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Sex hormone-binding globulin (SHBG) is a serum protein released mainly by the liver, and a low serum level correlates with a risk
for metabolic syndrome including diabetes, obesity, and cardiovascular events. However, the underlying molecular mechanism(s)
linking SHBG and metabolic syndrome remains unknown. In this study, using adipocytes and macrophages, we focused on the
in vitro effects of SHBG on inflammation as well as lipid metabolism. Incubation with 20 nM SHBG markedly suppressed
lipopolysaccharide- (LPS-) induced inflammatory cytokines, such as MCP-1, TNFα, and IL-6 in adipocytes and macrophages,
along with phosphorylations of JNK and ERK. Anti-inflammatory effects were also observed in 3T3-L1 adipocytes cocultured
with LPS-stimulated macrophages. In addition, SHBG treatment for 18 hrs or longer significantly induced the lipid degradation
of differentiated 3T3-L1 cells, with alterations in its corresponding gene and protein levels. Notably, these effects of SHBG were
not altered by coaddition of large amounts of testosterone or estradiol. In conclusion, SHBG suppresses inflammation and lipid
accumulation in macrophages and adipocytes, which might be among the mechanisms underlying the protective effect of SHBG,
that is, its actions which reduce the incidence of metabolic syndrome.

1. Introduction

SHBG is a 40–50 kDa protein mainly synthesized in the liver
and secreted into the bloodstream. This protein is comprised

of two laminin G-like (LG) domains [1], and the molecular
weights of serum SHBG proteins are partially dependent on
their glycosylation status [2]. The conventional roles of
SHBG involve transporting sex hormones and the regulation
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of hormone dynamics [3]. Numerous studies have confirmed
the relationship between the serum SHBG concentration and
metabolic syndrome. Low SHBG concentrations correlate
with higher levels of serum inflammatory markers [4, 5]. Rel-
atively low levels of SHBG are also a risk factor for obesity,
metabolic syndrome, and diabetes [6–10]. Thus, the serum
SHBG concentration has been regarded as a biomarker for
metabolic syndrome.

On the other hand, interestingly, db/db mice overex-
pressing human SHBG reportedly show resistance to the
development of obesity and hepatosteatosis [11, 12]. In addi-
tion, a single nucleotide polymorphism related to an elevated
plasma SHBG concentration reportedly correlates with a
reduced risk of diabetes [13]. The hormone-like effect of
SHBG has also been demonstrated in experiments using
prostatic cells [14, 15], MCF-7 breast cancer cells [16], cyto-
trophoblasts [17], proximal tubule epithelial cells [18, 19],
and hepatocytes [12]. The results of these previous studies
led us to speculate that the serum SHBG level is not only sim-
ply a consequence of altered metabolic conditions but also
exerts favorable effects protecting against the development
of metabolic disorders.

In this study, using adipocytes and macrophages, we
focused on the in vitro effects of SHBG in inflammation as
well as lipid metabolism, since lipid accumulation and
inflammation are both necessary for the development of
metabolic syndrome. Herein, we present evidence of the
favorable actions of SHBG in adipocytes and macrophages.

2. Materials and Methods

2.1. Chemicals and Reagents. SHBG protein was purchased
from two companies, Abcam (ab151275) and Fitzgerald
Industries (30-AS40). According to the explanations pro-
vided by these manufacturers, SHBG protein was purified
from human sera, and its purity exceeded 90%. While we
confirmed the effects of SHBG from these two companies
to be the same, the data presented herein were those obtained
with the SHBG from Abcam. In addition, we measured the
amounts of testosterone and estradiol contaminating the
SHBG protein, since no information was given regarding this
issue in the materials provided by the manufacturers. Sex
hormones were measured using the ELISA kits for testoster-
one and estradiol (Cayman) according to the manufacturer’s
instructions. Diethyl ether was added to the SHBG protein
samples and mixed thoroughly with a vortex. The upper
ether layer was collected using a pasteur pipette and trans-
ferred into a clean tube. This extraction procedure was
repeated four times. After evaporating the combined ether
extracts, the samples were dissolved in the buffer and sub-
jected to analysis with the ELISA kits.

