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1  |  INTRODUC TION

Therapeutic advances, including intensive combination chemother-
apy, central nervous system- directed therapy, and risk stratification 
strategies, have enabled long- term survival of approximately 90% of 
pediatric patients with B- cell acute lymphoblastic leukemia (B- ALL).1 
However, a drastic reduction in the long- term survival of adoles-
cents and young adults (AYA) group is seen, and the prognosis of 
B- ALL in adults is poor.2 Although some overlaps in the spectrum 
of genetic alterations underlying pediatric and AYA/adult B- ALL are 
evident, the distribution of these alterations is substantially differ-
ent.3 Therefore, differences in prognostic outcomes between chil-
dren and AYA/adults can be attributed, at least in part, to the distinct 
genetic basis underlying B- ALL in different age groups. However, the 

rarity of adult B- ALL renders the study on a large cohort of patients 
and generation of meaningful annotations for the underlying genet-
ics challenging.

Recurrent gene rearrangements and gross chromosomal abnor-
malities are hallmarks of B- ALL. They play a central role in tumor pro-
gression and are also closely associated with patient characteristics, 
treatment responsiveness, and long- term outcome. Furthermore, 
these abnormalities have an almost completely exclusive relation-
ship with one another, being regarded as key factors that define mo-
lecular subtypes. In 2016, World Health Organization classification 
established the common chromosomal abnormalities of B- ALL, in-
cluding BCR- ABL1, KMT2A- rearranged, ETV6- RUNX1, hyperdiploidy 
(usually 51– 65 chromosomes), hypodiploidy (usually 23– 43 chro-
mosomes), IGH- IL3, TCF3- PBX1, BCR- ABL1- like (expression profile 
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Abstract
B- cell acute lymphoblastic leukemia (B- ALL), a genetically heterogeneous disease, is 
classified into different molecular subtypes that are defined by recurrent gene rear-
rangements, gross chromosomal abnormalities, or specific gene mutations. Cells with 
these genetic alterations acquire a leukemia- initiating ability and show unique expres-
sion profiles. The distribution of B- ALL molecular subtypes is greatly dependent on 
age, which also affects treatment responsiveness and long- term survival, partly ac-
counting for the inferior outcome in adolescents and young adults (AYA) and (older) 
adults with B- ALL. Recent advances in sequencing technology, especially RNA se-
quencing and the application of these technologies in large B- ALL cohorts have un-
covered B- ALL molecular subtypes prevalent in AYA and adults. These new insights 
supply more precise estimations of prognoses and targeted therapies informed by 
sequencing results, as well as a deeper understanding of the genetic basis of AYA/
adult B- ALL. This article provides an account of these technological advances and an 
overview of the recent major findings of B- ALL molecular subtypes in adults.
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similar to BCR- ABL1- positive ALL), and iAMP21 (amplification of a 
portion of chromosome 21), as discrete molecular subtypes.4

B- ALL is a clonal disease derived from a single ancestral cell and 
positively selected owing to the acquisition of genetic alterations. 
Previous studies of concordant B- ALL in identical twins revealed 
that recurrent gene rearrangements or gross chromosomal abnor-
malities were shared between the twins, while copy number alter-
ations and mutations were discordant. This suggests a two- hit model 
of childhood B- ALL5– 7 that can be briefly described as follows. In 
the initiation stage, gene rearrangements or gross chromosomal 
abnormalities generate a pre- leukemic clone in utero, then the ac-
quisition of secondary genetic mutations after birth promotes the 
conversion to overt leukemia. Consistent with this model, the ex-
panded clones involving gene rearrangements were identified in 
normal cord blood or neonatal blood cells.8,9 In addition, in a mouse 
model, ETV6- RUNX1 had the ability to inhibit B- cell differentiation 
without leukemogenic transformation, suggesting the existence of 
a pre- leukemic state driven by ETV6- RUNX1.10,11 Based on these in-
sights, the genetic events that define molecular subtypes have now 
been assumed to have leukemia- initiating potential and produce pre- 
leukemic clones that often precede B- ALL.

