to 
the value of the weight where the error is 
minimized. The point of lowest error on 
the error surface is referred to as the global 
minimum of the error surface and is given 

by a weight value of 0.66 for the example 
of Figure 6. The inability of gradient 
descent algorithms to consistently identify 
global minima is referred to as the local 
minima problem.60,61

This problem can be lessened by 
repeating training several times with 
different initial weight values (and 
therefore different starting points on the 
error surface),62 or through processes 
such as simulated annealing59 or 
neuroevolution.63

Disadvantage: Selecting 
the Architecture

Whereas the number of input and 
output neurons is prescribed by the 

Figure 5. A sigmoid function. if this sigmoid was used as an activation function, the activation of 
the neuron would be a value on the x-axis and the corresponding output of the neuron is mapped 
to the y-axis.

Figure 6. An example of a simulated error surface. the value of a weight (on the x-axis) plotted 
against the error of the network (the y-axis). the solid red line represents the initial value of a 
synaptic weight. the dashed red line represents the slope of the error. the green line is a locally 
minima, a locally optimal weight value. the blue line is the globally optimal value for the weight at 
which the error contribution is minimized.
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cardinality of the required mapping, the 
number of hidden layers and the number 
of neurons in each hidden layer is dictated 
by the complexity of the problem, and 
is typically empirically defined.64-66 
Although this is still considered an 
unsolved task, Xu and Chen overview 
several opinions and approaches to the 
selection of appropriate architectures.67 If 
too few neurons are present the potential 
complexity of the decision boundaries 
produced by the network will be limited 
(“under-fitting”),68 while too many 
neurons will encourage the network to 
overtrain by allowing overly intricate 
decision boundaries.69

One approach to this problem is 
neuroevolution; the use of evolutionary 
algorithms to discover good neural 
network architectures in an automated 
fashion.70 These evolutionary algorithms 
are not guaranteed to find the optimal 
solution, but should find a good solution 
in a reasonable amount of time.71 Topology 
and weight evolving artificial neural 
network (TWEANN) algorithms such 
as the NeuroEvolution of Augmenting 
Topologies (NEAT)63 and Cartesian 
Genetic Programming Evolved Artificial 
Neural Network (CGPANN)72 variations 
have recently shown good performance on 
bioinformatics data sets.73-75

Disadvantage: Not Always 
the Best Approach

In comparative analyses, ANNs 
generally perform well, but do not 
necessarily offer the best performance. 
For example, in the paper “Why neural 
networks should not be used for HIV-1 
protease cleavage site prediction” it is 
demonstrated that although ANNs are 
capable of classifying linearly separable 
data, superior performance is achieved by 
linear classifiers when applied to linear 
problems.76

Additionally, alternative machine 
learning approaches exist which have 
proven more effective than ANNs on 
a number of problems. Isroy et al. have 
performed a survey of papers dealing with 
machine learning based classification from 
three bioinformatics journals over 2010 
and 2011.77 It was observed that, of the 
papers surveyed, 13% employed artificial 
neural networks, while 57% employed 
Support Vector Machines (SVM). The 
findings of Isroy et al. are presented in 
Table 1.

Chan et al. compared the relative 
performance of the MLP and two SVM 
variations in terms of receiver operating 
characteristic (ROC) and sensitivity 
at set specificity levels on a glaucoma 

diagnosis data set.78 The approaches are 
evaluated using the full set of attributes 
and a reduced set identified using 
principal component analysis (PCA). 
The results (presented in Table 2) show 
the SVM out-performing the MLP on 
this problem.

ANNs are however still a very powerful 
tool, and numerous papers can be identified 
where the ANN matches or outperforms 
the SVM approach. Chowdhury et al., 
for example, in describing the CRANE 
algorithm discussed previously, argue that 
how ANNs deal with sub-patterns makes 
them better suited to that problem than 
SVMs.58

Cho and Ryu compared the 
performance of MLPs and two variations 
of the SVM in combination with a 
number of feature selection algorithms 
on gene expression profiles.79 These 
results are presented in Table 3. It is 
noted that, on this data set, the MLP 
consistently performed as well as or 
better than the SVM approaches. The 
MLP also performed favorably compared 
with the self-organizing map (SOM), 
decision tree (DT) and k-nearest neighbor 
(KNN) algorithms (data not shown). 
Further work by Cho and Won produced 
similar results for Leukemia, colon and 
lymphoma data sets.80