Lipopolysaccharide (LPS) (from Escherichia coli 0111:B4)
was purchased from Sigma. Recombinant murine TNFα was
purchased from Genzyme (3410T). Anti-β-actin antibody
(sc-1616), anti-CCAAT/enhancer binding protein α (CEBPα)
antibody (sc-61), and horseradish peroxidase- (HRP-) labeled
anti-goat IgG antibody (sc-2020) were from Santa Cruz
Biotechnology. Anti-TNFα antibody (#11948), anti-stress-
activated c-Jun amino-terminal kinase (JNK)1/2 antibody

(#9252), anti-phospho-extracellular signal-related kinase
(ERK)1/2 (Thr202/Tyr204) antibody (#9101), anti-ERK1/2
antibody (#9102), anti-adipose triglyceride lipase (ATGL)
antibody (#2439), HRP-labeled anti-rabbit (#7074), and
anti-mouse IgG antibody (#7076) were all fromCell Signaling
Technology. Anti-phospho-JNK1/2 (Thr183/Tyr185) anti-
body was obtained from BD Biosciences (#562480).

2.2. 3T3-L1 Cell Culture and Differentiation. 3T3-L1 cells
were differentiated as previously described [20, 21] with
some modifications. Briefly, 3T3-L1 cells were cultured in
Dulbecco’s Modified Eagle’s medium (DMEM) (Wako) con-
taining 10% donor calf serum (Invitrogen) in a 5–10% CO2
incubator. For the experiments, cells were spread onto colla-
gen type I coated plates (Iwaki) and induced to differentiate
withDMEMcontaining 10% fetal calf serum (FCS) (Biowest),
0.5mM 3-isobutyl-1-methylxanthine (Sigma), 4μg/ml dexa-
methasone (Sigma), and 167 nM insulin (Sigma). Two days
later, the media were replaced with DMEM containing 10%
FCS and 167nM insulin. After another two days, the media
were replaced with DMEM containing 10% FCS and the
media were then changed every other day. Penicillin-
streptomycin (Invitrogen) was added to all media at a
0.5% concentration.

For experiments on mature 3T3-L1 cells, we used cells
that had been differentiating for more than 6 days [22].
Mature adipocytes were treated with SHBG proteins in phe-
nol red-free DMEM (Wako) containing 0.2% fatty acid-free
bovine serum albumin (BSA) (Wako). The concentration of
BSA was much higher than that of SHBG protein. We used
phenol red-free media to eliminate estrogen-like effects of
phenol red [23].

For experiments evaluating inflammatory cytokine levels
in adipocytes, 3T3-L1 cells were pretreated overnight with
20 nM SHBG, followed by stimulation with 1 ng/ml LPS or
1 ng/ml TNFα for 12–24hrs. In some experiments, 1 or
20μM testosterone (T) (Wako, 208-08341) or 17β-estradiol
(E2) (Sigma, E8875) was coadded with 0–20nM of SHBG
protein. Considering the amounts and the reported associa-
tion constants of T and E2 with SHBG (1.6× 109M−1 and
6.8× 108M−1, resp. [24]), it was assumed that more than
99% of SHBG would form a complex with T or E2.

2.3. Quantitative Reverse-Transcription Polymerase Chain
Reaction (qRT-PCR). Total RNA was extracted using the
RNeasy Mini Kit (Qiagen). Reverse transcription was per-
formed using Transcriptor Universal cDNA Master (Roche)
followed by RT-PCR employing LightCycler 480 SYBR
Green I Master (Roche). Sequences of the primers used in
this study are listed in Table 1. The 36B4 mRNA level served
as the internal control.

2.4. Preparation of Mouse Peritoneal Macrophages. The iso-
lation protocol was reported previously [39, 40] and
achieved a final cell population comprised of more than
90% macrophages. We employed this protocol, with a slight
modification. Peritoneal macrophages were collected from
C57BL/6N mice. RPMI 1640 media without phenol red
(Gibco) was used, and the cells were incubated at 37°C in a
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5% CO2 incubator. Macrophages were collected by injection
of 5ml of RPMI 1640 media containing 10% FCS intraperi-
toneally under diethyl ether anesthesia and then left on ice
until centrifugation. After centrifugation at 1500 rpm for 2
minutes at room temperature, the supernatant was removed,
and hemolysis buffer (BD PharmLyse) was added to remove
the red blood cells. After 2 minutes, we centrifuged the sam-
ples at 1500 rpm for 2 minutes at room temperature and the
supernatant was removed. Cells were seeded at a density of
1.5× 106 cells/well in a 12-well plate in RPMI 1640 media
containing 10% FCS. Two hours later, the cells were gently
washed twice with RPMI 1640 media to remove nonadher-
ent cells and the medium was then replaced with RPMI
1640 containing 0.2% fatty acid-free BSA for the experi-
ments. For experiments evaluating inflammatory cytokine
levels in macrophages, cells were pretreated with 20 nM
SHBG overnight, followed by 1ng/ml LPS for 0–8hrs.