Recent advances in next- generation sequencing technologies 
have drastically improved our understanding of B- ALL at the molec-
ular level. Recurrent rearrangements of ZNF384, DUX4, and MEF2D 
were recently identified by transcriptome sequencing (RNA- seq), 
most of which were unobtainable from classical karyotyping.12– 18 
Initiating events (subtype defining events) deregulate downstream 
gene expression more strongly than secondary gene events, result-
ing in a unique expression profile that correlates with the initiating 
events. With the application of this feature to patients with B- ALL, 
several previously unknown subtypes were identified based on the 
integrated analysis of gene expression profiling and genetic alter-
ations. These include ETV6- RUNX1- like (expression profile similar to 
ETV6- RUNX1- positive ALL), PAX5 P80R, PAX5alt (rearrangements 
or mutations), and BCL2/MYC.14,19,20 More recently, two new high- 
risk subtypes involving CDX2 ectopic expression (CDX2/UBTF) 
and IDH1/2 mutations (IDH1/2- mut) were identified by some re-
searchers, including us.21– 24 Notably, most of the recently identified 
subtypes were more prevalent in AYA/adults than in children. This 
review describes the recent developments in the molecular patho-
genesis and clinical implication of BCR- ABL1- negative B- ALL molec-
ular subtypes in AYA and adults, particularly focusing on three major 
subtypes, ZNF384- , DUX4- , and MEF2D- rearranged, and two novel 
subtypes, CDX2/UBTF and IDH1/2- mut.

2  |  MOLECUL AR PATHOGENESIS

2.1  |  ZNF384- rearranged ALL

ZNF384 encodes a transcription factor that activates matrix metal-
loproteinases. The ability of ZNF384 to fuse with TAF15 or EWSR1 
in acute leukemia and the transformative properties of these fusions 

were first reported in 2002.25 Subsequently, approximately 4% and 
over 20% of recurrent ZNF384 rearrangements have been identified 
in Japanese pediatric B- ALL12,26 and AYA/adults with BCR- ABL1- 
negative B- ALL,17,24 respectively, indicating that rearranged ZNF384 
is the most prevalent subtype in Japanese AYA and adults (Figure 1). 
Conversely, ZNF384 rearrangements were seen only in 2%– 3% of 
BCR- ABL1- negative B- ALL in a US cohort,20 possibly reflecting 
ethnic differences (Figure 2). Recently, a multinational, multicenter 
genetic association study, which showed that East Asian ancestry 
positively correlated with the frequency of ZNF384 rearrange-
ments,27 supported this possibility. Clinically, ZNF384- rearranged 
ALL has intermediate to favorable outcomes,24,28 this depends on 
the fusion partners involved (Figure 3).29

ZNF384 fuses with various fusion partners (e.g., EP300, TCF3, 
and CREBBP) while retaining its entire coding region. The ZNF384 
fusion protein has an oncogenic effect as it acquires an increased 
ability to bind to its canonical region or new sites with aberrant 
enhancer activation.30,31 Mouse pro- B cell transplantation analysis 
showed that EP300- ZNF384- expressing pro- B cells proliferated 
in vivo and impaired their differentiation, leading to the develop-
ment of B- ALL with a long latency.17 Additionally, a genomic study 
of monozygotic twins with B- ALL showed that TCF3- ZNF384 fusion 
occurs before birth, and both twins shared the same breakpoint.32 
These results suggest that ZNF384 fusion has a leukemogenic ini-
tiation ability and potentially generates a pre- leukemic clone, but 
concomitant genomic alterations are required for leukemogenesis.

A unique feature of the immunophenotype of ZNF384- 
rearranged leukemia is the aberrant expression of CD13 and/or 
CD33, which are typical myeloid markers.26 As expected from this 
lineage ambiguity, ZNF384 rearrangements were also frequently 
observed in B/myeloid mixed phenotype acute leukemia (MPAL),33 
and human hematopoietic stem and progenitor cells that expressed 
ZNF384 fusion protein led to bi- phenotypic leukemia.30 Although 
ZNF384 rearrangements span the ALL– MPAL disease spectrum, ge-
nomic alterations and gene expression profiles were mostly similar 
between ZNF384- rearranged B- ALL and MPAL.33 Furthermore, 
lineage switch was observed in some serial ZNF384- rearranged 
leukemic samples.34– 36 These results suggest a model where the 
ambiguous phenotype of ZNF384- rearranged leukemia results from 
the acquisition of gene rearrangements in immature hematopoietic 
progenitors and the decisive importance of the connection between 
the cell of origin and ZNF384 fusion protein (Table 1).30,33

