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Abstract
[Creatinine]	was	proved	to	change	in	the	opposite	direction	of	the	kinetic	GFR	
(GFRK),	but	does	the	[creatinine]	also	change	in	the	opposite	direction	of	the	vol-
ume	rate?	If	volume	is	administered	and	the	[creatinine]	actually	goes	up,	then	
the	two	changes	move	in	the	same	direction	and	their	ratio	is	positive,	paradoxi-
cally.	The	equation	that	describes	[creatinine]	as	a	function	of	time	was	differ-
entiated	with	respect	to	the	volume	rate.	This	partial	first	derivative	has	a	global	
maximum	that	can	be	positive	under	definable	conditions.	Knowing	what	makes	
the	maximum	positive	 informs	when	 the	derivative	will	be	positive	over	 some	
continuous	domain	of	volume	rate	inputs.	The	first	derivative	versus	volume	rate	
curve	has	a	maximum	and	a	minimum	point	depending	on	the	GFRK.	If	GFRK	is	
below	a	calculable	value,	then	the	curve's	minimum	vanishes,	letting	it	descend	
to	−∞	and	not	allowing	the	derivative	to	ever	be	positive.	If	GFRK	lies	between	
a	lower	and	a	higher	calculable	value,	then	the	curve's	maximum	vanishes,	let-
ting	the	derivative	diverge	to	+∞,	though	the	clinical	scenario	is	unrealistic.	If	
GFRK	is	above	the	higher	calculable	value,	then	the	curve's	absolute	maximum	
can	become	positive	by	decreasing	the	creatinine	generation	rate	or	 increasing	
the	initial	[creatinine].	The	derivative	is	potentially	positive	under	these	clinically	
realizable	circumstances.	The	combination	of	parameters	above	can	align	in	sep-
tic	patients	(low	creatinine	generation	rate)	with	kidney	failure	(high	initial	[cre-
atinine])	who	are	put	on	continuous	dialysis	(high	GFRK).	If	a	first	derivative	is	
positive,	removing	more	volume	can	improve	the	[creatinine]	and,	dismayingly,	
giving	more	volume	can	worsen	the	[creatinine].	This	paradox	is	explained	by	a	
covert	interplay	between	the	ambient	[creatinine]	and	GFRK	that	excretes	creati-
nine	faster	than	its	volume	of	distribution	declines.
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1 	 | 	 INTRODUCTION

We	 previously	 showed	 that	 changes	 in	 the	 glomerular	
filtration	 rate	 (GFR)	 must	 always	 drive	 the	 serum	 cre-
atinine	in	the	opposite	direction	(Chen	&	Chiaramonte,	
2021).	 If	 the	 GFR	 were	 to	 decrease,	 then	 the	 creati-
nine	 would	 have	 to	 increase,	 and	 vice	 versa.	 Though	
these	statements	seem	obvious,	they	were	only	recently	
proved	by	differentiating	the	creatinine	with	respect	to	
kinetic	 GFR	 (Chen,	 2013)	 and	 finding	 that	 this	 partial	
derivative's	 sign	 is	always	negative	 for	any	possible	 set	
of	real-	world	values.	It	does	not	matter	how	extreme	the	
variables	are	or	how	they	are	combined.	The	perpetual	
negative	 sign	 assures	 doctors	 that	 a	 rise	 in	 creatinine	
(positive	Δcreatinine)	had	to	come	about	from	a	drop	in	
kinetic	GFR	(negative	ΔGFRK)	and	vice	versa,	with	all	
else	being	constant—	particularly	time.

Is	creatinine	also	related	to	the	volume	change	rate	in	
an	ever-	opposing	way?	If	more	volume	is	being	gained	
(positive	Δvolume	 rate),	 the	 [creatinine]	 is	 further	 di-
luted	 and	Δ [Cr]	 is	 negative.	 If	 more	 volume	 is	 being	
lost	(negative	Δvolume	rate),	the	[creatinine]	is	further	
concentrated	and	Δ [Cr]	is	positive.	With	the	signs	being	
opposite	 in	 our	 thought	 experiments,	 it	 would	 appear	
that	the	partial	derivative	of	[Cr]	with	respect	to	volume	
change	rate	is	always	negative,	same	as	for	kinetic	GFR	
(Chen	 &	 Chiaramonte,	 2021).	 But	 could	 unsuspected	
factors	alter	 the	sign?	What	 if	a	negative	Δvolume	rate	
concentrates	the	[creatinine]	even	further,	but	that	en-
ables	the	kinetic	GFR	to	excrete	more	creatinine?	Would	
the	creatinine	quantity	decline	faster	than	the	volume	of	
distribution,	making	 the	creatinine	concentration	 frac-
tion	lower	in	value—	a	negative	Δ [Cr]?	If	so,	the	partial	
derivative	would	be	positive,	with	volume	rate	and	[Cr]	
decreasing	over	the	same	time	frame.	The	potential	for	
a	positive	sign	brings	up	a	clinical	paradox.	Sometimes,	
being	 more	 aggressive	 with	 the	 volume	 removal	 may	
improve	the	serum	creatinine	(Hegde,	2020).	Or,	giving	
even	 more	 volume	 may	 increase	 the	 creatinine.	 These	
paradoxes	 can	 occur	 in	 septic	 patients	 on	 continuous	
dialysis,	 for	 purely	 mathematical	 reasons	 to	 be	 shown	
that	need	not	involve	the	messiness	of	real	life,	which	is	
more	 complex	 than	 the	 derivative	 model	 that	 assumes	
that	only	volume	and	[creatinine]	can	change.

1.1	 |	 Creatinine kinetics

The	differential	equation	that	underpins	the	kinetic	GFR	
states	that	the	rate	of	change	in	the	creatinine	mass	 is	
equal	to	the	creatinine	input	rate	minus	the	creatinine	
output	rate	(Chen,	2018a,	2018b;	Chen	&	Chiaramonte,	
2019).	 Further,	 the	 creatinine	 mass	 at	 any	 given	 time	

is	 the	 current	 [creatinine]	 times	 the	 volume	 of	 distri-
bution,	 typically	 taken	 to	 be	 total	 body	 water	 (TBW)	
(Bjornsson,	1979;	Chow,	1985;	Edwards,	1959;	Jones	&	
Burnett,	1974;	Pickering	et	al.,	2013).	To	account	for	the	
concentrating	 and	 diluting	 effects	 on	 the	 [creatinine],	
its	volume	of	distribution	can	be	modeled	to	change	at	
a	 constant	 rate:	Vt = V0 +

ΔV

Δt
t,	 where	Vt	 is	 the	 volume	

as	a	function	of	time,	V0	is	the	initial	volume,	ΔV
Δt

	is	the	
(average)	volume	change	rate,	and	t 	is	time.	The	creati-
nine	 input	 rate	 is	primarily	determined	by	 the	muscle	
mass,	which	tends	to	be	fairly	stable	so	that	the	creati-
nine	generation	rate	is	usually	thought	of	as	a	constant:	
Gen.	The	creatinine	output	rate	is	mostly	determined	by	
the	kidney	such	that	the	excretion	rate	is	equal	to	the	ki-
netic	GFR	times	the	ambient	[creatinine]:	GFRK ⋅ [Cr]t,	
where	[Cr]t	is	the	[creatinine]	at	a	particular	time.	Thus,	
the	differential	equation	is:

This	 first-	order	 linear	differential	 equation's	 solution,	
as	previously	published,	is	(Chen,	2018a):

In	other	words,	the	serum	[creatinine]	at	a	given	time	is	
equal	to	the	initial	[creatinine]	

(
[Cr]0

)
	plus	a	time-	evolved	

portion	of	the	spread	between	the	initial	[creatinine]	and	
the	[creatinine]	reached	at	a	new	steady	state	if	the	kinetic	
GFR	and	volume	change	rate	remained	at	those	levels.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Derivative of [creatinine] with 
respect to volume change rate

From	 Equation	 (2),	 we	 can	 deduce	 how	 the	 serum	
creatinine	 would	 change	 if	 one	 other	 variable	 were	
tweaked,	and	the	partial	derivative	 is	suited	to	this	 task.	
Previously,	the	one	other	variable	was	kinetic	GFR	(Chen	
&	Chiaramonte,	2021),	but	now	the	one	other	variable	will	
be	the	volume	change	rate.	The	derivative	of	[Cr]t	with	re-
spect	to	ΔV

Δt
	quantifies	their	relationship	at	every	instant,	

allowing	a	comprehensive	assessment	of	 the	 sign.	 If	 the	
sign	can	be	positive,	 then	[Cr]t	may	change	 in	 the	same	
direction	as	ΔV

Δt
.