2.5. Immunoblotting Analysis. The cells were solubilized with
Laemmli buffer (0.2M Tris·HCl, 4% SDS, 10% glycerol, 5%
2-mercaptoethanol, and 0.1% bromophenol blue) containing
100mM dithiothreitol. Equal amounts of protein from
whole cell lysates were resolved by SDS-PAGE. Then, the
proteins were transferred to Immobilon (Millipore), blocked
with 1% BSA (Intergen), reacted with the primary antibodies
and subsequently with theHRP-labeled secondary antibodies.

Chemiluminescence was detected using an ImageQuant LAS
4000 mini (Fuji Film).

2.6. Coculture System of 3T3-L1 Adipocytes and Murine
Macrophages. The 3T3-L1 adipocytes and murine macro-
phages were cocultured in a transwell system (Corning,
Acton, MA) with a 0.4μm porous membrane to separate
the upper and lower chambers. Mouse peritoneal macro-
phages were harvested and seeded at a density of 1.5× 106
cells/well in the upper chamber, while differentiated 3T3-L1
cells were in the lower chamber. Both macrophages and
differentiated 3T3-L1 cells were washed with RPMI 1640
medium, and the culture medium was then replaced with
RPMI 1640 containing 0.2% fatty acid-free BSA for the
experiments. SHBG at the 20 nM concentration was added
to both the upper and the lower chambers, and coculture
was then started. After incubation overnight, 100 pg/ml LPS
was added and the cells were collected 12 hrs later.

2.7. Lipid Staining. Differentiated 3T3-L1 cells were treated
with 0–100nM SHBG protein in serum-free media and
incubated for 3 days, followed by Oil Red O staining or Nile
Red staining.

Oil Red O (Sigma) was dissolved in isopropanol to assure
that the concentration would be 0.3%. This stock solution
was mixed with distilled water (3 : 2), followed by incubation

Table 1: Primer sequences used for this study.

Gene Forward primer (5′ → 3′) Reverse primer (5′ → 3′) Reference

36B4 GCTCCAAGCAGATGCAGCA CCGGATGTGAGGCAGCAG [25]

Mcp-1 AGGTCCCTGTCATGCTTCTG TCTGGACCCATTCCTTCTTG [26]

Tnfa GAACTGGCAGAAGAGGCACT AGGGTCTGGGCCATAGAACT [26]

Il-6 TCGTGGAAATGAGAAAAGAGTTG AGTGCATCATCGTTGTTCATACA [27]

Cebpa TGAGCCGTGAACTGGACACG CAGCCTAGAGATCCAGCGAC [28]

Pparg TCTTCCATCACGGAGAGGTC GATGCACTGCCTATGAGCAC [28]

Srebp1 AAGCAAATCACTGAAGGACCTGG AAAGACAAGGGGCTACTCTGGGAG [29]

Fas ATCCTGGAACGAGAACACGATCT AGAGACGTGTCACTCCTGGACTT [30]

Acsl1 GACGACCTCAAGGTGCTTCA ACCCAGGCTCGACTGTATCT —

Pepck CTAACTTGGCCATGATGAACC CTTCACTGAGGTGCCAGGAG [31]

Pgc1b GCTCTGACGCTCTGAAGGAC CACCGAAGTGAGGTGCTTATG [30]

Hsl CAGTGCCTATTCAGGGACAGAG CACTCCTGCGCATAGACTCC —

Mgl AGGCGAACTCCACAGAATGTT AGCCAGCTCATCATAACGGC —

Acrp30 GCTCCTGCTTTGGTCCCTCCAC GCCCTTCAGCTCCTGTCATTCC [32]

Glut4 CAGCTCTCAGGCATCAAT TCTACTAAGAGCACCGAG [33]

Fabp4 TGGGAACCTGGAAGCTTGTC CTTTCCTTGTGGCAAAGCCC —

Atgl AACACCAGCATCCAGTTCAA GGTTCAGTAGGCCATTCCTC [34]

Ucp2 CTACAAGACCATTGCACGAGAGG AGCTGCTCATAGGTGACAAACAT [35]