2.2  |  DUX4- rearranged ALL

DUX4 is located within the D4Z4 repeats (11– 150 copies) of chromo-
some 4q or 10q. DUX4 encodes a transcription factor that activates 
cleavage- specific transcriptional program early in development,37 
while DUX4 is considered to be transcriptionally repressed in most 
somatic tissues.38 In 2016, recurrent DUX4 rearrangements (mostly 
DUX4- IGH) were identified for the first time in 14% of patients with 
AYA B- ALL, which led to the discovery of aberrant DUX4 expression 
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in progenitor B cells (Figure 1).17 Although detailed genomic analy-
sis was challenging owing to the highly repeated sequence of D4Z4, 
three unique genomic structures of this rearrangement, which possi-
bly give rise to DUX4 deregulation and leukemogenic transformation, 
were detected.17 First, the structural variation is not a gross chro-
mosome translocation, but rather the insertion of a single or double 
DUX4 unit into the IGH locus. DUX4 de- repression may be triggered 
by the release of repeat- mediated epigenetic suppression of DUX4.39 
Second, the fusion event replaces the 3′ end of the DUX4 coding 

region, which diminishes the proapoptotic ability of wild- type DUX4. 
Third, the polyadenylation signal, normally lacking in the D4Z4 re-
gion, is provided by partner genes, leading to the upregulation of 
stable DUX4 expression. In survival analyses, DUX4- rearranged ALL 
was generally associated with favorable prognosis (Figure 3),20,24,28,40 
but if TP53 mutations coexist with this subtype, the outcome may be 
worse than with only DUX4 rearrangement.41

A mouse pro- B cell transplantation assay demonstrated that 
DUX4- IGH (truncated DUX4 protein) expression in pro- B cells in-
duced cell expansion, differential arrest, and development of pro- B 
cell leukemia with a long latency. Contrarily, mouse pro- B cells that 
express wild- type DUX4 cause cell death rather than cell prolifera-
tion. These different phenotypes probably originate from the dis-
tinct transcriptional activities between DUX4- IGH and wild- type 
DUX4.42

Microarray- based gene expression studies of childhood B- ALL 
demonstrated a group with specific expression profiles and frequent 
ERG deletions.43,44 Following the discovery of DUX4- IGH rearrange-
ments, the aberrantly spliced ERG transcript (ERGalt) and ERG de-
letion were frequently associated with DUX4- rearranged ALL,14,18 
therefore the groups with ERG deletions and DUX4- IGH rearrange-
ments were determined to be identical.14,18 Interestingly, DUX4 
binds to the noncanonical first exon of ERGalt and induces the ex-
pression of this isoform, which has a dominant- negative effect on 
wild- type ERG function. These studies illustrated that DUX4 rear-
rangement is an early leukemia- initiating event, and DUX4 deregula-
tion by rearrangement results in a loss of ERG, due to either deletion 

F I G U R E  1  Distribution of BCR- ABL1- negative B- cell acute lymphoblastic leukemia (B- ALL) molecular subtypes in adolescents and young 
adults (AYA; left) and adults (right). The categories of molecular subtypes are color coded. CEBP/ZEB2, low- hyperdiploid, and PAX5 P80R 
subtypes were included in “Other” due to their low frequencies. HeH, high hyperdiploid; HoL, low hypodiploid. Data adapted from Yasuda 
et al.24
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or induced expression of the abnormal isoform, leading to B- ALL by 
coordinated deregulation of both transcription factors (Table 1).18

2.3  |  MEF2D- rearranged ALL

MEF2D is a transcription factor that regulates muscle or neuronal 
cell differentiation. A MEF2D– DAZAP1 fusion was first identified 
in TS- 2 B- ALL cells, which had transformation activities in NIH 3T3 
cells.45,46 Following this, recurrent in- frame gene fusions between 
MEF2D and several partner genes, including BCL9, HNRNPUL1, 
DAZAP1, CSF1R, and SS18, were identified in childhood and AYA 
patients with B- ALL.13,15– 17 The most common MEF2D rearrange-
ments were MEF2D– BCL9 and MEF2D– HNRNPUL1, which were 
more frequently observed in older children or AYA, but rarely seen 
in younger children or adults (Figure 1).13,15– 17,20,24 MEF2D rear-
rangements have been associated with high- risk prognosis in child-
hood B- ALL,13,16 whereas two studies recently showed that it had 
intermediate prognostic impact in adults (Figure 3).24,28 The MEF2D 
fusion protein acts as an oncoprotein because its expression is sig-
nificantly higher than that of the wild type, which is caused by the 
loss of miRNA target sites, resulting in enhanced transcriptional ac-
tivity of the fusion gene.13,17,47