(1)d

dt

(
[Cr]t ⋅ Vt

)
= Gen − GFRK ⋅ [Cr]t

(2)

[Cr]t = [Cr]0 +

⎡
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In	Equation	 (2),	 the	derivative	of	⎡⎢⎢⎢⎣
1 −

�
V0

V0+
ΔV
Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎦

	
with	respect	to	ΔV

Δt
	is:

To	 calculate	 the	 derivative	 of	 the	 exponential,	 let	

y =

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	and	use	logarithms.

Differentiate	with	the	product	rule:

Next,	 in	 Equation	 (2),	 find	 the	 derivative	 of	(
Gen

GFRK +
ΔV
Δt

− [Cr]0

)
	with	respect	to	

ΔV

Δt :

Putting	 Equations	 (3)	 and	 (4)	 together	 in	 using	 the	
product	rule	on	Equation	(2),	we	find	that	�[Cr]t

�
ΔV
Δt

	is:

Note:	 Unit	 conversions	 are	 not	 shown,	 but	 the	 final	
units	could	be	mg

dl
per L

h
,	for	example.	The	main	conversion	

factors	are	50
3

	and	 3
50

.	The	50
3

	converts	ΔV
Δt

	in	L/h	to	ml/min:	
1000 ml

L
⋅

h

60 min
=

50

3
,	and	the	 3

50
	converts	GFRK	in	ml/min	to	

L/h:	 L

1000 ml
⋅

60 min

h
=

3

50
.

2.2	 |	 Calculator and concept map

To	follow	the	calculations	in	the	Results,	please	down-
load	 a	 spreadsheet	 we	 created	 to	 calculate	 the	 main	
equations	in	the	manuscript.	You	can	use	the	spread-
sheet	 to	 explore	 your	 own	 scenarios	 and	 questions.	
For	 a	 map	 of	 the	 concepts	 being	 presented,	 the	 final	
algorithm	in	Section	3.8 may	help	with	understanding	
when	the	first	derivative	in	Equation	(5)	can	be	posi-
tive.	 First,	Gen	 and	[Cr]0	 will	 be	 varied	 (Section	 3.5),	
as	 their	 ratio	 is	 a	 principal	 determinant	 of	 positivity.	
Later,	GFRK 	will	also	be	varied	(Section	3.6),	as	values	
above	a	calculable	reference	point	can	allow	the	 first	
derivative	 to	 be	 positive	 in	 situations	 that	 are	 clini-
cally	encountered.

3 	 | 	 RESULTS

3.1	 |	 First derivative behavior and sign

To	gauge	the	behavior	and	sign	of	the	partial	first	deriva-
tive,	we	graphed	�[Cr]t

�
ΔV
Δt

	(y-	axis)	vs.	ΔV
Δt

	(x-	axis)	for	an	acute	
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kidney	injury	(AKI):	steady	state	GFR	of	100 ml/min	cor-
responding	 to	 an	 initial	[Cr]	 of	 1.0  mg/dl	 that	 increases	
over	the	next	24 hours	when	the	GFRK	suddenly	drops	to	
20 ml/min	in	a	patient	with	a	TBW	(volume	of	distribu-
tion)	of	42	L.	According	to	the	thought	experiments,	the	
sign	of	

�[Cr]t

�
ΔV
Δt

	should	be	negative	(below	 y = 0)	throughout	
the	gamut	of	ΔV

Δt
	values	(Figure	1).	As	ΔV

Δt
	approaches	an	

extreme	 that	 would	 deplete	 all	 of	 the	 TBW	 by	 the	 24-	h	
mark	(in	this	case),	the	�[Cr]t

�
ΔV
Δt

	goes	to	−∞	(Figure	1).	A	vol-
ume	of	zero	is	nonsensical,	so	if	V0 +

ΔV

Δt
t	needs	to	be	> 0	,	

then	
ΔV

Δt 	must	be	> −
V0
t

.	At	the	far	right	of	the	graph,	as	

ΔV

Δt
→ +∞,	the	value	of	�[Cr]t

�
ΔV
Δt

	approaches	zero	from	below,	

that	is,	
lim

ΔV
Δt

→∞

�[Cr]t

�
ΔV
Δt

= 0
	(Figure	1).	So	far,	

�[Cr]t

�
ΔV
Δt

	seems	to	al-
ways	be	negative.

Despite	the	thought	experiment,	can	
�[Cr]t

�
ΔV
Δt

	become	pos-
itive	under	certain	conditions?	To	find	out,	we	varied	the	
parameters	 and	 found	 conditions	 that	 work:	 creatinine	
generation	rate	(Gen)	of	60 mg/dl	×	ml/min	and	[Cr]0	of	
8.0 mg/dl	that	decreases	over	the	next	24 h	when	the	GFRK	
suddenly	increases	to	100 ml/min	(e.g.,	by	renal	replace-
ment	therapy)	in	a	patient	with	a	TBW	of	42	L.	The	�[Cr]t

�
ΔV
Δt

	

stays	 positive	 for	 most	 of	 the	 negative	ΔV
Δt

	 values	 and	 for	
even	a	 few	positive	ΔV

Δt
	 values	 (Figure	2,	 red	 line,	3 gray	

dots).	 Further,	 decreasing	Gen	 keeps	 �[Cr]t
�
ΔV
Δt

	 positive	 for	 a	

wider	range	of	ΔV
Δt

s	and	makes	the	�[Cr]t
�
ΔV
Δt

	peak	at	a	higher	

positive	level	(Figure	2,	green	curve).	On	the	other	hand,	
increasing	 the	Gen	 lowers	 the	 �[Cr]t

�
ΔV
Δt

	 values,	 until	 a	 large	

enough	Gen	make	the	�[Cr]t
�
ΔV
Δt

	persistently	negative	for	all	ΔV
Δt

	

values	(Figure	2,	blue	&	black	curves).	Alternatively,	the	
curves	 can	 be	 moved	 up	 or	 down	 by	 varying	 the	 [Cr]0	
(Figure	3).	In	general,	�[Cr]t

�
ΔV
Δt

	is	more	likely	to	be	positive	if	

Gen	is	small	and	[Cr]0	is	high;	it	helps	if	GFRK	is	larger	and	
ΔV

Δt
	is	negative.	This	family	of	curves	has	an	absolute	max-

imum.	If	we	can	find	the	curve	whose	maximum	lies	tan-
gent	 to	 y = 0,	 that	 represents	 the	 border	 between	 a	 first	
derivative	 being	 perpetually	 negative	 versus	 potentially	
positive.	In	Figure	2,	the	Gen = 70	(blue)	curve	comes	clos-
est	to	touching	 y = 0.	Its	maximum	�[Cr]t

�
ΔV
Δt

	 is	− 0.0008,	but	
we	can	place	the	peak	right	at	0.

F I G U R E  1  Example	first	derivative	of	[creatinine]	with	respect	to	volume	change	rate.	Equation	(5)	is	graphed	with	ΔV
Δt

	as	an	
independent	variable	(x-	axis)	and	�[Cr]t

�
ΔV

Δt

	as	the	dependent	variable	(y-	axis).	The	other	variables	are	Gen = 100	mg/dL⋅mL/min,	V0 = 42	L,	

t = 24	h,	GFRK = 20	mL/min,	and	[Cr]0 = 1	mg/dL.	From	left	to	right,	the	�[Cr]t
�
ΔV

Δt

	starts	at	−∞	where	ΔV
Δt

	approaches	its	leftmost	value	of	− V0
t

.	
The	curve	rises	quickly	but	remains	negative.	As	ΔV

Δt
	increases,	the	�[Cr]t

�
ΔV

Δt

	flattens	out	as	it	approaches	zero	asymptotically.	The	first	derivative	
is	always	negative	in	this	example	of	acute	kidney	injury
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3.2	 |	 First derivative's peak

To	calculate	the	peak	of	the	
�[Cr]t

�
ΔV
Δt

	vs.	ΔV
Δt 	curve,	we	differenti-

ated	�[Cr]t
�
ΔV
Δt

	with	respect	to	ΔV
Δt

	and	then	set	this	second	de-

rivative	equal	to	zero.	Without	showing	the	differentiation	
steps,	we	calculated	the	second	derivative	to	be:

We	set	
�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0	and	solved	for	ΔV

Δt
	by	Newton's	

method	or	the	secant	method.	At	one	ΔV
Δt

	root,	our	example	
first	derivative	(Section	3.1,	second	paragraph)	attains	its	
maximum	and	is	positive.	On	either	side	of	 the	ΔV

Δt
	 root,	

the	
�[Cr]t

�
ΔV
Δt

	values	are	decreasing.	At	 the	other	ΔV
Δt

	 root,	our	
first	 derivative	 has	 a	 relative	 minimum.	 At	 the	 left	 ex-
treme,	ΔV

Δt
≤ −

V0
t

	 truncates	 the	 plot	 (Figure	 2),	 because	

(6)
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⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

