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Abstract
[Creatinine] was proved to change in the opposite direction of the kinetic GFR 
(GFRK), but does the [creatinine] also change in the opposite direction of the vol-
ume rate? If volume is administered and the [creatinine] actually goes up, then 
the two changes move in the same direction and their ratio is positive, paradoxi-
cally. The equation that describes [creatinine] as a function of time was differ-
entiated with respect to the volume rate. This partial first derivative has a global 
maximum that can be positive under definable conditions. Knowing what makes 
the maximum positive informs when the derivative will be positive over some 
continuous domain of volume rate inputs. The first derivative versus volume rate 
curve has a maximum and a minimum point depending on the GFRK. If GFRK is 
below a calculable value, then the curve's minimum vanishes, letting it descend 
to −∞ and not allowing the derivative to ever be positive. If GFRK lies between 
a lower and a higher calculable value, then the curve's maximum vanishes, let-
ting the derivative diverge to +∞, though the clinical scenario is unrealistic. If 
GFRK is above the higher calculable value, then the curve's absolute maximum 
can become positive by decreasing the creatinine generation rate or increasing 
the initial [creatinine]. The derivative is potentially positive under these clinically 
realizable circumstances. The combination of parameters above can align in sep-
tic patients (low creatinine generation rate) with kidney failure (high initial [cre-
atinine]) who are put on continuous dialysis (high GFRK). If a first derivative is 
positive, removing more volume can improve the [creatinine] and, dismayingly, 
giving more volume can worsen the [creatinine]. This paradox is explained by a 
covert interplay between the ambient [creatinine] and GFRK that excretes creati-
nine faster than its volume of distribution declines.
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1   |   INTRODUCTION

We previously showed that changes in the glomerular 
filtration rate (GFR) must always drive the serum cre-
atinine in the opposite direction (Chen & Chiaramonte, 
2021). If the GFR were to decrease, then the creati-
nine would have to increase, and vice versa. Though 
these statements seem obvious, they were only recently 
proved by differentiating the creatinine with respect to 
kinetic GFR (Chen, 2013) and finding that this partial 
derivative's sign is always negative for any possible set 
of real-world values. It does not matter how extreme the 
variables are or how they are combined. The perpetual 
negative sign assures doctors that a rise in creatinine 
(positive Δcreatinine) had to come about from a drop in 
kinetic GFR (negative ΔGFRK) and vice versa, with all 
else being constant—particularly time.

Is creatinine also related to the volume change rate in 
an ever-opposing way? If more volume is being gained 
(positive Δvolume rate), the [creatinine] is further di-
luted and Δ [Cr] is negative. If more volume is being 
lost (negative Δvolume rate), the [creatinine] is further 
concentrated and Δ [Cr] is positive. With the signs being 
opposite in our thought experiments, it would appear 
that the partial derivative of [Cr] with respect to volume 
change rate is always negative, same as for kinetic GFR 
(Chen & Chiaramonte, 2021). But could unsuspected 
factors alter the sign? What if a negative Δvolume rate 
concentrates the [creatinine] even further, but that en-
ables the kinetic GFR to excrete more creatinine? Would 
the creatinine quantity decline faster than the volume of 
distribution, making the creatinine concentration frac-
tion lower in value—a negative Δ [Cr]? If so, the partial 
derivative would be positive, with volume rate and [Cr] 
decreasing over the same time frame. The potential for 
a positive sign brings up a clinical paradox. Sometimes, 
being more aggressive with the volume removal may 
improve the serum creatinine (Hegde, 2020). Or, giving 
even more volume may increase the creatinine. These 
paradoxes can occur in septic patients on continuous 
dialysis, for purely mathematical reasons to be shown 
that need not involve the messiness of real life, which is 
more complex than the derivative model that assumes 
that only volume and [creatinine] can change.