Based on gene expression profiling and immunophenotype data, 
MEF2D- rearranged ALL was assumed to be arrested at the pre- B 
cell stage.15,48 Indeed, pre- B- cell receptor (pre- BCR) expression was 
confirmed on the cell surface in MEF2D- rearranged ALL cells by 
flow cytometric analysis.49 ChIP sequencing and expression analysis 
using genome- edited MEF2D- rearranged cells that enabled fusion- 
specific ChIP and knockdown revealed that the MEF2D fusion pro-
tein was closely associated with pre- BCR expression. Furthermore, 
computerized algorithms identified MEF2D fusion as a component 
of the core regulatory circuitry (CRC), a transcription factor complex 
involved in cancer type- specific transcriptional regulation. The feed-
forward regulatory loop between CRC involving the MEF2D fusion 

protein and pre- BCR signaling plays a central role in ALL mainte-
nance (Table 1).49

2.4  |  CDX2/UBTF ALL

We recently identified a novel high- risk subtype characterized by 
aberrant expression of CDX2 and a frequent gain of 1q (>70%) by in-
tegrating analysis data, obtained using RNA- Seq and target Capture- 
Seq, of 354 AYA and adults with B- ALL (Figure 3).24 This subtype was 
rare (approximately 3% in BCR- ABL1- negative B- ALL), but was more 
frequently observed in AYA and adults than in children (Figure 1). 
Soon, three other studies also reported the presence of the same 
subtype, which was associated with young adults, females, and a 
high- risk clinical course.21– 23 CXCR4- activating mutations and PAX5 
rearrangements were also characteristics of this subtype.22,23

CDX2 regulates HOX genes during embryonic hematopoiesis, but 
it is not expressed in normal adult hematopoietic cells. Aberrant ex-
pression of CDX2 is one of the most prominent features of this sub-
type. However, apart from a mild change in HOX gene expression,24 
little is known about its downstream effects. CDX2 deregulation 
was closely associated with 13q12.2 deletion, which was probably 
caused by recombinase activating gene (RAG)- mediated inappropri-
ate recombination events. Unlike the deletion of the 13q12.2 region 
that has been previously reported in other types of B- ALL,50 which 
leads to FLT3 expression by deletion of the PAN3 promoter region, 
both FLT3 and PAN3 promoter regions are deleted in this subtype. 
These specific genomic alterations in the 13q12.2 region results in 
monoallelic CDX2 deregulation by PAN3 enhancer hijacking.22,23

Another interesting finding is that the novel in- frame fusion 
transcript, UBTF- ATXN7L3, was identified in almost all the cases of 
this subtype.21– 23 The fusion involving UBTF- ATXN7L3 results from 
a 17q21.31 microdeletion between exon 17 of UBTF and exon 1 of 
ATXN7L3. UBTF is a nuclear protein that epigenetically regulates 
rDNA and rRNA transcription. A recent study showed that UBTF 

F I G U R E  3  Clinical outcomes of molecular subtypes of B- ALL in AYA and adults. Kaplan– Meier survival curves were constructed for 
overall survival (left) and disease- free survival (right) for cases with indicated subtypes. Data adapted from Yasuda et al.24
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tandem duplication was recurrently identified in pediatric AML, 
and this alteration may represent a novel subtype- defining lesion.51 
Although the molecular mechanism for B- ALL development of this 
subtype is poorly understood, defining a close relationship between 
this group and two universal genomic deletions (13q and 17q de-
letion) provides us with a hint about a leukemogenic process that 
may be driven by cooperative effects of the UBTF- ATXN7L3 fusion 
protein and CDX2 deregulation (Table 1).

2.5  |  IDH1/2- mut ALL

IDH1 and IDH2 are key genes in cellular metabolism and epigenetic 
regulation. Mutations in these genes occur in various malignancies, 
including low grade glioma, chondrosarcoma, and AML, and are 
known as initiating or early genetic events. IDH1/2 mutations have 
been previously reported in B- ALL,52,53 but their frequencies, bio-
logical significance, and clinical impacts are poorly understood. We 
recently identified recurrent IDH1 R132C and IDH2 R140Q muta-
tions in Japanese AYA and adult B- ALL cohorts at a frequency of 
1%– 2%.24 Conversely, these mutations were rarely detected in the 
Japanese pediatric cohort.41 Specific expression profiling and mu-
tually exclusive relationships between IDH1/2 mutations and other 
subtype- defining lesions suggest that both mutations are probably 
initiating or early genetic events.24 Methylation analysis supported 
this finding because this subtype showed hypermethylated profiles, 
which were clearly distinguishable from other established subtypes 
(Table 1).24 Importantly, survival analysis showed that this subtype 
was associated with extremely inferior outcomes (Figure 3).24