F I G U R E  2  Graphs	of	first	derivative	curves	when	varying	only	the	Gen.	Equation	(5)	is	graphed	like	before.	Other	variables	are	V0 = 42	
L,	t = 24	h,	GFRK = 100	mL/min,	and	[Cr]0 = 8	mg/dL.	The	Gen	is	varied	between	10	and	100 mg/dL⋅mL/min.	The	smallest	Gen = 10	yields	

the	highest	�[Cr]t
�
ΔV

Δt

	curve	(green).	As	the	Gen	increases,	the	curves	move	downward,	until	Gen = 100	yields	the	lowest	�[Cr]t
�
ΔV

Δt

	curve	(black).	Above	

Gen ≈ 70,	the	curves	are	wholly	below	the	x-	axis,	meaning	that	all	of	their	�[Cr]t
�
ΔV

Δt

	values	are	negative.	But,	one	other	curve	(red)	is	partially	

above	the	x-	axis,	meaning	that	some	of	its	
�[Cr]t
�
ΔV

Δt
	values	are	positive.	A	positive	�[Cr]t

�
ΔV

Δt

	is	promoted	by	a	Gen	that	is	on	the	smaller	side
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�[Cr]t

�
ΔV
Δt

	 becomes	a	 complex	number:	 in	Equation	 (5),	once	

V0 +
ΔV

Δt
t	turns	negative,	then	( V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)
	is	a	neg-

ative	base	raised	to	a	non-	integer	power.	At	the	right	ex-
treme,	ΔV

Δt
→ +∞	makes	�[Cr]t

�
ΔV
Δt

	approach	zero	in	the	limit.	

Overall,	 solving	 �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0	 yields	 a	 single	 maxi-

mum	for	�[Cr]t
�
ΔV
Δt

,	one	that	happens	to	be	absolute,	and	a	sin-

gle	minimum	for	�[Cr]t
�
ΔV
Δt

,	one	that	is	relative.

3.3	 |	 Making the first derivative's peak 
tangent to the x- axis

Setting	the	second	derivative	equal	to	zero	optimizes	the	
first	 derivative,	 but	 the	 first	 derivative's	 absolute	 maxi-
mum	is	not	necessarily	zero.	To	find	a	curve	whose	maxi-
mum	is	tangent	to	y = 0,	we	devised	a	way	to	make	both	

the	first	derivative	and	the	second	derivative	equal	to	zero	
at	 the	 same	 time.	 In	 doing	 so,	 we	 find	 the	 transition	 to	
�[Cr]t

�
ΔV
Δt

	being	potentially	positive	(the	Gen = 70	curve	came	

close	 in	Figure	2).	To	 solve	 the	 simultaneous	equations,	
�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0

	 and	 �[Cr]t

�
ΔV
Δt

= 0,	 we	 used	 algebraic	

substitution.
In	the	first	and	second	derivatives	[Equations	(5)	and	

(6)],	only	two	variables	can	be	explicitly	solved	for,	namely	
Gen	 and	[Cr]0.	 Set	 the	 first	 derivative	 equal	 to	 zero	 and	
solve	for	[Cr]0:

(7)

[Cr]0=
Gen

GFRK +
ΔV

Δt

−

⎡⎢⎢⎢⎣
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t
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�

⋅

�
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Δt

2 ⋅ ln
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ΔV
Δt
t

�
+

�
1+
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ΔV
Δt

�
⋅

t

V0+
ΔV
Δt
t

�

F I G U R E  3  Graphs	of	first	derivative	curves	when	varying	only	the	[Cr]0.	Like	Figure	2,	the	graphs	of	the	first	derivative	(y-	axis)	
vs.	ΔV

Δt
	(x-	axis)	shift	up	or	down	depending	on	the	initial	[creatinine].	The	fixed	variables	are	V0 = 42	L,	t = 24	h,	GFRK = 100	mL/min,	

Gen = 60	mg/dL⋅mL/min,	while	the	[Cr]0	increases	from	2	to	5	to	7	to	–	10 mg/dL.	All	of	the	curves	are	anchored	to	the	same	leftmost	
ΔV

Δt

(
−

V0
t
= − 1.75 L/h

)
	and	

�[Cr]t
�
ΔV

Δt
	point.	From	there,	they	take	different	paths	with	the	bottommost	curve	arising	from	[Cr]0 = 2	(black)	and	

the	uppermost	one	arising	from	[Cr]0 = 10	(red).	Some	curves	stay	completely	below	the	x-	axis,	so	their	first	derivatives	are	always	negative.	
Some	curves	rise	above	the	x-	axis	for	short	stretches,	after	the	[Cr]0	gets	to	about	7	(blue),	so	their	first	derivatives	are	positive	at	times.	A	
positive	�[Cr]t

�
ΔV

Δt

	is	fostered	by	a	[Cr]0	that	is	on	the	larger	side
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Substitute	this	[Cr]0,	arising	from	�[Cr]t
�
ΔV
Δt

= 0,	in	place	of	

the	[Cr]0	from	 �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0.	After	a	lot	of	algebra,	the	

key	to	the	simultaneous	equations	�[Cr]t
�
ΔV
Δt

=
�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0	

is	to	solve:

In	Equation	(8),	we	supply	values	for	GFRK,	V0,	and	t 	
and	 then	 calculate	 ΔV

Δt
	 using	 a	 root-	finding	 method.	 At	

that	ΔV
Δt

,	the	peak	of	the	�[Cr]t
�
ΔV
Δt

	vs.	ΔV
Δt

	curve	will	touch	the	x

-	axis	from	below.	However,	Equation	(8)	does	not	contain	
either	Gen	or	[Cr]0.	To	find	those	values,	we	refer	back	to	
the	 first	 derivative	 equaling	 zero.	 When	 �[Cr]t

�
ΔV
Δt

= 0,	

Equation	(7)	yields	[Cr]0.	We	just	have	to	supply	a	value	
for	Gen	and	be	sure	to	use	the	newly	calculated	ΔV

Δt
,	not	

the	patient's	actual	ΔV
Δt

.	Or,	if	[Cr]0	is	known,	as	measured	
by	 the	 laboratory,	 then	 a	 rearrangement	 of	 �[Cr]t

�
ΔV
Δt

= 0	
yields	Gen:

3.4	 |	 Testing if the peak is tangent to the 
x- axis

Equation	(8)	reveals	how	�[Cr]t
�
ΔV
Δt

	at	its	maximum	can	equal	

zero.	From	Figure	2,	plug	GFRK = 100	ml/min,	V0 = 42	L,	
and	t = 24	h	into	Equation	(8).	Use	a	root-	finding	method	
to	 determine	 that	ΔV

Δt
= − 0.88928…	 L/h.	 Figure	 2  had	 a	

uniform	[Cr]0	of	8 mg/dL.	Plug	that	into	Equation	(9)	to	
find	that	Gen = 69.67084…	This	is	the	value,	not	Gen = 70	,	
that	 places	 the	 �[Cr]t

�
ΔV
Δt

’s	 absolute	 maximum	 on	 the	 x-	axis,	

exactly.	Alternatively,	plug	Gen = 70	into	Equation	(7)	to	
find	 that	 a	[Cr]0 = 8.03779…	 would	 have	 also	 placed	 the	
curve's	peak	on	the	x-	axis.	Any	combination,	really,	of	Gen	

and	 [Cr]0	 would	 work	 as	 long	 as	 the	 Gen

[Cr]0
	 ratio	 is	

69.67084⋯

8
=

70

8.03779⋯
= 8.708…	ml/min	(in	this	case).	Broadly,	

the	 Gen
[Cr]0

	ratio	is	a	fixed	attribute	for	a	set	of	GFRK,	V0,	and	t 	
inputs	that	allows	the	first	and	second	derivatives	to	equal	
zero	simultaneously.

3.5	 |	 Gen and [Cr]0 effects: lifting the 
peak into positive territory

Now	that	the	peak	can	be	positioned	at	the	x-	axis,	how	can	
the	�[Cr]t

�
ΔV
Δt

	be	lifted	above	the	x-	axis?	The	GFRK,	V0,	and	t 	are	

initial	 data,	 and	 ΔV
Δt

	 is	 the	 independent	 variable	 on	 the	

graph.	That	leaves	only	Gen	and	[Cr]0	to	be	manipulated.	
Using	 the	 fixed	 Gen

[Cr]0
	 ratio	 as	 a	 benchmark,	 we	 find	 that	

lower	ratios	shift	the	curve	partially	into	positive	territory,	
in	keeping	with	the	observation	that	smaller	Gens	and/or	
bigger	[Cr]0s	promote	�[Cr]t

�
ΔV
Δt

	being	positive.	In	practice,	one	

can	calculate	[Cr]0	by	Equation	(7),	for	example,	and	then	

(8)⟨
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ask	if	the	patient's	actual	[Cr]0	is	larger,	which	lets	�[Cr]t
�
ΔV
Δt

	be	

positive	 at	 times.	 Or,	 one	 can	 calculate	 the	 benchmark	
Gen	 by	 Equation	 (9)	 and	 then	 ask	 if	 the	 patient's	 actual	
Gen	is	smaller,	which	also	permits	�[Cr]t

�
ΔV
Δt

	to	be	positive.