Agt AGGTTGGCGCTGAAGGATAC GATGTATACGCGGTCCCCAG [36]

Pgc1a GCCCGGTACAGTGAGTGTTC CTGGGCCGTTTAGTCTTCCT [30]

Cebpb CAAGCTGAGCGACGAGTACA AGCTGCTCCACCTTCTTCTG [37]

Ppara CGGGAAAGACCAGCAACAAC TGGCAGCAGTGGAAGAATCG [30]

Chrebp GATGGTGCGAACAGCTCTTCT CTGGGCTGTGTCATGGTGAA [30]

Ucp1 GATGGTGAACCCGACAACTT CTGAAACTCCGGCTGAGAAG [38]

Cpt1a GACTCCGCTCGCTCATTCC ACCAGTGATGATGCCATTCTTG —
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for 30 minutes, and filtered with 0.45μm before use. The cells
were washed twice with PBS and fixed with 10% neutral buff-
ered formalin for 10 minutes. After the cells were washed
twice with PBS, Oil Red O working solution was added
followed by another 10-minute incubation and then washed
with PBS. Images were taken using a light microscope
FSX100 (Olympus).

Nile Red (AdipoRed, Lonza) becomes fluorescent when it
is partitioned in a hydrophobic environment and shows
selective fluorescence for intracellular lipid droplets [41].
The staining protocol was carried out according to the man-
ufacturer’s instructions. Fluorescence with excitation at
485nm and emission at 535 nM was measured using ARVO
MX-fla (PerkinElmer).

2.8. Measurement of Glycerol in the Culture Medium. Differ-
entiated 3T3-L1 cells were treated with 20 nM SHBG protein
for 18 or 35hrs. Glycerol concentrations in culture media
were measured employing a Glycerol Assay Kit (Sigma).
With this kit, the glycerol concentration is determined by a
coupled enzyme assay involving glycerol kinase and glycerol
phosphate oxidase, resulting in a colorimetric product.

2.9. cAMP Measurement. Differentiated 3T3-L1 cells were
treated with 20nM SHBG protein or 10μM isoproterenol
for 1 or 18 hrs. Intracellular cAMP concentrations were mea-
sured using a cAMP EIA kit (Cayman). This assay is based on
the competition between free cAMP and a cAMP tracer.
Measurements were carried out according to the manufac-
turer’s instructions. Stimulation with isoproterenol (Sigma)
was used to confirm the production of cAMP.

2.10. Data Analysis. All data are presented as the means±
standard deviation (S.D.). The differences between two
groups were evaluated by t-test. p< 0.05 was considered to
indicate a statistically significant difference.

3. Results

3.1. SHBG Suppressed LPS- or TNFα-Induced Inflammatory
Cytokine Levels in Mouse Peritoneal Macrophages and
Differentiated 3T3-L1 Cells. First of all, we measured the con-
centrations of testosterone and 17β-estradiol contaminating
the SHBG protein purchased from Abcam, to exclude the
possibility of its functions being attributable to these sex hor-
mones. The results obtained with the ELISA assay kits
revealed that Abcam’s SHBG protein contained molar ratios
of 1 : 5600 and 1 : 10000 for testosterone and estradiol, respec-
tively, to SHBG. Therefore, it is unlikely that the contaminant
testosterone and 17β-estradiol contributed to the results
obtained using Abcam’s SHBG protein in this study.

Murine macrophages were stimulated with or without
1 ng/ml LPS for 8 hrs, and the effects of 20nM SHBG were
examined. While LPS markedly raised mRNA levels of
monocyte chemoattractant protein-1 (MCP-1), TNFα, and
IL-6, SHBG suppressed them under both basal and
LPS-stimulated conditions in the approximate range of
50–90% (Figure 1(a)).

Next, the effects of SHBG on the signal transductions
leading to inflammatory cytokine levels were investigated.

Maximal phosphorylations of JNK1/2 and ERK1/2 occurred
at 30min after the addition of 1 ng/ml LPS, while the intra-
cellular TNFα content peaked around 2hrs. In the presence
of 20 nM SHBG, LPS-induced phosphorylations of JNK1/2
and ERK1/2 as well as TNFα production were reduced. The
band intensity of TNFα normalized by β-actin at 2 hrs,
phosphorylation of JNK normalized by JNK at 1 hr, and
phosphorylation of ERK normalized by ERK at 1 hr were
significantly decreased (Figure 1(b)).