1.1  |  Creatinine kinetics

The differential equation that underpins the kinetic GFR 
states that the rate of change in the creatinine mass is 
equal to the creatinine input rate minus the creatinine 
output rate (Chen, 2018a, 2018b; Chen & Chiaramonte, 
2019). Further, the creatinine mass at any given time 

is the current [creatinine] times the volume of distri-
bution, typically taken to be total body water (TBW) 
(Bjornsson, 1979; Chow, 1985; Edwards, 1959; Jones & 
Burnett, 1974; Pickering et al., 2013). To account for the 
concentrating and diluting effects on the [creatinine], 
its volume of distribution can be modeled to change at 
a constant rate: Vt = V0 +

ΔV

Δt
t, where Vt is the volume 

as a function of time, V0 is the initial volume, ΔV
Δt

 is the 
(average) volume change rate, and t  is time. The creati-
nine input rate is primarily determined by the muscle 
mass, which tends to be fairly stable so that the creati-
nine generation rate is usually thought of as a constant: 
Gen. The creatinine output rate is mostly determined by 
the kidney such that the excretion rate is equal to the ki-
netic GFR times the ambient [creatinine]: GFRK ⋅ [Cr]t, 
where [Cr]t is the [creatinine] at a particular time. Thus, 
the differential equation is:

This first-order linear differential equation's solution, 
as previously published, is (Chen, 2018a):

In other words, the serum [creatinine] at a given time is 
equal to the initial [creatinine] 

(
[Cr]0

)
 plus a time-evolved 

portion of the spread between the initial [creatinine] and 
the [creatinine] reached at a new steady state if the kinetic 
GFR and volume change rate remained at those levels.

2   |   MATERIALS AND METHODS

2.1  |  Derivative of [creatinine] with 
respect to volume change rate

From Equation (2), we can deduce how the serum 
creatinine would change if one other variable were 
tweaked, and the partial derivative is suited to this task. 
Previously, the one other variable was kinetic GFR (Chen 
& Chiaramonte, 2021), but now the one other variable will 
be the volume change rate. The derivative of [Cr]t with re-
spect to ΔV

Δt
 quantifies their relationship at every instant, 

allowing a comprehensive assessment of the sign. If the 
sign can be positive, then [Cr]t may change in the same 
direction as ΔV

Δt
.

(1)d

dt

(
[Cr]t ⋅ Vt

)
= Gen − GFRK ⋅ [Cr]t

(2)

[Cr]t = [Cr]0 +
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In Equation (2), the derivative of ⎡⎢⎢⎢⎣
1 −

�
V0

V0+
ΔV
Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎦

 
with respect to ΔV

Δt
 is:

To calculate the derivative of the exponential, let 

y =

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 and use logarithms.

Differentiate with the product rule:

Next, in Equation (2), find the derivative of (
Gen

GFRK +
ΔV
Δt

− [Cr]0

)
 with respect to 

ΔV

Δt :

Putting Equations (3) and (4) together in using the 
product rule on Equation (2), we find that �[Cr]t

�
ΔV
Δt

 is:

Note: Unit conversions are not shown, but the final 
units could be mg

dl
per L

h
, for example. The main conversion 

factors are 50
3

 and 3
50

. The 50
3

 converts ΔV
Δt

 in L/h to ml/min: 
1000 ml

L
⋅

h

60 min
=

50

3
, and the 3

50
 converts GFRK in ml/min to 

L/h: L

1000 ml
⋅

60 min

h
=

3

50
.

2.2  |  Calculator and concept map

To follow the calculations in the Results, please down-
load a spreadsheet we created to calculate the main 
equations in the manuscript. You can use the spread-
sheet to explore your own scenarios and questions. 
For a map of the concepts being presented, the final 
algorithm in Section 3.8 may help with understanding 
when the first derivative in Equation (5) can be posi-
tive. First, Gen and [Cr]0 will be varied (Section 3.5), 
as their ratio is a principal determinant of positivity. 
Later, GFRK  will also be varied (Section 3.6), as values 
above a calculable reference point can allow the first 
derivative to be positive in situations that are clini-
cally encountered.