3.6	 |	 GFRK effect: variant way for �[Cr]t
�
𝚫V

𝚫t

 to 
be positive

In	Figures	2	and	3,	the	stereotypical	shape	of	the	�[Cr]t
�
ΔV
Δt

	vs.	

ΔV

Δt
	curve,	from	left	to	right,	is	that	�[Cr]t

�
ΔV
Δt

	rises	from	a	nega-

tive	value	to	peak	at	an	absolute	maximum	which	can	be	
positive,	then	falls	to	a	relative	minimum	(mentioned	in	
Section	3.2)	that	is	negative,	and	then	asymptotically	in-
creases	toward	y = 0.	The	curve	is	shifted	vertically,	more	
or	 less,	 by	 varying	 the	Gen	 or	 [Cr]0.	 Well,	 the	 curve	 is	
shifted	 horizontally,	 mostly,	 by	 varying	 the	 GFRK.	 A	
higher	GFRK	pulls	the	curve	rightward,	and	a	lower	GFRK	
pushes	it	 leftward.	Also,	 imagine	that	the	left	end	of	the	
curve	is	tethered	to	an	invisible	wall	at	ΔV

Δt
= −

V0
t

	but	has	
the	ability	to	slide	up	or	down	that	wall.	Then,	a	right	shift	
would	stretch	the	curve,	flattening	it	out,	and	a	left	shift	
would	compress	the	curve,	bunching	it	up	against	the	wall	
in	an	orderly	way	by	making	it	bend	and	stack	in	layers	
(with	no	thickness).	Can	the	GFRK	be	lowered	sufficiently	
to	left-	shift	the	absolute	maximum	until	it	is	located	at	the	
leftmost	ΔV

Δt
,	that	is,	− V0

t
?	Going	further,	can	the	left	shift	

continue	 until	 the	 relative	 minimum	 is	 then	 pressed	 up	
against	the	leftmost	ΔV

Δt
	wall?	If	so,	these	max/min	at	the	

leftmost	 ΔV

Δt
	 would	 correspond	 to	 a	 second	 derivative	

equaling	zero	at	two	GFRK	roots,	one	for	the	max	and	one	
for	the	min.

As	GFRK	is	reduced,	the	curve	acts	like	a	rope	being	
pushed	 leftward	 against	 a	 wall,	 based	 on	 tracking	 the	
maximum	 and	 minimum	 �[Cr]t

�
ΔV
Δt

	 points	 and	 the	 sliding	

along	the	wall.	In	response	to	the	push,	the	endpoint	at	
the	leftmost	ΔV

Δt
	moves	down,	the	maximum	moves	up,	

and	the	minimum	moves	down,	like	how	a	rope	could	
fold	to	be	more	compact	(Figure	4a).	In	addition	to	the	

vertical	 motions,	 the	 max/min	 points	 move	 horizon-
tally	to	the	left.	Once	the	GFRK	is	lowered	to	~58.34	(in	
this	example),	the	bend	at	the	maximum	is	very	sharp	
and	the	maximum	is	left-	shifted	all	the	way	to	ΔV

Δt
≅ −

V0
t

	
(Figure	 4b).	 As	 the	GFRK	 is	 lowered	 some	 more,	 the	
minimum	continues	to	move	down	and	left	but	the	ab-
solute	maximum	is	 transitioned	 into	 the	 left	endpoint	
of	 the	 curve	 sliding	 up	 the	 wall,	 on	 its	 way	 to	 +∞	
(Figure	 4c).	 In	 this	 way,	 certain	GFRKs	 can	 enforce	 a	
positive	�[Cr]t

�
ΔV
Δt

.

3.7	 |	 GFRK effect: keeping �[Cr]t
�
𝚫V

𝚫t

 negative

As	GFRK	is	further	reduced,	with	no	more	sliding	down	
the	wall	for	now,	the	relative	minimum	becomes	an	ab-
solute	 minimum	 (Figure	 4c).	 As	 the	GFRK	 reduction	
keeps	pushing	the	curve/rope	to	the	left	against	a	wall,	
the	 bend	 gets	 sharper	 and	 the	 minimum	 moves	 even	
more	to	the	left	and	down.	When	the	GFRK	gets	down	to	
~36.67	(in	this	example),	the	minimum	is	left-	shifted	all	
the	 way	 to	 the	 leftmost	ΔV

Δt
	 (Figure	 4d),	 like	 the	 maxi-

mum	was	earlier.	As	GFRK	 is	 lowered	past	~36.67,	 the	
absolute	minimum	is	transitioned	into	the	left	endpoint	
of	 the	 curve	 sliding	 down	 the	 wall,	 on	 its	 way	 to	−∞	
(Figure	4e).	After	this	transition,	the	�[Cr]t

�
ΔV
Δt

	will	always	be	
negative.

For	details	on	how	the	kinetic	GFR	can	alter	the	shape	
of	the	first	derivative	curve	and	help	determine	whether	
�[Cr]t

�
ΔV
Δt

	can	be	positive,	please	see	the	Appendix.

3.8	 |	 Algorithm to determine if �[Cr]t
�
𝚫V

𝚫t

 can 
be positive

If	 all	 variables	 have	 allowable	 values	(
V0,V0 +

ΔV

Δt
t, t,GFRK ,Gen, [Cr]0 all non-negative

)
,	 one	

way	to	detect	potential	positivity	of	�[Cr]t
�
ΔV
Δt

	is	to	compile	the	

lessons	above	into	an	algorithm.	If	the	GFRK	roots	are	in	a	
“permissive”	order	of	 Gen

[Cr]0
+

V0
t
< 2

V0
t

,	permitting	�[Cr]t
�
ΔV
Δt

	to	
be	positive,	then:

F I G U R E  4  Decreasing	GFRK	pushes	the	first	derivative	curve	leftward	along	the	ΔV
Δt

	x-	axis.	Variables	in	common	are	Gen = 60	mg/dL⋅
mL/min,	[Cr]0 = 8	mg/dL,	V0 = 42	L,	and	t = 24	h.	(a)	As	the	GFRK	decreases	from	90	(red)	to	80	(blue)	to	70	(green)	mL/min,	the	curve	
looks	like	it	is	being	pushed	to	the	left	and	is	bending	in	the	process.	The	maximum	moves	steadily	up,	the	minimum	moves	down,	and	both	
of	them	move	to	the	left.	Also,	the	left	endpoint	slides	down	a	virtual	wall	at	the	leftmost	ΔV

Δt
.	(b)	When	GFRK	decreases	to	58.34	

(
≅ 2

V0
t

)
	,	the	

maximum	has	been	pushed	to	the	leftmost	ΔV
Δt

,	and	only	a	short	tail	to	the	left	of	the	maximum	is	decreasing	before	it	gets	truncated	at	the	
wall	(inset).	(c)	As	GFRK	decreases	below	58.34,	the	maximum	vanishes	(blue)	and	transitions	into	a	left	tail	that	blows	up	to	+∞	(red).	(d)	
With	no	more	maximum,	the	minimum	is	the	sole	critical	point,	and	it	continues	to	move	down	and	left	as	the	GFRK	decreases	further	from	
57	(red)	to	50	(orange)	mL/min.	When	the	GFRK	drops	to	36.67	

(
≅

Gen

[Cr]0
+

V0
t

)
,	the	minimum	has	been	pushed	to	the	leftmost	ΔV

Δt
,	and	the	

left	tail	still	diverges	to	+∞	(purple).	(e)	When	GFRK	decreases	below	36.67,	the	minimum	vanishes	(purple)	and	transitions	into	a	left	tail	
that	plunges	to	−∞	(red).	From	here,	the	first	derivative	is	always	negative
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a.	 For	 0 ≤ GFRK <
Gen

[Cr]0
+

V0
t

	 (bottom	 domain),	 the	 first	
derivative	 will	 always	 be	 negative.	 See	 A1.3.

b.	 For	 Gen
[Cr]0

+
V0
t
< GFRK < 2

V0
t

	(middle	domain),	the	first	
derivative	has	an	absolute	minimum	and	the	left-	sided	
tail	 can	 diverge	 to	+∞	 at	 the	 leftmost	ΔV

Δt
	
(
→ −

V0
t

)
,	

with	exceptions	(see	A1.2).
c.	 For	2V0

t
< GFRK	 (top	domain),	the	first	derivative	has	

an	 absolute	 maximum,	 which	 can	 be	 positive	 (see	
Section	3.2).
(i)	 Calculate	by	a	root-	finding	method	the	ΔV

Δt
	at	which	

the	�[Cr]t
�
ΔV
Δt

	vs.	ΔV
Δt

	curve	is	tangent	to	the	x-	axis	at	its	
absolute	maximum,	that	 is,	solve	Equation	(8)	 for	
ΔV

Δt
	(see	Section	3.3).