Similarly, the effects of SHBG on MCP-1 and IL-6
levels in 3T3-L1 adipocytes were investigated, by stimulating
these cells with LPS or TNFα and comparing the results to
those in adipocytes without stimulation. It was revealed that
20 nM SHBG markedly suppressed LPS-induced MCP-1
and IL-6 mRNA upregulations as well as TNFα-induced
MCP-1 levels (Figure 1(c)). These results indicate that
SHBG exerts anti-inflammatory effects directly on macro-
phages and adipocytes.

3.2. Inflammatory Cytokine Levels Were Also Suppressed in
the Coculture System of Peritoneal Macrophages and 3T3-L1
Adipocytes. We cocultured 3T3-L1 adipocytes and murine
macrophages using a transwell system. Then, LPS was added,
and the resulting cytokine levels in both 3T3-L1 adipocytes
and macrophages were compared between the presence and
the absence of 20nM SHBG. In this experiment, SHBG
exerted inhibitory effects on basal cytokine levels in 3T3-L1
adipocytes. Notably, the addition of 20nM SHBG markedly
suppressed LPS-induced MCP-1 and IL-6 levels in 3T3-L1
adipocytes (Figure 2(a)), as well as MCP-1, TNFα, and IL-6
levels in murine macrophages (Figure 2(b)). Although the
optimal medium for 3T3-L1 cells is DMEM, coculturing
in RPMI did not apparently impair the functions of
3T3-L1 cells.

3.3. SHBG Reduced the Lipid Accumulation in 3T3-L1
Adipocytes. Differentiated 3T3-L1 cells were treated with
SHBG proteins at the indicated concentrations in serum-
free media and incubated for 3 days and followed by Oil
Red O staining (Figure 3(a)). It was revealed that SHBG pro-
tein reduced lipid accumulation in 3T3-L1 adipocytes in a
concentration-dependent manner. Glycerol concentrations
in the culture media were increased in the presence of
20 nM SHBG for 18 or 35hrs (Figure 3(b)), which suggests
lipolysis to be enhanced by SHBG. It was found that SHBG
did not alter the intracellular cAMP concentration, in con-
trast to the marked cAMP increase induced by isoproterenol
(Figure 3(c)). Interestingly, treatment with 20 nM SHBG pro-
teins for 3 days markedly reduced CEBPα and increased
ATGL proteins (Figure 3(d)).

3.4. SHBG Altered the mRNA Levels Related to Lipid
Metabolism in Differentiated 3T3-L1 Adipocytes. Differen-
tiated 3T3-L1 cells were treated with 20nM SHBG pro-
tein for 18 hrs, and mRNA levels were measured by
RT-PCR. Importantly, mRNA levels of CEBPα, peroxi-
some proliferator-activated receptor γ (PPARγ), and sterol
regulatory element-binding protein 1 (SREBP1), gene encod-
ing key transcriptional factors for adipogenic differentiation
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Figure 1: SHBG inhibits inflammatory cytokine levels in peritoneal macrophages and differentiated 3T3-L1 cells. (a) Peritoneal macrophages
fromC57BL/6mice were treated with SHBG overnight, followed by 1 ng/ml LPS stimulation for 8 hrs. mRNA levels of inflammatory cytokines
weremeasured byRT-PCR. Student’s t-test was performed.Data are themeans± S.D. (n = 4, ∗p < 0 05, ∗∗p < 0 01). (b) Peritonealmacrophages
from C57BL/6 mice were treated with SHBG protein overnight, followed by 1 ng/ml LPS stimulation for the indicated times. Inflammatory
signaling was evaluated by Western blotting. Each band was quantified using ImageJ. Relative intensities are shown. Data are the
means± S.D. (n = 3, ∗p < 0 05, ∗∗p < 0 01). (c) Differentiated 3T3-L1 cells were treated with SHBG proteins overnight, followed by
1 ng/ml LPS or 1 ng/ml TNFα stimulation for 24 hrs. mRNA levels of MCP-1 and IL-6 were measured by RT-PCR. Student’s t-test
was performed. Data are the means± S.D. (n = 3, ∗∗p < 0 01).
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and triglyceride synthesis, are significantly downregulated
by 18hrs of incubation with 20 nM SHBG. The genes
downregulated by SHBG included fatty acid synthase
(FAS), acyl-CoA synthetase 1 (ACSL1), phosphoenolpyruvate
carboxykinase (PEPCK), PPARγ co-activator-1β (PGC1β),
hormone-sensitive lipase (HSL), monoacylglycerol lipase
(MGL), adipocyte complement-related protein of 30 kDa
(ACRP30), glucose transporter type 4 (GLUT4), and fatty acid
binding protein 4 (FABP4), while ATGL, uncoupling protein-
2 (UCP2), and angiotensinogen (AGT) were all upregulated.
PGC1α, CEBPβ, PPARα, carbohydrate response element
binding protein (ChREBP), UCP1, and carnitine palmitoyl-
transferase 1A (CPT1A) were not significantly changed.
Taken together, these observations raise the possibility that
SHBG induces dedifferentiation via downregulation of its
key transcription factors and lipid metabolism genes
(Figure 4).