3   |   RESULTS

3.1  |  First derivative behavior and sign

To gauge the behavior and sign of the partial first deriva-
tive, we graphed �[Cr]t

�
ΔV
Δt

 (y-axis) vs. ΔV
Δt

 (x-axis) for an acute 
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kidney injury (AKI): steady state GFR of 100 ml/min cor-
responding to an initial [Cr] of 1.0  mg/dl that increases 
over the next 24 hours when the GFRK suddenly drops to 
20 ml/min in a patient with a TBW (volume of distribu-
tion) of 42 L. According to the thought experiments, the 
sign of 

�[Cr]t

�
ΔV
Δt

 should be negative (below y = 0) throughout 
the gamut of ΔV

Δt
 values (Figure 1). As ΔV

Δt
 approaches an 

extreme that would deplete all of the TBW by the 24-h 
mark (in this case), the �[Cr]t

�
ΔV
Δt

 goes to −∞ (Figure 1). A vol-
ume of zero is nonsensical, so if V0 +

ΔV

Δt
t needs to be > 0 , 

then 
ΔV

Δt  must be > −
V0
t

. At the far right of the graph, as 

ΔV

Δt
→ +∞, the value of �[Cr]t

�
ΔV
Δt

 approaches zero from below, 

that is, 
lim

ΔV
Δt

→∞

�[Cr]t

�
ΔV
Δt

= 0
 (Figure 1). So far, 

�[Cr]t

�
ΔV
Δt

 seems to al-
ways be negative.

Despite the thought experiment, can 
�[Cr]t

�
ΔV
Δt

 become pos-
itive under certain conditions? To find out, we varied the 
parameters and found conditions that work: creatinine 
generation rate (Gen) of 60 mg/dl × ml/min and [Cr]0 of 
8.0 mg/dl that decreases over the next 24 h when the GFRK 
suddenly increases to 100 ml/min (e.g., by renal replace-
ment therapy) in a patient with a TBW of 42 L. The �[Cr]t

�
ΔV
Δt

 

stays positive for most of the negative ΔV
Δt

 values and for 
even a few positive ΔV

Δt
 values (Figure 2, red line, 3 gray 

dots). Further, decreasing Gen keeps �[Cr]t
�
ΔV
Δt

 positive for a 

wider range of ΔV
Δt

s and makes the �[Cr]t
�
ΔV
Δt

 peak at a higher 

positive level (Figure 2, green curve). On the other hand, 
increasing the Gen lowers the �[Cr]t

�
ΔV
Δt

 values, until a large 

enough Gen make the �[Cr]t
�
ΔV
Δt

 persistently negative for all ΔV
Δt

 

values (Figure 2, blue & black curves). Alternatively, the 
curves can be moved up or down by varying the [Cr]0 
(Figure 3). In general, �[Cr]t

�
ΔV
Δt

 is more likely to be positive if 

Gen is small and [Cr]0 is high; it helps if GFRK is larger and 
ΔV

Δt
 is negative. This family of curves has an absolute max-

imum. If we can find the curve whose maximum lies tan-
gent to y = 0, that represents the border between a first 
derivative being perpetually negative versus potentially 
positive. In Figure 2, the Gen = 70 (blue) curve comes clos-
est to touching y = 0. Its maximum �[Cr]t

�
ΔV
Δt

 is − 0.0008, but 
we can place the peak right at 0.

F I G U R E  1   Example first derivative of [creatinine] with respect to volume change rate. Equation (5) is graphed with ΔV
Δt

 as an 
independent variable (x-axis) and �[Cr]t

�
ΔV

Δt

 as the dependent variable (y-axis). The other variables are Gen = 100 mg/dL⋅mL/min, V0 = 42 L, 

t = 24 h, GFRK = 20 mL/min, and [Cr]0 = 1 mg/dL. From left to right, the �[Cr]t
�
ΔV

Δt

 starts at −∞ where ΔV
Δt

 approaches its leftmost value of − V0
t

. 
The curve rises quickly but remains negative. As ΔV

Δt
 increases, the �[Cr]t

�
ΔV

Δt

 flattens out as it approaches zero asymptotically. The first derivative 
is always negative in this example of acute kidney injury
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3.2  |  First derivative's peak

To calculate the peak of the 
�[Cr]t

�
ΔV
Δt

 vs. ΔV
Δt  curve, we differenti-

ated �[Cr]t
�
ΔV
Δt

 with respect to ΔV
Δt

 and then set this second de-

rivative equal to zero. Without showing the differentiation 
steps, we calculated the second derivative to be:

We set 
�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0 and solved for ΔV

Δt
 by Newton's 

method or the secant method. At one ΔV
Δt

 root, our example 
first derivative (Section 3.1, second paragraph) attains its 
maximum and is positive. On either side of the ΔV