(ii)	 Plug	that	ΔV
Δt

	and	a	known	Gen	into	Equation	(7)	
to	calculate	a	benchmark	[Cr]0	(Section	3.5).

1.	 If	the	patient's	[Cr]0	is	greater	than	the	benchmark	
[Cr]0,	then	the	absolute	maximum	lies	above	the	x
-	axis	and	�[Cr]t

�
ΔV
Δt

	can	be	positive.
2.	 If	 the	 patient's	[Cr]0	 is	 less	 than	 the	 benchmark	

[Cr]0,	then	the	absolute	maximum	lies	below	the	x
-	axis	and	�[Cr]t

�
ΔV
Δt

	is	always	negative.

(iii)	 Alternatively,	 plug	 the	ΔV
Δt

	 from	 step	 c.,	 i.	 and	 a	
known	[Cr]0	into	Equation	(9)	to	calculate	a	bench-
mark	Gen	(see	Section	3.5).

1.	 If	 the	patient's	Gen	 is	 less	 than	 the	benchmark	
Gen,	then	the	absolute	maximum	lies	above	the	
x-	axis	and	�[Cr]t

�
ΔV
Δt

	can	be	positive.

2.	 If	the	patient's	Gen	is	greater	than	the	benchmark	
Gen,	then	the	absolute	maximum	lies	below	the	x
-	axis	and	�[Cr]t

�
ΔV
Δt

	is	always	negative.

To	know	if	�[Cr]t
�
ΔV
Δt

	 is	positive	at	 the	patient's	actual	ΔV
Δt

,	

not	the	calculated	ΔV
Δt

	above,	plug	all	of	the	patient's	vari-
ables	 into	 Equation	 (5)	 and	 note	 the	 sign.	 One	 can	 also	
find	the	spread	of	ΔV

Δt
	values	that	yield	a	positive	�[Cr]t

�
ΔV
Δt

	by	a	

root-	finding	method.	Vary	the	initial	guess	to	find	both	ΔV
Δt

	
roots.

4 	 | 	 DISCUSSION

4.1	 |	 Positive paradox possible?

The	positive	�[Cr]t
�
ΔV
Δt

	paradox	is	fostered	by	the	combination	

of	a	low	creatinine	generation	rate	and	a	high	initial	cre-
atinine.	The	two	conditions	are	not	mutually	exclusive	but	

they	are	at	odds	with	one	another,	making	the	combina-
tion	rare	but	not	 impossible.	For	a	 low	Gen	 to	be	paired	
with	 a	 high	[Cr]0,	 renal	 failure	 probably	 had	 to	 be	 sus-
tained	for	a	while.	To	permit	�[Cr]t

�
ΔV
Δt

	to	be	positive,	the	GFRK	

has	 to	 be	 at	 least	> Gen

[Cr]0
+

V0
t

	 and	 preferably	> 2
V0
t

.	 The	

relatively	high	GFRK	is	going	to	decrease	the	[creatinine]	
over	time	

(
[Cr]t

)
.	Though	it	is	decreased	overall,	can	[Cr]t	

decrease	less	due	to	a	volume	rate	increase?	Then	the	[Cr]t	
would	be	comparatively	increased.	Or,	can	[Cr]t	decrease	
more	due	to	a	volume	rate	decrease?	Then	the	[Cr]t	would	
be	comparatively	decreased.	Either	scenario	is	compatible	
with	a	�[Cr]t

�
ΔV
Δt

	that	is	positive	in	sign.	But	what	kind	of	pa-

tient	fits	the	criteria	of	low	Gen,	high	[Cr]0,	and	a	relatively	
high	GFRK?	One	plausible	patient	may	have	suffered	sep-
sis	 that	 temporarily	 reduced	 the	Gen	 (Doi	 et	 al.,	 2009;	
Prowle	et	al.,	2014).	Sepsis	may	have	also	caused	kidney	
failure,	so	the	[creatinine]	went	fairly	high.	Doctors	then	
initiated	 continuous	 renal	 replacement	 therapy	 (CRRT)	
that	provided	a	GFRK	greater	than	2V0

t
.	(GFRK	here	is	not	

used	in	the	literal	sense	of	clearance	done	by	the	glomeru-
lus.	 Rather,	 it	 is	 used	 in	 the	 broader	 sense	 of	 clearance	
done	by	any	means,	including	extracorporeal).

4.2	 |	 Paradox by the numbers

The	abstract	math	may	be	easier	to	grasp	if	we	put	some	
concrete	numbers	on	it.	Suppose	that	a	septic	patient	now	
has	a	Gen = 40	mg/dl	×	ml/min.	He	develops	acute	tubu-
lar	necrosis	and	the	creatinine	rises	to	8 mg/dl.	CRRT	is	
started,	and	 the	 total	GFRK = 80	ml/min.	The	combina-
tion	of	conditions	seems	ripe	 for	a	positive	 �[Cr]t

�
ΔV
Δt

,	 so	 the	

algorithm	is	consulted.	First,	the	GFRK	falls	into	the	top	
domain,	 since	 it	 is	 > 2

V0
t
=

50

3
⋅ 2 ⋅ 42

24
= 58. 3,	 assuming	

his	volume	(TBW)	is	42	L	and	the	time	interval	is	going	to	
be	24 h.	The	top	domain	implies	that	the	�[Cr]t

�
ΔV
Δt

	vs.	ΔV
Δt

	curve	

will	 have	 an	 absolute	 maximum.	 To	 know	 where	 the	
maximum	is	tangent	to	the	x-	axis,	Equation	(8)	is	solved	
by	a	root-	finding	method	to	yield	a	ΔV

Δt
= − 1.43818…	Plug	

that	ΔV
Δt

	and	the	[Cr]0 = 8	into	Equation	(9)	to	calculate	a	
benchmark	Gen	 of	 78.42…	 (Alternatively,	 plug	 that	 ΔV

Δt
	

and	the	Gen = 40	into	Equation	(7)	to	calculate	a	bench-
mark	[Cr]0	of	4.08…)	The	patient's	Gen	of	40	is	less	than	
the	benchmark	Gen,	so	the	absolute	maximum	lies	above	
the	x-	axis.	(Alternatively,	the	patient's	[Cr]0	of	8	is	greater	
than	the	benchmark	[Cr]0,	and	again	the	absolute	maxi-
mum	lies	above	the	x-	axis).	If	the	maximum	is	positive,	
then	�[Cr]t

�
ΔV
Δt

	stays	positive	over	a	spread	of	ΔV
Δt

	values.	The	
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(+)	sign	says	that	changes	in	ΔV
Δt

	move	in	the	same	direc-
tion	as	changes	in	[Cr]t.

4.3	 |	 Effect size

Say	 that	 the	 CRRT	 ultrafiltration	 (UF)—	volume	
removal—	rate	is	turned	up	from	100	to	300 ml/h,	that	is,	
the	ΔV

Δt
	goes	from	− 0.1	to	− 0.3	L/h,	making	the	�ΔV

Δt
	nega-

tive.	 At	 those	 two	 ΔV

Δt
s,	 the	 first	 derivative	 is	 positive	

(≈ 0.012	to	0.029	mg/dl	per	L/h).	That	forces	the	�[Cr]t	to	
be	negative.	By	Equation	(2),	the	[Cr]t=24	goes	from	0.982…	
to	 0.978…	 mg/dl,	 a	 decrease	 that	 represents	 a	 negative	
�[Cr]t	as	advertised.	Certainly,	the	change	in	[creatinine]	
is	small,	as	predicted	by	the	small	�[Cr]t

�
ΔV
Δt

.	Importantly,	the	

positive	sign	assures	the	nephrologist	that	turning	up	the	
UF	rate	will	actually	improve	the	next	day's	[creatinine].	
One	might	posit	that	the	[Cr]t	improvement	is	due	to	the	
higher	UF	rate	increasing	convective	clearance	(Tandukar	
&	Palevsky,	2019),	but	the	math	disproves	that	by	holding	
the	GFRK	 constant.	Besides,	 turning	up	 the	UF	rate	will	
worsen	the	next	day's	[creatinine]	if	the	�[Cr]t

�
ΔV
Δt

	is	negative,	

so	convective	clearance	does	not	always	match	with	 the	
[creatinine]	trajectory.