Table 1. use rates of different machine learning algorithms in a sampling of bioinformatics papers, as presented by isroy et al.75

Algorithm Percentage (2010) Percentage (2011) Percentage (2010–2011)

decision tree (dt) 26 24 26

Support Vector Machine (SVM) 51 69 57

rule Based Learning 4 3 4

Artificial neural network (Ann) 10 17 13

naive Bayes (nB) 16 14 15

k-nearest neighbor (Knn) 15 17 15

Table 2. Performance of the MLP and SVM on Glaucoma diagnosis, as presented by chan et al.76

Sensitivity at specificity of

rOc area 0.9 0.75

Full MLP 0.883 0.66 0.859

Gaussian SVM 0.914 0.776 0.878

Linear SVM 0.893 0.66 0.853

PcA MLP 0.898 0.713 0.846

Gaussian SVM 0.904 0.744 0.833

Linear SVM 0.888 0.667 0.853
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Chang et al. directly compared the 
performance of the MLP and SVM on 
the classification of breast tumor images. 
Their results noted that the MLP and 
SVM have comparable accuracy (see 
Table 4), but the SVM could be trained 
much quicker.81

Implementations

There are a number of freely available 
open-source ANN implementations 
(in many programming languages) 
available through sites such as Google 
Code, Sourceforge and Github. The 
WEKA project (Waikato Environment 
for Knowledge Analysis) is an open-
source implementation of a library of 
different machine learning algorithms. 
Implementations in the R programming 
language are hosted on the site http://
cran.r-project.org/.

Case Studies

In the following section, we present a 
number of varied example applications of 
ANNs to bioinformatics problems. We 
do not advocate that these approaches 
necessarily represent the best approaches 
or practices, but rather they serve as 

examples of how the principles of ANNs 
can be applied to different real world 
bioinformatics problems.

Peptide Secondary 
Structure Prediction

A protein comprises of a chain or 
multiple chains of amino acid residues.82 
The chemical properties of the amino 
acids in the peptide cause the chain 
to twist and fold into a number of 
regular structures to form a stable three-
dimensional conformation.83,84 It is this 
three-dimensional conformation of the 
chains which designate the function of the 
protein.85,86 The structure of a protein is 
defined at several levels;87

• Primary structure: the order of the 
amino acid residues which constitute 
the protein

• Secondary structure: the locations 
and identities of a number of regular 
local secondary structures along the 
primary structure of the protein (such 
as the α helix and the β strand)

• Tertiary structure: the overall three-
dimensional conformation taken by a 
single peptide chain

• Quaternary structure: complexes 
formed from several peptide chains 

link together which act as a single 
protein

Example: Sequence 
Similarity Based Secondary 

Structure Prediction

Rao et al.88 gave an approach to 
identifying the secondary structure of a 
peptide given its primary structure using an 
ANN. The main idea behind the approach 
is that segments of a peptide chain with 
similar primary sequence are assumed 
to have similar secondary structure 
expressions. Under this assumption, the 
secondary structures for novel amino 
acid sequences can be generalized from 
similar amino acid sequences with known 
secondary structure classifications.

To identify the secondary structure of 
an amino acid, a window of between 15 
and 29 neighboring amino acids are used 
as the input to a neural network. The 
identity of each amino acid in the window 
is encoded using 20 inputs to the network. 
For a window of size W, the ANN is a 
single layered MLP with W*20 input 
neurons, W*2 + 1 hidden layer neurons, 
and 8 output neurons representing 
different structural designations. The 
secondary structure classification for an 

Figure 7. Generating a Q3 classification for a specific amino acid (in the dashed box) using the first Ann of PSiPred.