Δt
 root, 

the 
�[Cr]t

�
ΔV
Δt

 values are decreasing. At the other ΔV
Δt

 root, our 
first derivative has a relative minimum. At the left ex-
treme, ΔV

Δt
≤ −

V0
t

 truncates the plot (Figure 2), because 

(6)

�
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ΔV

Δt
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�
ΔV
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�
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F I G U R E  2   Graphs of first derivative curves when varying only the Gen. Equation (5) is graphed like before. Other variables are V0 = 42 
L, t = 24 h, GFRK = 100 mL/min, and [Cr]0 = 8 mg/dL. The Gen is varied between 10 and 100 mg/dL⋅mL/min. The smallest Gen = 10 yields 

the highest �[Cr]t
�
ΔV

Δt

 curve (green). As the Gen increases, the curves move downward, until Gen = 100 yields the lowest �[Cr]t
�
ΔV

Δt

 curve (black). Above 

Gen ≈ 70, the curves are wholly below the x-axis, meaning that all of their �[Cr]t
�
ΔV

Δt

 values are negative. But, one other curve (red) is partially 

above the x-axis, meaning that some of its 
�[Cr]t
�
ΔV

Δt
 values are positive. A positive �[Cr]t

�
ΔV

Δt

 is promoted by a Gen that is on the smaller side
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�[Cr]t

�
ΔV
Δt

 becomes a complex number: in Equation (5), once 

V0 +
ΔV

Δt
t turns negative, then ( V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)
 is a neg-

ative base raised to a non-integer power. At the right ex-
treme, ΔV

Δt
→ +∞ makes �[Cr]t

�
ΔV
Δt

 approach zero in the limit. 

Overall, solving �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0 yields a single maxi-

mum for �[Cr]t
�
ΔV
Δt

, one that happens to be absolute, and a sin-

gle minimum for �[Cr]t
�
ΔV
Δt

, one that is relative.

3.3  |  Making the first derivative's peak 
tangent to the x-axis

Setting the second derivative equal to zero optimizes the 
first derivative, but the first derivative's absolute maxi-
mum is not necessarily zero. To find a curve whose maxi-
mum is tangent to y = 0, we devised a way to make both 

the first derivative and the second derivative equal to zero 
at the same time. In doing so, we find the transition to 
�[Cr]t

�
ΔV
Δt

 being potentially positive (the Gen = 70 curve came 

close in Figure 2). To solve the simultaneous equations, 
�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0

 and �[Cr]t

�
ΔV
Δt

= 0, we used algebraic 

substitution.
In the first and second derivatives [Equations (5) and 

(6)], only two variables can be explicitly solved for, namely 
Gen and [Cr]0. Set the first derivative equal to zero and 
solve for [Cr]0:
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F I G U R E  3   Graphs of first derivative curves when varying only the [Cr]0. Like Figure 2, the graphs of the first derivative (y-axis) 
vs. ΔV

Δt
 (x-axis) shift up or down depending on the initial [creatinine]. The fixed variables are V0 = 42 L, t = 24 h, GFRK = 100 mL/min, 

Gen = 60 mg/dL⋅mL/min, while the [Cr]0 increases from 2 to 5 to 7 to –10 mg/dL. All of the curves are anchored to the same leftmost 
ΔV

Δt

(
−

V0
t
= − 1.75 L/h

)
 and 

�[Cr]t
�
ΔV

Δt
 point. From there, they take different paths with the bottommost curve arising from [Cr]0 = 2 (black) and 

the uppermost one arising from [Cr]0 = 10 (red). Some curves stay completely below the x-axis, so their first derivatives are always negative. 
Some curves rise above the x-axis for short stretches, after the [Cr]0 gets to about 7 (blue), so their first derivatives are positive at times. A 
positive �[Cr]t

�
ΔV

Δt

 is fostered by a [Cr]0 that is on the larger side
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Substitute this [Cr]0, arising from �[Cr]t
�
ΔV
Δt

= 0, in place of 

the [Cr]0 from �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0. After a lot of algebra, the 

key to the simultaneous equations �[Cr]t
�
ΔV
Δt

=
�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0 

is to solve:

In Equation (8), we supply values for GFRK, V0, and t  
and then calculate ΔV

Δt
 using a root-finding method. At 

that ΔV
Δt

, the peak of the �[Cr]t
�
ΔV
Δt

 vs. ΔV
Δt

 curve will touch the x

-axis from below. However, Equation (8) does not contain 
either Gen or [Cr]0. To find those values, we refer back to 
the first derivative equaling zero. When �[Cr]t

�
ΔV
Δt

= 0, 

Equation (7) yields [Cr]0. We just have to supply a value 
for Gen and be sure to use the newly calculated ΔV

Δt
, not 

the patient's actual ΔV
Δt

. Or, if [Cr]0 is known, as measured 
by the laboratory, then a rearrangement of �[Cr]t

�
ΔV
Δt

= 0 
yields Gen:

3.4  |  Testing if the peak is tangent to the 
x-axis

Equation (8) reveals how �[Cr]t
�
ΔV
Δt

 at its maximum can equal 

zero. From Figure 2, plug GFRK = 100 ml/min, V0 = 42 L, 
and t = 24 h into Equation (8). Use a root-finding method 
to determine that ΔV

Δt
= − 0.88928… L/h. Figure 2  had a 

uniform [Cr]0 of 8 mg/dL. Plug that into Equation (9) to 
find that Gen = 69.67084… This is the value, not Gen = 70 , 
that places the �[Cr]t

�
ΔV
Δt

’s absolute maximum on the x-axis, 

exactly. Alternatively, plug Gen = 70 into Equation (7) to 
find that a [Cr]0 = 8.03779… would have also placed the 
curve's peak on the x-axis. Any combination, really, of Gen 

and [Cr]0 would work as long as the Gen

[Cr]0
 ratio is 

69.67084⋯

8
=

70

8.03779⋯
= 8.708… ml/min (in this case). Broadly, 

the Gen
[Cr]0

 ratio is a fixed attribute for a set of GFRK, V0, and t  
inputs that allows the first and second derivatives to equal 
zero simultaneously.

3.5  |  Gen and [Cr]0 effects: lifting the 
peak into positive territory

Now that the peak can be positioned at the x-axis, how can 
the �[Cr]t

�
ΔV
Δt

 be lifted above the x-axis? The GFRK, V0, and t  are 

initial data, and ΔV
Δt

 is the independent variable on the 

graph. That leaves only Gen and [Cr]0 to be manipulated. 
Using the fixed Gen

[Cr]0
 ratio as a benchmark, we find that 

lower ratios shift the curve partially into positive territory, 
in keeping with the observation that smaller Gens and/or 
bigger [Cr]0s promote �[Cr]t

�
ΔV
Δt

 being positive. In practice, one 

can calculate [Cr]0 by Equation (7), for example, and then 

(8)⟨
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ask if the patient's actual [Cr]0 is larger, which lets �[Cr]t
�
ΔV
Δt

 be 

positive at times. Or, one can calculate the benchmark 
Gen by Equation (9) and then ask if the patient's actual 
Gen is smaller, which also permits �[Cr]t

�
ΔV
Δt

 to be positive.

3.6  |  GFRK effect: variant way for �[Cr]t
�
𝚫V

𝚫t

 to 
be positive

In Figures 2 and 3, the stereotypical shape of the �[Cr]t
�
ΔV
Δt

 vs. 

ΔV

Δt
 curve, from left to right, is that �[Cr]t

�
ΔV
Δt

 rises from a nega-

tive value to peak at an absolute maximum which can be 
positive, then falls to a relative minimum (mentioned in 
Section 3.2) that is negative, and then asymptotically in-
creases toward y = 0. The curve is shifted vertically, more 
or less, by varying the Gen or [Cr]0. Well, the curve is 
shifted horizontally, mostly, by varying the GFRK. A 
higher GFRK pulls the curve rightward, and a lower GFRK 
pushes it leftward. Also, imagine that the left end of the 
curve is tethered to an invisible wall at ΔV

Δt
= −

V0
t

 but has 
the ability to slide up or down that wall. Then, a right shift 
would stretch the curve, flattening it out, and a left shift 
would compress the curve, bunching it up against the wall 
in an orderly way by making it bend and stack in layers 
(with no thickness). Can the GFRK be lowered sufficiently 
to left-shift the absolute maximum until it is located at the 
leftmost ΔV

Δt
, that is, − V0

t
? Going further, can the left shift 

continue until the relative minimum is then pressed up 
against the leftmost ΔV

Δt
 wall? If so, these max/min at the 

leftmost ΔV

Δt
 would correspond to a second derivative 

equaling zero at two GFRK roots, one for the max and one 
for the min.