3.5. Coincubations with an Excess of Testosterone or
17β-Estradiol Did Not Affect the Function of SHBG. Differen-
tiated 3T3-L1 cells were treated with 20nM SHBG in the
presence or absence of 1μM testosterone or 17β-estradiol
overnight and then stimulated with 1ng/ml LPS for 12 hrs.
The suppressive effects of SHBG on MCP-1 and IL-6

levels were unaffected by testosterone or 17β-estradiol
(Figure 5(a)). Similarly, no significant effect of testosterone
or 17β-estradiol on the reduced lipid content by SHBG
was observed in 3T3-L1 adipocytes (Figure 5(b)).

4. Discussion

In the present study, it was clearly demonstrated that SHBG
exhibits anti-inflammatory effects involving macrophages
and adipocytes, as evidenced by suppressed mRNA levels
for inflammatory cytokines such as MCP-1, TNFα, and
IL-6. MCP-1, which is known to be highly expressed in
adipocytes, is related to the induction of chronic inflam-
mation [42]. Chronic inflammation in adipose tissues is
reportedly exacerbated by LPS from the intestinal tract
accompanied by obesity or high-fat diets [43–45]. In addi-
tion, it is very likely that SHBG enhances lipolysis or
induces dedifferentiation of mature adipocytes, based on
the effects on a series of mRNA level data. Under condi-
tions of obesity, macrophages reportedly infiltrate adipose
tissue, and interactions between macrophages and adipo-
cytes occur via a paracrine mechanism [46], which exacer-
bates the metabolic syndrome phenotype. Our experiments
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Figure 2: SHBG inhibits inflammatory cytokine levels in 3T3-L1 cells cocultured with peritoneal macrophages. Differentiated 3T3-L1 cells
and peritoneal macrophages from C57BL/6 were cocultured using a transwell system overnight, in culture media with or without SHBG
protein. Thereafter, we added 100 pg/ml LPS to the culture media and cells were collected 12 hrs later. mRNA levels of inflammatory
cytokines in each cell were measured by RT-PCR. Student’s t-test was performed. Data are the means± S.D. (n = 3, ∗p < 0 05, ∗∗p < 0 01).
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using a coculture system yielded results supporting the
anti-inflammatory effects of SHBG.

It should be noted that the SHBG concentration used in
this study is physiological. The median serum SHBG concen-
tration is 20.8 nM in young adult men, increasing to 44.5 nM
with aging [47]. Women have serum SHBG concentrations
several times higher than those in men, reaching approxi-
mately 100nM [47, 48]. Thus, the 20 nM mainly used in
our experiments is the approximate normal lower limit.
Thus, it may be reasonable to regard SHBG as contributing
to protection from metabolic syndrome accompanying
inflammation and obesity.

Assuming the presence of a specific receptor for SHBG,
signal transduction from the SHBG receptor reportedly
suppresses the phosphorylations of JNK and ERK, possibly
inhibiting the activation of transcriptional factors such as
AP-1 [49, 50]. AP-1 regulates MCP-1, a key chemokine for
monocyte/macrophage migration and infiltration [51].