Table 3. comparing the performance of the MLP with the SVM on gene expression data in combination with different feature selection algorithms

Pearson Spearman euclidean distance cosine coefficient information gain Mutual information S/n ratio

MLP 97.1 70.6 97.1 79.4 72.9 62.1 94.1

SVMrBF 97.1 70.6 91.2 70.6 58.8 58.8 94.1

SVMlinear 79.4 70.6 88.2 58.8 58.8 58.8 94.1



88 Bioengineered Volume 5 issue 2

amino acid residue is therefore given as the 
classification corresponding to the highest 
output on the network. For example, if the 
first output of the network has the highest 
output, the amino acid residue under 
investigation is designated as an α-helix. 
If the last output of the network has the 
highest value, the amino acid residue 
is designated as a coil. The network is 
trained using the scaled conjugate gradient 
descent algorithm.89

The network was trained using data 
taken from the DSSP database, which 
contains peptide sequences and their 
corresponding secondary structure 
classifications.90 In evaluations on a single 
sequence, the network achieved a Q

8
 score 

of 72.3%, meaning it correctly classified 
72.3% of the amino acid residues as 
belonging to the correct one of the eight 
possible secondary structure classes.

Example: PSIPRED

PSIPRED is an application which 
predicts a proteins secondary structure 
from its primary structure using a pair of 
artificial neural networks trained using 
BP. For a given sequence, PSIPRED uses 

a “sequence profile” to examine how 
highly preserved elements of the sequence 
are relative to homologs and distant 
homologs identified from a database. 
Matching against the sequence profile is 
more relevant than the sequence itself, 
as functional regions of peptides tend 
to display a high level of preservation, 
but also as regions with high sequence 
similarity identified in the database may 
be purely coincidental. PSIPRED uses 
position specific scoring matrixes (PSSMs) 
generated as a by-product of another 
program, PSI-BLAST, to present this 
information to the first neural network.

BLAST is a tool for finding 
homologous multiple sequence alignments 
from a database for a given sequence.91 For 
a sequence of length n, n − w + 1 words of 
length w can be generated. The database 
is then searched against each word using a 
finite state machine. Words are evaluated 
using a substitution matrix, and words 
scoring above a threshold T are extended in 
both directions. Position specific iterated 
BLAST (PSI-BLAST) makes a number 
of improvements over standard BLAST.92 
One of the improvements is that once the 
original sequence alignment is completed, 
the identified similar sequences are used 
to form a PSSM of size 20× n. The process 
can then be repeated iteratively, where the 
PSSM generated in each iteration is used 
in place of the original substitution matrix. 
This iterative process allows the discovery 
of distant homologs from a database.

PSIPRED generates a classification for 
an amino acid as one of three secondary 

structure states (Q
3
); a helix, strand, or 

loop.93 The Q
3
 training and testing data 

are generated from the DSSP database Q
8
 

classifications (as used in the sequence 
similarity based approach) using the 
approach specified by Rost and Sander.94 
To generate the Q

3
 value for an amino 

acid in a given sequence, a sub-sequence 
is first generated comprising the amino 
acid and a window of seven amino acids to 
either side.95 This subsequence is then fed 
into PSI-BLAST. The values of the PSSM 
generated by PSI-BLAST after three 
iterations are used to generate 300 inputs 
(15 × 20) to the first ANN. An additional 
input is associated with each amino 
acid in the window representing if that 
amino acid spans the N or C terminus. 
The first ANN has a single hidden layer 
with 75 neurons, and 3 output layer 
neurons each representing an individual 
Q

3
 classification. The output with the 

highest evidential response is taken as 
the classification of the amino acid at 
the center of the window. This process is 
shown in Figure 7.

Once the first network has been 
applied to classify the entire sequence, a 
second neural network with 60 hidden 
layer neurons and 3 outputs is used to 
further refine the results.95 To classify an 
amino acid in the sequence, the outputs 
of the first network for the window of 15 
amino acids is used as input to the second 
network. Again, an additional input is 
added as previously for each amino acid 
in the window representing if the amino 
acid spans the N or C terminus. The 

Figure 8. improving the accuracy of the Q3 score using a second Ann.

Table 4. the performance of the MLP and SVM 
on the task of identifying breast cancer from 
image data

SVM MLP

Accuracy (%) 85.60 84.80

Sensitivity (%) 95.45 84.55

Specificity (%) 77.86 77.14
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output of the second network is still the 
Q

3
 classification of the central amino acid, 

but this network tends to be more accurate 
in deciding a conformation for an amino 
acid given likely conformations of its 
direct neighbors. These steps are shown 
graphically in Figure 8.