4.4	 |	 Come- from- behind win: getting to a 
lower [creatinine]

By	 itself,	 volume	 loss	 should	 concentrate	 and	 thereby	 in-
crease	 the	 [creatinine].	 Somehow,	 this	 concentration	 ef-
fect	 is	overridden	by	a	creatinine-	lowering	effect.	In	24 h,	
ΔV

Δt
= − 0.3	L/h	got	to	a	lower	[creatinine]	than	ΔV

Δt
= − 0.1	

L/h.	Having	ΔV
Δt

= − 0.3	L/h	would	seem	like	a	handicap,	
because	 removing	 more	 volume	 concentrates	 the	 [creati-
nine]	and	resists	the	GFRK	that	is	trying	to	lower	the	[cre-
atinine].	 Thus,	 the	ΔV

Δt
= − 0.3	 (Figure	 5,	 blue	 curve)	 has	

a	 higher	 [creatinine]	 than	 the	 ΔV
Δt

= − 0.1	 (Figure	 5,	 red	
curve)	at	almost	all	time	points.	After	about	5.7 h,	however,	
the	blue	curve	starts	 to	catch	up	 to	 the	 red	curve	 (Figure	
5),	 which	 is	 peculiar	 as	 the	 two	 ΔV

Δt
s	 have	 not	 changed.	

Apparently,	concentrating	the	[creatinine]	can	be	advanta-
geous	when	the	higher	[Cr]t	interacts	with	the	steady	GFRK	
to	excrete	more	creatinine	mass.	That	lowers	the	total	cre-
atinine	(numerator)	faster	than	its	volume	(denominator),	
such	that	the	creatinine	concentration	starts	to	decline	more	
quickly.	The	blue	curve	catches	up	to	the	red	curve	at	~22 h	
(Figure	 5).	 Then,	 the	 blue	 curve	 barely	 edges	 out	 the	 red	
curve	at	the	24-	h	mark	(Figure	5,	see	inset),	meaning	that	
the	 higher	 UF	 rate	( − 0.3)	 came	 from	 behind	 to	 get	 to	 a	
lower	[creatinine].	Despite	the	concentration	disadvantage	

for	most	of	the	race,	the	higher	UF	rate's	latent	factor	that	
slowly	predominated	was	a	synergy	between	the	[Cr]t	and	
the	GFRK	to	boost	creatinine	excretion.

4.5	 |	 Volume gain can increase the 
[creatinine]

In	 the	 same	clinical	 example,	 the	
�[Cr]t

�
ΔV
Δt

	 stays	positive	briefly	
into	 the	 positive	ΔV

Δt
	 zone.	 If	 volume	 is	 given	

(
ΔV

Δt
positive

)
,	

could	that	increase	the	[creatinine]?	Yes.	If	the	UF	is	turned	off	
and	CRRT	is	used	to	give	volume,	let	us	say	that	ΔV

Δt
	increases	

from	− 100	to	80 ml/h.	The	�ΔV

Δt
	is	certainly	positive.	The	

�[Cr]t

�
ΔV
Δt

	
remains	positive.	That	forces	�[Cr]t	to	be	positive	too.	In	a	race	
between	ΔV

Δt
= − 0.1	and	+ 0.08	L/h,	the	[creatinine]	at	24 h	is	

0.982…	vs.	0.983…	mg/dl,	respectively.	Counterintuitively,	giv-
ing	volume	resulted	in	a	higher	[creatinine]	than	continuing	
the	UF.	The	explanation	is	similar	to	before.	The	baseline	UF	
rate	

(
ΔV

Δt
= − 0.1

)
,	by	virtue	of	the	concentration	effect,	lags	

behind	 in	 lowering	 the	 [Cr]t.	 Meanwhile,	 volume	 gain	(
ΔV

Δt
= + 0.08

)
	 is	diluting	 the	[Cr]t	 and	helping	 the	GFRK	.	

Because	the	UF	has	a	higher	[Cr]t	that	is	subjected	to	a	rela-
tively	high	GFRK	for	most	of	the	race,	more	creatinine	is	ex-
creted	that	eventually	lowers	the	[creatinine]	further	versus	a	
gain	of	volume,	even	with	the	latter's	dilution	effect	advantage.	
So,	the	creatinine-	lowering	effect	that	overcomes	the	volume	
effect	is	facilitated	by	a	higher	GFRK,	which	explains	why	the	
GFRK	should	be	> 2

V0
t

	to	get	a	positive	�[Cr]t
�
ΔV
Δt

.

4.6	 |	 Reality check

What	if	the	GFRK	is	in	the	middle	domain	(see	Section	3.8,	
b.)?	That	gives	the	�[Cr]t

�
ΔV
Δt

	curve	an	absolute	minimum,	and	

the	 tail	 to	 the	 left	 can	 be	 positive,	 maybe	 even	 going	 to	
+∞	.	 Unfortunately,	 obtaining	 a	 positive	 first	 derivative	
this	way	is	clinically	unrealistic.	The	ΔV

Δt
	is	usually	so	nega-

tive	that	it	would	dry	up	nearly	all	of	the	TBW	within	an	
allotted	 time,	 killing	 the	 patient.	 Realistically,	 all	 of	 the	
positive	 first	derivatives	 in	medicine	come	 from	a	GFRK	
being	in	the	top	domain	of	> 2

V0
t

.

4.7	 |	 Big picture

A	positive	�[Cr]t
�
ΔV
Δt

	paradox	may	not	happen	all	that	often,	but	

it	 is	 a	 real	 mathematical	 phenomenon	 that	 can	 occur	
under	 the	 right	 circumstances,	 especially	 in	 septic	 pa-
tients	 who	 have	 become	 quite	 azotemic	 and	 are	 being	
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initiated	 on	 CRRT,	 a	 not	 uncommon	 scenario.	 In	 those	
cases,	clinicians	may	want	to	pay	attention	to	the	CRRT	
volume	settings.	Turning	up	the	UF	rate,	that	is,	decreas-
ing	the	ΔV

Δt
,	can	lower	the	[Cr]t	a	little	more.	On	the	other	

hand,	turning	down	the	UF	rate	(or	giving	volume),	that	
is,	increasing	the	ΔV

Δt
,	can	raise	the	[Cr]t	a	little.	This	coun-

terintuitive	 improvement	or	worsening	of	 [creatinine]	 is	
marginal	 at	 best	 and	 pales	 in	 comparison	 to	 the	 overall	
effect	that	CRRT	exerts	on	the	[creatinine]	trajectory.	In	
addition,	the	paradox	goes	unnoticed	because	one	patient	
cannot	experience	two	separate	ΔV

Δt
	rates	to	yield	two	[Cr]t

s	for	comparison.
Most	patients	will	not	be	at	risk	for	a	positive	paradox.	

The	 combination	 of	 low	Gen,	 high	 [Cr]0,	 and	 high-	ish	
GFRK	is	rare.	The	GFRK	is	< Gen

[Cr]0
+

V0
t

	in	many	instances	
of	AKI,	so	those	patients	are	protected	from	a	paradox	and	
likely	will	behave	as	expected	in	response	to	fluids	or	di-
uresis.	Milder	cases	of	AKI	can	have	a	GFRK	that	lies	be-
tween	 Gen

[Cr]0
+

V0
t

	and	2V0
t

,	which	does	permit	a	paradox	but	

only	under	a	ludicrous	rate	of	volume	loss	
(
ΔV

Δt
→ −

V0
t

)
	

that	is	clinically	unrealistic.	If	the	GFRK	is	high-	ish	enough	
to	be	> 2

V0
t

,	the	paradox,	if	it	occurs,	alters	[Cr]t	in	a	negli-
gible	way.	Finally,	more	than	just	the	ΔV

Δt
	changes	in	clini-

cal	practice,	so	if	the	paradox	seems	to	occur,	it	may	be	due	

to	the	other	variables	changing	and	confounding	the	pic-
ture.	With	all	that	said,	we	think	the	possibility	of	a	posi-
tive	 �[Cr]t

�
ΔV
Δt

	 is	 intellectually	 enlightening,	 and	 it	 differs	

markedly	from	the	 �[Cr]t
�GFRK

	that	was	proved	to	always	be	neg-

ative	(Chen	&	Chiaramonte,	2021).
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F I G U R E  5  Positive	derivative	paradox	viewed	as	evolution	of	[creatinine].	This	paradox	can	happen	in	a	septic	patient	with	kidney	
failure	on	continuous	dialysis.	Raise	the	ultrafiltration	rate	from	ΔV

Δt
= − 0.1	to	− 0.3	L/h,	which	is	a	negative	� ΔV

Δt
,	and	if	the	first	derivative	

is	positive,	then	tomorrow's	[creatinine]	will	be	further	decreased,	which	is	a	negative	�[Cr]24 h.	The	fixed	variables	are	V0 = 42	L,	Gen = 40	
mg/dL⋅mL/min,	[Cr]0 = 8	mg/dL,	and	GFRK = 80	mL/min.	Then,	Equation	(2)	is	graphed	as	[Cr]t	(y-	axis)	versus	time	(x-	axis).	Seen	as	the	
evolution	of	[Cr]t,	the	red	curve	shows	the	effect	of	a	baseline	ΔV

Δt
= − 0.1	L/h,	while	the	blue	curve	shows	the	effect	of	a	ΔV

Δt
= − 0.3	L/h.	