3  |  CLINIC AL IMPLIC ATIONS

Accurate molecular diagnosis of B- ALL is necessary to appropriately 
manage patients and may lead to better treatment outcomes. The 
revised taxonomy that classifies heterogeneous B- ALL into more 
precise subtypes has been recently defined.20,24 The classification 
criteria include three major categories: gene rearrangements, copy 
number abnormalities, and genetic alterations combined with gene 
expression. RNA- Seq is a powerful sequencing tool that simultane-
ously identifies gene rearrangements, copy number variations,54 
sequence mutations,55 IGH rearrangements,56 and gene expression 
profiles in a single platform. However, in many cases, molecular di-
agnosis using RNA- Seq is still challenging in a clinical setting owing 
to the lack of accurate and rigorous clinical assay platforms. To 
overcome these barriers, the feasibility of RNA- Seq for clinical ap-
plication is being evaluated and is intended to be incorporated into 
prospective clinical trials.40,57,58

Classifying B- ALL into molecular subtypes has strong clinical 
significance in predicting prognosis and stratifying treatment, espe-
cially in classifying high- risk subtypes such as BCR- ABL1- like, CDX2/
UBTF, or IDH1/2- mut. This enables patients to be appropriately 
guided to undergo intensified chemotherapy, allogeneic stem cell TA
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transplantation, or novel immunotherapies (Figure 3). Minimal resid-
ual disease (MRD) testing is also an accepted and powerful prognos-
tic indicator of B- ALL in adults. To stratify patients with B- ALL into 
more precise risk categories and tailor their therapy accordingly, it 
may be more useful to classify patients based on integrated analysis 
of both comprehensive molecular subtypes and MRD measurement. 
Therefore, evaluation of response kinetics, optimal timing, and clini-
cally relevant cutoff levels of MRD testing in each molecular subtype 
is essential.28,40,59

Patients with the recently identified subtypes may benefit from 
molecularly targeted therapy. First, the ZNF384 fusion protein di-
rectly regulates FLT3 expression,30 and FLT expression and muta-
tions (including FLT3- ITD) are associated with ZNF384- rearranged 
ALL.24,60 The ZNF384- rearranged xenograft and clinical specimen 
showed sensitivity to FLT3 inhibition.30,60 Second, while the MEF2D 
fusion protein itself seemingly cannot be targeted, disruption of the 
positive feed loop between CRC and pre- BCR signaling, a central 
mechanism for MEF2D- rearranged ALL maintenance, may be a po-
tential target for therapeutic treatment.49 We demonstrated that 
the pre- BCR signaling inhibitor or SREBF1 (a component of CRC) 
inhibitor showed therapeutic efficacies in MEF2D- rearranged ALL. 
Finally, the IDH1 inhibitor (ivosidenib) or IDH2 inhibitor (enasidenib) 
is a promising drug for the IDH1/2- mut subtype.

4  |  CONCLUDING REMARKS

Advances in sequencing technology have undoubtedly revolution-
ized our understanding of the genetic basis of AYA and adults with 
B- ALL, especially with the identification of novel molecular sub-
types. Implementation of precision medicine to treat B- ALL based 
on these novel findings will promote efficient risk stratification and 
targeted therapy. However, two major drawbacks of B- ALL need 
to be addressed. First, approximately 5% of children and 15% of 
AYA/adult B- ALL cases are genetically uncharacterized and pre-
sent challenges for classification into molecular subtypes. Second, 
little is known about the cell of origin in adult B- ALL: when the 
founder clone emerges, the molecular mechanisms that are criti-
cally involved and the influences of the microenvironment on those 
mechanisms are unknown. This is in contrast to pediatric B- ALL 
where initiation events and pre- leukemic clones are proposed to 
occur in utero, and dysregulated immune response to infection may 
trigger secondary genetic events postnataly.5 Although identifica-
tion of early events in B- ALL may be difficult owing to its apparent 
lack of a pre- clinical period, recent studies on the clonal expan-
sion in several normal tissues have provided an opportunity to un-
derstand early carcinogenesis.61 Further studies are warranted to 
fully identify the very early events of leukemic initiation, as well as 
the repertoire of genomic alterations observed in advanced B- ALL. 
These studies contribute to finding a potential cure for AYA/adult 
B- ALL with a high success rate and may even be able to prevent this 
high- risk disease.
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