PSIPRED was independently 
evaluated in the CASP3 (Third Critical 
Assessment of Structure Prediction) 
competition, where it was identified as the 
top performing approach across a number 
of blind evaluations.96 PSIPRED version 
2.0 also performed well in CASP4.97 
PSIPRED 3.2 claims to achieve an average 
Q

3
 score of 81.6% (http://bioinf.cs.ucl.

ac.uk/index.php?id=779).

Gene Identification

Neural networks have previously 
been applied for the categorization of 
coding (exons) and non-coding (introns 
and intragenic spacer data) regions of a 
DNA. For an overview of eukaryote gene 
prediction strategies see Sleator.98

Example: Gene Identification 
Using Coding Measures

An interesting example of this is the 
approach taken by Fogel, Chellapilla, 
and Fogel, who construct an ANN using 
neuroevolution to classify nucleotides 
as coding or non-coding.99,100 This work 
builds on network inputs identified by 
Uberbacher and Mural for the GRAIL 
application.19

As for many gene identification 
techniques, the window is pre-processed 
to extract features of the sequence, known 
as “coding measures.”101 Coding measures 
are statistical observations on the 
differences in distribution and repeated 
patterns of the nucleotides in coding 
and non-coding regions of DNA. These 
statistics present an opportune training 
set for neural network architectures; an 
established mapping that can be used for 
training a network to differentiate coding 
gene sequences on novel input. As such, 
the neural network is employed to define a 
nonlinear weighting for each of the coding 
measures, and allowing the consideration 
of how these coding measures can affect 
probability when observed under various 
combinations.

The “frame bias matrix” is an example 
of a coding measure that works at the 
nucleotide level. The frame bias matrix 
works on the observation that the four 
nucleotides (ACGT) have different 
probabilities of being observed in the three 
codon positions for both coding and non-
coding regions.102 Therefore, the presence 
of specific nucleotides in codon locations 
can be considered as positive or negative 
indicators for the codon being in a coding 
region.

The “coding sextuple word 
preferences” coding measure works on the 
principle that certain sextuple nucleotide 
combinations can be identified which 
occur more frequently in coding regions of 
DNA.103 An instance of this would be the 
sextuple ACCGTA in the coding sequence 

C A C A C G A C C G T A C T C A C A T. 
Through examining known coding and 
non-coding regions, n-tuples words can be 
identified which have higher probabilities 
of being observed in either coding or non-
coding regions of DNA.

Many coding measures are available, 
but this approach specifies the use of nine 
to form the input to the ANN; 2 at the 
nucleotide level and 7 at the word (n-tuple) 
level.
• Frame bias matrix
• Fickett Feature
• Coding Sextuple word preferences
• Coding sextuple in-frame 

word preferences
 o Word preferences in frame 1
 o Word preferences in frame 2
 o Word preferences in frame 3
• Maximum word preferences in frames
• Sextuple word commonality
• Repetitive Sextuple word

To evaluate a nucleotide, a window of 
99 nucleotides is isolated. The nucleotides 
in the window are pre-processed to 
generate the coding measures, which are 
then fed into the ANN. The network is a 
fully connected MLP with 14 hidden layer 
neurons and a single output representing the 
derived classification. The flow of data for 
this approach is demonstrated in Figure 9. 
Post-processing is performed on the 
output of the network to improve 
performance using domain knowledge.

The synaptic weights of the ANN, 
in this situation, were trained using an 
evolutionary algorithm, which is itself 
a nature inspired machine learning 

Figure 9. classifying a nucleotide (in the dashed box) as coding or non-coding using an Ann.
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algorithm. In this evolutionary algorithm, 
large populations of potential solutions 
(in this case, sets of synaptic weights) are 
created and evaluated. In each generation, 
half of the potential solutions with lower 
performance are purged, and the survivors 
are used as the basis for a new population of 
the original size. The candidate solutions 
for the new population are created by 
modifying a single weight from a solution 
of the previous generation which showed 
good performance. In this way, over many 
generations useful elements of successful 
solutions be propagated and increasingly 
more successful networks should be 
created. The large space of potential 
solutions evaluated tend to produce an 
optimal (if not the optimal) network 
solution. 250 000 examples of coding 
and non-coding nucleotides were used to 
train the network, with the mean squared 
error and correct classification percentages 
used to select the best performing each 
generation.