Lipolytic actions of SHBG were observed to be accompanied
by changes in various mRNA and protein levels. Key
transcription factors such as CEBPα, PPARγ, and SREBP1
controlling adipogenesis and lipogenesis were suppressed
by SHBG. SHBG might influence the metabolic processes in
adipocytes by modulating nutrient usage or hormonal cas-
cades including growth factor signaling. There aremany other
documented mechanisms of action of SHBG. The increased
intracellular cAMP levels in several cells [14, 16, 17] suggest
the involvement of G protein and adenylate cyclase, though
neither of these responses was observed in our present exper-
iments. SHBG protein itself might not exert activity inducing
signaling cascades. For example, SHBG reportedly competes
with osteocalcin-induced signaling by binding to GPRC6A
[52]. Such chronic and low-grade inhibition or modulation
of other protein receptor-mediated processes might be
important. Although SHBG is certainly a trace protein in
serum, the local concentrations in tissues can be high,
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considering the finding that the fibulin family sequesters
SHBG and possibly controls access of some molecules to tar-
get cells [53, 54]. Furthermore, the internalization of SHBG
and actions within cells, reportedly enhancing or inhibiting
sex hormone actions [15, 18, 19], might be physiologically
meaningful. The modes of SHBG action might differ depend-
ing on the targeted cell or phenotype, although the relevant
SHBG receptor(s) has not yet been identified. Further investi-
gations are necessary to unravel these mechanisms.

SHBG exists as a complex with sex hormones to some
degree in sera. In human sera, the proportion of unbound
SHBG to total SHBG is 50% in men and 80% in women
[55]. Considering the reported association constants [24],
the coincubations with an excess of testosterone or 17β-

estradiol in our experiments were postulated to have
saturated the binding sights of SHBG proteins. One limita-
tion of this study is that we could not determine precisely
the proportions of SHBG protein coupled and uncoupled
with sex steroids when excess amounts of sex hormones
were added. However, considering that very small amounts
of sex steroids were present as contaminants of Abcam’s
SHBG protein and that the addition of excess amounts
of sex steroids did not affect the actions of SHBG, it is
reasonable to regard SHBG as exerting anti-inflammatory
and lipolytic actions regardless of whether or not it is
coupled with sex hormones.

It is possible that the actions of SHBG observed herein
might be modified by residual steroids in cells, which had

MCP−1 IL−6

T (1 �휇M) 
E2 (1 �휇M)

SHBG (nM)

LPS

−
−
0

−

−
−
0

+

−
−
20

+

+
−
0

+

+
−
20

+

−
+
0

+

−
+
20

+

+
+
0

+

+
+
20

+

−
−

0
−

−
−

0
+

−
−

20
+

+
−

0
+

+
−

20
+

−
+

0
+

−
+

20
+

+
+

0
+

+
+

20
+

Differentiated 3T3−L1 cells

⁎⁎ ⁎⁎

⁎⁎
⁎⁎ ⁎⁎ ⁎⁎⁎

⁎

0

5

10

15

20

25
Re

la
tiv

e m
RN

A
 le

ve
ls

0

5

10

15

20

(a)

(−) T E2

0
0.8

4
20

SHBG (nM)

T : 20 �휇M
E2 : 20 �휇M

⁎⁎⁎⁎ ⁎⁎

0

0.2

0.4

0.6

0.8

1.0

1.2

N
ile

 R
ed

 st
ai

ni
ng

re
la

tiv
e fl

uo
re

sc
en

ce
 

(b)

Figure 5: Coincubation with testosterone or 17β-estradiol did not affect the function of SHBG. (a) Differentiated 3T3-L1 cells were treated
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proliferated in serum-containing media before the experi-
ments. Sex hormones exert effects on certain cell types via
SHBG and the putative SHBG receptor complex, as previ-
ously reported [56, 57].

In rodents, the Shbg gene is not expressed in the liver
postnatally. The role of SHBG in rodents might be limited
during the fetal period. However, our findings suggest that
human SHBG protein exerts activity on adipocytes and mac-
rophages derived from mice. These findings are concordant
with the report that human SHBG-Tg mice with the db/db
background are resistant to the development of obesity
[11]. Effects of human SHBG protein on human adipocytes
or macrophages warrant further examinations.

SHBG concentration changes have previously been con-
sidered to result from metabolic abnormalities including
inflammation [58] and hepatic lipogenesis [59]. Thus, SHBG
may be regarded as a good biomarker for metabolic syn-
drome. However, our results also raise the possibility that
SHBG suppresses chronic inflammation, in good agreement
with several previous studies employing SHBG transgenic
mice, and also exerts direct effects on numerous cell types,
as mentioned in the Introduction.

5. Conclusions

In conclusion, at a physiological concentration, SHBG
suppresses inflammation and lipid accumulation in macro-
phages and adipocytes, which may be among the mecha-
nisms underlying the protective effect of SHBG which acts
to suppress the development of metabolic syndrome.
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