Predictably,	both	[creatinine]	curves	decrease	over	time	due	to	the	relatively	high	GFRK	of	80 mL/min.	But	the	blue	curve	declines	more	
slowly,	because	its	greater	volume	removal	will	concentrate	the	[Cr]t	more.	As	time	goes	by,	the	blue	curve	catches	up	to	the	red	curve	at	
about	22 h.	After	that,	blue	surpasses	red	and	gets	to	a	lower	[Cr]t	at	the	24-	h	mark	(see	inset),	consistent	with	the	first	derivative	being	
positive
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APPENDIX 

A1.1 	 | 	 GFRK  root derivations
How	 are	 the	 58.34	 and	 36.67  values	 derived?	 They	 are	
GFRK	 roots	 where	 the	 second	 derivative	 equals	 zero	 as	
ΔV

Δt
→ −

V0
t

,	since	the	first	derivative	maximum	and	mini-
mum	can	be	successively	situated	at	the	leftmost	ΔV

Δt
.	If	we	

graph	 �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
	vs.	GFRK	when	ΔV

Δt
	is	nearly	leftmost,	

the	 two	 roots	 lie	 at	 about	 58.34	 and	 36.667	 (Figure	 A1,	
red).	 The	 values	 can	 be	 deduced	 by	 trying	 to	 make	

�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0	,	 even	 as	 the	 leftmost	 ΔV

Δt
	 is	 setting	 up	

Equation	 (6)	 to	 divide	 by	 zero	 in	 several	 places.	 In	 the	
graph,	 V0 = 42,	 t = 24,	 ΔV

Δt
= − 1.74999,	 Gen = 60,	 and	

[Cr]0 = 8	.	 The	 larger	 root,	 58.34,	 comes	 from	 setting	
1 +

GFRK
ΔV
Δt

	equal	to	− 1,	that	is,	GFRK = − 2
ΔV

Δt
.	At	the	left-

most	 ΔV

Δt
,	 GFRK = 2

V0
t

.	 Reason:	 If	 the	 exponent	 in	

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	 is	 − 1,	 while	 the	 base	 is	 a	 +∞	
(
due to V0 +

ΔV

Δt
t → 0+

)
	,	the	exponential	shrinks	rapidly	

to	 zero.	 The	 exponential	 is	 multiplied	 by	 everything	 in	

Equation	(6),	giving	 �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0.	Checking	the	for-

mula,	we	find	that	GFRK = 2
V0
t
=

50

3
⋅ 2 ⋅

42

24
= 58. 3.	Next,	

the	 smaller	 root,	 36.667,	 comes	 from	 setting	
Gen

GFRK +
ΔV
Δt

− [Cr]0	equal	to	0,	that	is,	GFRK =
Gen

[Cr]0
−

ΔV

Δt
.	At	

the	 leftmost	 ΔV
Δt

,	GFRK =
Gen

[Cr]0
+

V0
t

.	 Around	 that	GFRK,	

Equation	(6)	is	balanced	in	its	tendency	to	go	off	to	±∞,	

giving	 another	 �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0	 (Figure	 A1).	 Checking	

the	 other	 formula,	 we	 find	 that	
GFRK =

Gen

[Cr]0
+

V0
t
=

60

8
+

50

3
⋅

42

24
=36. 6.
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The	two	roots	encoded	by	our	GFRK	formulas	are	the	far-
thest	left	that	a	root	pair	can	go,	because	they	represent	the	
GFRKs	small	enough	to	shift	a	first	derivative's	maximum	
and	then	minimum	all	the	way	to	the	leftmost	ΔV

Δt
	(Figure	

A1,	 red).	For	a	 first	derivative's	max/min	 to	be	 located	at	
any	ΔV

Δt
	x-	coordinate	to	the	right	of	− V0

t
,	the	second	deriva-

tive's	GFRK	root	pair	is	going	to	be	larger.	To	demonstrate,	
we	graphed	the	second	derivative	like	before	but	changed	
the	ΔV

Δt
	from	− 1.74999	to	− 1.7.	This	plot	has	less	vehement	

swings,	without	all	of	 the	 leftmost	ΔV
Δt

	causing	division	by	
zero.	 As	 predicted,	 the	GFRK	 root	 pair	 for	 ΔV

Δt
= − 1.7	 is	

larger	and	to	the	right	of	the	58.34	and	36.667	pair	(Figure	
A1,	blue	dotted	curve).	If	we	could	shift	the	GFRK	root	pair	
to	the	left	of	(36.67, 58.34),	then	the	smaller	root	would	van-
ish	 behind	 a	 wall	 at	 36.67,	 turning	 the	 pair	 into	 a	 single.	
That	 is	 why,	 in	 a	 sense,	 that	GFRKs	 between	 36.67	 and	
58.34 lack	their	partner.	That	suddenly-	single	root	relates	to	
the	 first	 derivative	 having	 only	 a	 minimum	 when	
36.67 < GFRK < 58.34	(Figure	4c).	Further,	if	we	could	shift	
the	GFRK	root	pair	to	the	left	of	36.67,	then	both	roots	would	
vanish,	 forecasting	 that	 �[Cr]t

�
ΔV
Δt

	 will	 lose	 its	 minimum	 next,	
letting	the	first	derivative	plummet	toward	−∞	(Figure	4e).

F I G U R E  A 1  Second	derivative	goes	to	infinity	near	the	leftmost	ΔV
Δt

	but	still	has	two	GFRK	roots.	Equation	(6)	is	graphed	with	GFRK	as	

an	independent	variable	(x-	axis)	and	 �

�
ΔV

Δt

(
�[Cr]t
�
ΔV

Δt

)
	as	the	dependent	variable	(y-	axis).	The	fixed	variables	in	this	figure	are	V0 = 42	L,	t = 24	h,	

Gen = 60	mg/dL⋅mL/min,	and	[Cr]0 = 8	mg/dL,	while	the	two	ΔV
Δt

	values	are	− 1.74999	
(
approaching −

V0
t

)
	and	− 1.7	L/h.	For	ΔV

Δt
	at	its	

leftmost,	the	second	derivative	is	volatile.	It	swings	to	and	from	±∞	(red	curve).	Yet,	it	crosses	the	x-	axis	twice	and	therefore	has	two	roots	
that	can	be	estimated	as	GFRK ≈

Gen

[Cr]0
+

V0
t
= 36. 6	and	GFRK ≈ 2

V0
t
= 58. 3	.	As	ΔV

Δt
	is	increased,	the	second	derivative	curve	shifts	to	the	right	

(blue	dot	curve).	It	is	not	as	volatile,	and	its	roots	are	greater	than	when	ΔV
Δt

	is	leftmost.	In	a	way,	the	GFRK	roots	are	a	continuum,	beginning	
at	 Gen

[Cr]0
+

V0
t

	and	transitioning	at	2 V0
t

,	with	the	root	pair	locations	depending	on	the	ΔV
Δt
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A1.2 	 | 	 GFRK  domain:  curve has a 
left  tail  that blows up to be  
positive
The	two	GFRK 	landmarks	divide	the	GFRK 	number	line	
into	three	domains.	The	top	domain	is	GFRK > 2

V0
t

,	like	
the	GFRK 	of	100	that	was	chosen	for	all	of	the	curves	in	
Figures	 2	 and	 3.	 GFRKs	 this	 large	 allow	 both	 the	

absolute	maximum	and	the	relative	minimum	to	be	to	
the	 right	 of	 ΔV

Δt
= −

V0
t

	 (Figure	 A2,	 blue).	 If	GFRK 	 de-

scends	into	the	middle	domain	of	2
V0
t
> GFRK >

Gen

[Cr]0
+

V0
t

,	then	the	
�[Cr]t

�
ΔV
Δt

	curve	has	shifted	far	enough	left	to	still	
have	 a	 minimum	 but	 also	 to	 vanish/transition	 the	