The performance of this ANN based 
approach to gene identification was 
evaluated on two sets of human DNA 
sequences taken from GenBank. It has 
been reported that the network classified 
the majority of coding nucleotides 
correctly with sensitivity (the ratio of true 
positives to the number of true positives 
and false negatives) of 74% and 64%, 
outperforming a number of other systems. 
In particular, the authors of this study 
note that 1.4 times more true positives 
were observed for this approach compared 
with the GRAIL server on the same data. 
However, it was also reported that the 
network had a high false positive rate 
(some non-coding regions incorrectly as 

coding regions), resulting in a specificity 
(the ratio of true negatives to the number 
of true negatives and false positives) of 
only 38% and 42%. The authors attribute 
this over sensitivity to coding sub-
sequences on the composition of the data 
used to train the network, as it was split 
equally between coding and non-coding 
exemplars, which does not reflect real 
world sequences where it is estimated that 
only 2% is coding.104

It is noted by the authors that a system 
that reports false positives is preferential to 
a system that reports false negatives as it 
will be less likely to miss coding regions. 
On the other hand, a system that has a 
higher ratio of false negatives will report 
coding regions as being non-coding and 
so they will be potentially excluded by 
researchers from further study.

Example: Neural Network  
for Promoter Prediction (NNPP)

A common problem for neural networks 
is detecting transient patterns which 
can occur at any point over a subsection 
of an input signal. An example of this is 
promoter binding sites, which can occur 
anywhere in a window of nucleotides 
relative to the transcription start site (TSS). 
Typically, this problem can be addressed by 
(1) training a network with exemplars of 
the pattern at all possible locations, or (2) 
training a network on specific exemplars of 
the pattern and applying the network brute 
force to every point in the input space where 
the pattern may occur. The Time delay 
neural network (TDNN) is a structured 
approach to this problem, which combines 
elements of both these methods.105

TDNN was originally applied 
for detecting the presence of specific 
phonemes from speech samples. The 
TDNN operates by learning feature 
detectors (the hidden layer neurons) for 
patterns which are replicated to cover the 
input signal in a continuous overlapping 
manner.106 Each feature detector examines 
only a subsection of the input signal, 
referred to as the detector’s receptive field. 
The activation of all the feature detectors 
is then combined to determine if the 
desired pattern is identified anywhere in 
the signal.

TDNN weights are learned using a 
modified BP algorithm. An input signal 
is applied to the network in the standard 
feed-forward manner and BP used to 
calculate the error and identify the weight 
adjustment for each synapse. As a set of 
replicated feature detectors are all looking 
for the same pattern (but at different 
points in the signal), a synaptic weight 
is actually updated as the average weight 
adjustment (Δ) generated by BP for the 
corresponding synapse across all copies 
of that feature detector. This approach 
means that the actual offset of the pattern 
in the exemplar signals does not affect 
training or recognition.

The Neural Network for Promoter 
Prediction (NNPP) approach employs two 
of these TDNNs.107 Given a nucleotide 
sequence, each TDNN will each examine 
a different overlapping window of 
nucleotides for patterns representing a 
TATA box and initiator box respectively. 
Both TDNNs are trained separately and 
subsequently combined to form a super 
network which can consider the presence 
or absence of both binding sites and their 

Figure 10. the windowed subsection of the input sequence and the receptive frames for the initiator box. each receptive field frame is connected to a 
separate feature detector.
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relative positions to decide if a point in the 
sequence is a TSS.

The input to the TDNN for identifying 
an initiator box is a window of 25 base pairs, 
ranging from 14 base pairs upstream to 11 
base pairs downstream of the point in the 
sequence under investigation. Instead of a 
time delay as for the standard TDNN, each 
nucleotide in the window is considered as 
a time slice in a signal. The initiator box 
detector TDNN employs a receptive field 
size of 15 base pairs. Therefore, 11 feature 
detectors are required to cover all possible 
15 nucleotide frames in the window, as 
demonstrated in Figure 10. Each base 
pair is encoded in four binary bits, so each 
feature detector will receive 60 (4*15) 
synaptic connections, connecting it to 
a subset of the window. The TDNN for 
detecting TATA boxes works in exactly 
the same manner, but examines a window 
of between 40 base pairs upstream to 10 
base pairs upstream of the point in the 
sequence under investigation.

The NNPP was tested on the Adh 
region of the Drosophila genome. 
The data set comprised 2.9 million 
nucleotides with 92 annotated promoters. 
The NNPP super-network accepts a 
window of 51 bases comprising the two 
overlapping windows used by the pair 
of hidden layers. The window is moved 
along the entire sequence and a score 
generated for each nucleotide as a TSS. 
The scores are post-processed using a 
simple smoothing function as part of the 
NNPP process. The NNPP approach 
correctly identified 69 of the 92 known 
promoters (Sensitivity of 75%), and 
achieved 99.82% specificity. If a more 
exacting threshold was applied to only 
accept promoter classifications where the 
NNPP has a confidence in the prediction 
of greater than or equal to 97%, the 
specificity increased to 99.96% (1 false 
positive per 2416 nucleotides), but the 
NNPP could still successfully detect 
38% of the known promoters.

Although the results produced cannot 
account for all promoter regions, the low 
levels of false positives observed have 
helped NNPP find a great number of 
applications in identifying and verifying 
putative TSSs, often to complement other 
TSS identification approaches.108-112

Gene-Gene Interaction

Genome wide association studies 
(GWAS) are used to identify genetic risk 
factors for common diseases. Genetic 
association studies directly compare 
the sequences of genotypes between 
target (displaying a specific trait or 
condition) and control populations. Any 
single nucleotide polymorphisms (SNP) 
common in the target group and rare in 
the other is taken as a likely contributing 
factor. Although examining individual 
SNPs in isolation has identified many 
genetic risk factors across a range of 
conditions such as type II diabetes and 
HDL-cholesterol, this approach has 
not been able to explain much of the 
causation thought to be attributable to 
genetic variation. Examining the target 
population in terms of epistasis (two or 
more interacting genes) is significantly 
more difficult because of the “curse of 
dimensionality”; as the pre-requisite for the 
situation (disease) becomes more complex, 
the amount of representative data becomes 
reduced and more difficult to identify. 
Additionally, epistatic interactions are 
typically observed with low effect sizes.

Example: ATHENA

ATHENA (Analysis Tool for Heritable 
and Environmental Network Associations) 
employs a neural network as a means of 
data mining such gene-gene interactions 
from genome wide association studies.113 
Data mining is the process of discovering 
unknown patterns from large data sets, in 
this case the identification of the epistatic 
SNPs among a large number of unrelated 
SNPs.114,115 This approach uses a form of 
neuroevolution, grammatical evolution 
neural networks (GENN), to efficiently 
search the space of possible network inputs 
(feature selection) without the need for 
brute-force trial of all possible two locus 
SNP combinations.

Similar to the approach of Corne et al. 
described previously, the GENN used 
in ATHENA is a form of evolutionary 
algorithm which evolves a population 
of differing neural network solutions, 
but GENN also attempts to evolve 
the architecture of the network.116 

Combinations of inputs and hidden 
layer neurons which show relevance 
to predicting potential disease cases 
are replicated and disseminated across 
increasing solutions over the following 
generations. Crossover and mutation are 
used to evolve new generations of the 
population. Allele variations, which form 
the inputs to the network are encoded as 
(-1, 0, +1) representing the three forms of 
a gene with an SNP (AA, Aa, aa).

The process was evaluated in silico 
using a simulation study for accurate 
evaluations of the process such that 
the true effect of each SNP is known 
and understood. The exemplars were 
generated with epistasis occurring under 
two models; the additive and dominant 
models. Under the additive model for 
example, the penetrance of a disease is 
increased as a function of the number of 
recessive alleles; i.e., for AABB penetrance 
will be at a minimum, but at a maximum 
for aabb. Two thousand exemplars are 
generated using the genomeSIMLA 
application. Each exemplar consisted of 
2 epistatic SNPs and 498 irrelevant (to 
the particular disease penetrance) SNPs. 
Narrow-sense heritability was set at only 
5% in the generated data, meaning very 
few of the case exemplars display the 
epistatic trait. The low epistatic effect size 
is typical of real world data. A 1% main 
effect is simulated for each of the epistatic 
loci.