F I G U R E  A 2  Types	of	first	derivative	curves.	The	�[Cr]t
�
ΔV

Δt

	(y-	axis)	vs.	ΔV
Δt

	(x-	axis)	curve	takes	one	of	three	shapes	depending	on	the	GFRK.	If	

the	GFRK	falls	into	the	bottom	domain	of	being	< Gen

[Cr]0
+

V0
t

,	then	the	graph	has	a	generic	shape	like	the	green	curve.	It	has	no	minimum	or	

maximum,	and	it	remains	below	the	x-	axis,	so	all	of	the	
�[Cr]t
�
ΔV

Δt
	values	are	negative.	If	the	GFRK	lies	in	the	middle	domain	of	

Gen

[Cr]0
+

V0
t
< GFRK < 2

V0
t

,	then	the	graph	has	a	generic	shape	like	the	red	curve.	It	has	an	absolute	minimum,	and	to	the	left	of	the	minimum,	

as	ΔV
Δt

→ −
V0
t

,	the	�[Cr]t
�
ΔV

Δt

	values	blow	up	to	+∞.	To	the	right	of	the	minimum,	the	�[Cr]t
�
ΔV

Δt

	stays	negative.	If	the	GFRK	is	in	the	top	domain	of	

being	> 2
V0
t

,	then	the	graph	has	a	generic	shape	like	the	blue	curve.	It	has	an	absolute	maximum	that	can	be	positive,	as	demonstrated	by	the	
blue	curve.	A	small	part	of	the	curve	is	positive,	and	the	rest	of	the	curve	is	negative	in	terms	of	the	�[Cr]t

�
ΔV

Δt

	sign
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absolute	 maximum	 into	 the	 left	 tail	 of	 a	 curve	 that	
blows	up	to	+∞.	We	graphed	an	example	of	this	curve	
shape	using	GFRK = 52	ml/min,	which	is	between	58.34	
and	36.67	(Figure	A2,	red).

In	special	cases,	the	left	tail	may	remain	negative.	If	the	
two	GFRK	 roots	 are	 so	 close	 that	 the	 middle	 domain	 is	
squeezed,	then	an	absolute	minimum	is	forced	to	be	near	
the	 leftmost	ΔV

Δt
,	 a	 wall	 that	 truncates	 the	 left	 tail	 before	

F I G U R E  A 3  Types	of	derivative	curves	when	the	GFRK	roots	are	reversed.	(a)	Unlike	in	Figure	A2,	the	 Gen
[Cr]0

+
V0
t

	root	may	be	greater	
than	2 V0

t
,	especially	when	Gen	is	larger	and/or	[Cr]0	is	smaller.	The	2 V0

t
≈ 58.343	is	now	the	smaller	GFRK	root	of	the	second	derivative,	and	

the	 Gen
[Cr]0

+
V0
t
≈ 66.643	is	the	larger	root,	due	to	a	Gen = 150	mg/dL⋅mL/min	and	[Cr]0 = 4	mg/dL,	while	V0 = 42	L,	t = 24	h,	and	

ΔV

Δt
= − 1.74999	L/h	(red).	When	ΔV

Δt
	is	barely	increased	to	− 1.748	(blue),	the	roots	get	closer	together	instead	of	shifting	as	a	spaced	pair	to	

the	right,	like	in	Figure	A1.	Increase	ΔV
Δt

	to	− 1.747	(green)	and	the	roots	get	closer	still,	while	staying	between	58.343	and	66.643.	When	ΔV
Δt

	is	
increased	to	− 1.746	(purple),	the	second	derivative	no	longer	has	roots.	(b)	The	absence	of	second	derivative	roots	under	most	conditions	
means	that	the	first	derivative	usually	lacks	a	maximum	and	a	minimum	when	the	GFRK	roots	are	reversed.	For	GFRK > 66.643	,	the	typical	
curve	approaches	y = 0,	and	the	first	derivative	is	always	negative	(blue).	For	66.643 > GFRK > 58.343,	the	curve	has	an	absolute	minimum	
at	ΔV

Δt
= − 1.748 ≅ −

V0
t

	,	and	the	first	derivative	is	always	negative	(red).	For	58.343 > GFRK,	the	curve	has	no	maximum	or	minimum,	again,	
and	the	first	derivative	is	always	negative	(green)
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�[Cr]t

�
ΔV
Δt

	can	increase	to	a	positive	value,	much	less	blow	up	to	
+∞.

A1.3 	 | 	 GFRK  domain:  curve has no 
maximum or minimum and stays 
negative
If	GFRK	 lies	 in	 the	 bottom	 domain	 of	 Gen

[Cr]0
+

V0
t
> GFRK,	

then	the	�[Cr]t
�
ΔV
Δt

	curve	has	shifted	so	far	to	the	left	that	even	
the	minimum	has	been	 transitioned	 into	 the	 left	 tail	of	 a	
curve	that	plunges	toward	−∞	(Figure	A2,	green).	To	the	
right,	 the	curve	asymptotically	approaches	 y = 0	 from	the	
negative	side.	The	absence	of	both	a	maximum	and	a	mini-
mum	is	corroborated	by	the	fact	that	the	second	derivative	
cannot	equal	zero	when	the	GFRK <

Gen

[Cr]0
+

V0
t

	(Figure	A1).	

We	graphed	an	example	of	this	curve	shape	using	GFRK = 32	
ml/min,	which	is	below	36.67	(Figure	A2,	green).

A1.4 	 | 	 GFRK  root reversal  keeps �[Cr]t
�
�V

�t

 
negative
The	second	derivative	as	ΔV

Δt
→ −

V0
t

	has	two	GFRK	roots,	

but	 Gen
[Cr]0

+
V0
t

	does	not	have	to	be	< 2
V0
t

.	What	if	the	order	
of	the	roots	is	reversed,	because	Gen	is	larger	and/or	[Cr]0	
is	smaller?	Then	the	second	derivative	behaves	differently.	
Its	GFRK	root	pair	exists	only	transiently.	Before,	the	root	

pair	of	
(

Gen

[Cr]0
+

V0
t
, 2

V0
t

)
	was	 the	 smallest	 since	 it	was	at	

the	leftmost	ΔV
Δt

,	so	root	pairs	at	any	ΔV
Δt

> −
V0
t

	would	get	
larger,	 but	 at	 least	 the	 pairs	 would	 persist	 (Figure	 A1).	
Now,	when	the	roots	are	reversed,	the	pairs	no	longer	shift	
to	the	right.	They	stay	confined	between	2V0

t
	and	 Gen

[Cr]0
+

V0
t

,	 and	 the	 two	 roots	 get	 closer	 to	 each	 other	 as	ΔV
Δt

	 is	 in-
creased.	Even	a	minuscule	increase	from	− V0

t
	is	sufficient	

to	close	the	gap	between	the	two	roots.	After	that,	the	sec-
ond	derivative	lies	above	the	x-	axis	and	does	not	have	any	
roots	(Figure	A3a,	purple).	If	the	root	pairs	cease	to	exist,	
then	the	concept	of	GFRK	domains	becomes	mostly	irrel-
evant.	That	said,	the	middle	domain	does	contain	all	of	the	
roots.

With	roots	reversed,	 the	 first	derivative	almost	always	
lacks	 a	 maximum	 and	 a	 minimum.	 The	 stereotypical	
shape	of	this	�[Cr]t

�
ΔV
Δt

	curve	is	to	increase	from	a	left	endpoint	

at	ΔV
Δt

= −
V0
t

	toward	y = 0,	asymptotically	from	the	nega-
tive	side	(Figure	A3b,	blue	or	green).	The	window	for	hav-
ing	 two	GFRK	 roots	of	 the	second	derivative	 is	narrowly	
open	when	ΔV

Δt
	is	in	the	vicinity	of	− V0

t
.	If	ΔV

Δt
≅ −

V0
t

	and	
the	GFRK	 lies	 between	 the	 smaller	 2V0

t
	 and	 the	 larger	

Gen

[Cr]0
+

V0
t

	,	flipped	due	to	root	reversal,	then	the	�[Cr]t
�
ΔV
Δt

	curve	

has	an	absolute	minimum	(all	roots	in	this	GFRK	domain	
are	minimums),	and	the	left	tail	gets	truncated	by	the	− V0

t
	

wall	 before	 the	 first	 derivative	 can	 turn	 positive	 (Figure	
A3b,	 red).	 Overall,	 the	 combination	 of	 larger	Gen	 and	
smaller	[Cr]0	 is	 not	 conducive	 to	 a	 first	 derivative	 being	
positive.	A	necessary	but	not	sufficient	condition	for	first	
derivative	positivity,	judging	by	root	order,	is	that	Gen

[Cr]0
+

V0
t

	
should	at	least	be	< 2

V0
t

,	or	 Gen
[Cr]0

<
V0
t

.	Further	restrictions	
on	 Gen

[Cr]0
	apply,	in	order	for	the	first	derivative	to	be	positive	

(see	Sections	3.4	and	3.5).