In some of the trials, a hybrid learning 
approach was used in which the BP 
algorithm trained the initial network 
population, and again after a number of 
generations. BP was run for a maximum 
of 100 epochs on each network. The 
authors also investigate the use of existing 
domain knowledge as a means of filtering 
the search space. This domain knowledge 
for the experiment is again simulated, 
mimicking the scores produced for SNP 
pairs generated by the Biofilter application. 
Biofilter examines available databases for 
published information which supports 
the selection of pairs of SNPs.117 The 
higher the implication score generated by 
Biofilter, the more support that can be 
found for that SNP pair. This implication 
level is simulated in the data by generating 
4000 random edges.
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Trials were performed under differing 
implication levels, differing proportions 
of the population intelligently initialized 
using the domain knowledge, and in the 
presence of absence of backpropagation. 
To test each combination of these 
parameters 100 data sets were generated. 
Sensitivity was defined as the proportion 
of those 100 data set for which the best 
performing network identified (accepted 
as inputs) only the two SNPs generating 
the epistasis in the data set. The results 
attained by Turner et al.:
• Demonstrate the ability of neural 

networks to identity and model 
nonlinear interaction in data sets in 
spite of low effect levels (5%) and in 
the presence of substantial levels of 
noise

• Display the potential for efficiency 
gains when domain knowledge is 
incorporated into large search spaces, 
which is extremely important in the 
case of large scale problems such as 
genome wide association studies

Conclusions

Neural networks are a potentially 
powerful tool for bioinformatics, with 
reported successful applications across 
many areas and levels of the domain. 
The example applications given here 
show ANNs as being able to identify 
and model complex patterns and manage 
large data sets, which can be both sparse 
and noisy.

The theory of neural networks is 
still evolving as the problems faced 
are changing. For example, Hawkins’s 
Hierarchical Temporal Memory (HTM) is 
an ANN model suggested as an alternative 

to storing large amounts of data common 
in commercial and bioinformatics 
domains.118 Built on an improving 
understanding of how the brain works, 
the HTM is a rough approximation of 
how layer 3 of the neocortex operates. It is 
a more biologically plausible ANN, which 
attends that the brain is a memory system 
as opposed to a processor (as with MLPs). 
The approach postulates that data in many 
domains decreases in relevance as it ages. 
Instead of storing all the data, the HTM 
builds a model encoding the patterns 
in the data, and constantly updates the 
model as new data becomes available. 
The HTM is capable of Identifying and 
modeling spatial (combinations that 
occur together) and temporal (spatial 
patterns occur together over time) 
patterns, and detecting anomalies in large  
data sets.119

Another area of ANN research which 
is gaining in popularity as its power 
is being full understood, is the idea of 
a “deep neural network”120 (DNN); 
neural networks comprising many 
hidden layers. These deep network 
architectures can be powerful, but the 
typical backpropagation algorithm can 
struggle or become intractable when 
it is required to learn many hidden 
layers, as the error signal being back 
propagated is constantly reducing.121,122 
Hinton et al. describe a variation of the 
restricted Boltzmann machine (RBM) 
neural network approach capable of 
learning many layers,123 where each 
layer is a further abstraction of features 
in the training data.124,125 These feature 
abstractions of the network are trained 
to encode an input signal (the training 
exemplars) through a number of layers, 

and decode it back through the network to 
be able to replicate a good approximation 
of the original signal. In bioinformatics, 
a common problem is the lack of 
classified data. Generative models, such 
as Hinton’s RBM can be used to mitigate 
this issue, as it can handle the difficult 
problem of learning these abstractions 
without the need for labeled data.126 A 
smaller amount of labeled exemplars can 
be used to train the network to act as a 
classifier.

ANNs may not always be the best 
approach to solving a problem. Although 
ANNs work in the absence of key 
domain knowledge, significant domain 
knowledge can be required in selecting 
the inputs and knowing how best to 
pre-process the input values. However, 
identifying what is relevant is often an 
easier task than defining how these values 
should be interpreted. If a problem is well 
understood, and can be addressed using a 
set of known and understood rules, this 
can be favorable or less error prone than 
the decisions or interpretations of stimuli 
produced by a neural network. There is 
also the need for a sufficient amount of 
accurately classified training data to be 
available to adequately describe the remit 
of situations the network must learn, 
which may not be readily available.
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