As GFRK is reduced, the curve acts like a rope being 
pushed leftward against a wall, based on tracking the 
maximum and minimum �[Cr]t

�
ΔV
Δt

 points and the sliding 

along the wall. In response to the push, the endpoint at 
the leftmost ΔV

Δt
 moves down, the maximum moves up, 

and the minimum moves down, like how a rope could 
fold to be more compact (Figure 4a). In addition to the 

vertical motions, the max/min points move horizon-
tally to the left. Once the GFRK is lowered to ~58.34 (in 
this example), the bend at the maximum is very sharp 
and the maximum is left-shifted all the way to ΔV

Δt
≅ −

V0
t

 
(Figure 4b). As the GFRK is lowered some more, the 
minimum continues to move down and left but the ab-
solute maximum is transitioned into the left endpoint 
of the curve sliding up the wall, on its way to +∞ 
(Figure 4c). In this way, certain GFRKs can enforce a 
positive �[Cr]t

�
ΔV
Δt

.

3.7  |  GFRK effect: keeping �[Cr]t
�
𝚫V

𝚫t

 negative

As GFRK is further reduced, with no more sliding down 
the wall for now, the relative minimum becomes an ab-
solute minimum (Figure 4c). As the GFRK reduction 
keeps pushing the curve/rope to the left against a wall, 
the bend gets sharper and the minimum moves even 
more to the left and down. When the GFRK gets down to 
~36.67 (in this example), the minimum is left-shifted all 
the way to the leftmost ΔV

Δt
 (Figure 4d), like the maxi-

mum was earlier. As GFRK is lowered past ~36.67, the 
absolute minimum is transitioned into the left endpoint 
of the curve sliding down the wall, on its way to −∞ 
(Figure 4e). After this transition, the �[Cr]t

�
ΔV
Δt

 will always be 
negative.

For details on how the kinetic GFR can alter the shape 
of the first derivative curve and help determine whether 
�[Cr]t

�
ΔV
Δt

 can be positive, please see the Appendix.

3.8  |  Algorithm to determine if �[Cr]t
�
𝚫V

𝚫t

 can 
be positive

If all variables have allowable values (
V0,V0 +

ΔV

Δt
t, t,GFRK ,Gen, [Cr]0 all non-negative

)
, one 

way to detect potential positivity of �[Cr]t
�
ΔV
Δt

 is to compile the 

lessons above into an algorithm. If the GFRK roots are in a 
“permissive” order of Gen

[Cr]0
+

V0
t
< 2

V0
t

, permitting �[Cr]t
�
ΔV
Δt

 to 
be positive, then:

F I G U R E  4   Decreasing GFRK pushes the first derivative curve leftward along the ΔV
Δt

 x-axis. Variables in common are Gen = 60 mg/dL⋅
mL/min, [Cr]0 = 8 mg/dL, V0 = 42 L, and t = 24 h. (a) As the GFRK decreases from 90 (red) to 80 (blue) to 70 (green) mL/min, the curve 
looks like it is being pushed to the left and is bending in the process. The maximum moves steadily up, the minimum moves down, and both 
of them move to the left. Also, the left endpoint slides down a virtual wall at the leftmost ΔV

Δt
. (b) When GFRK decreases to 58.34 

(
≅ 2

V0
t

)
 , the 

maximum has been pushed to the leftmost ΔV
Δt

, and only a short tail to the left of the maximum is decreasing before it gets truncated at the 
wall (inset). (c) As GFRK decreases below 58.34, the maximum vanishes (blue) and transitions into a left tail that blows up to +∞ (red). (d) 
With no more maximum, the minimum is the sole critical point, and it continues to move down and left as the GFRK decreases further from 
57 (red) to 50 (orange) mL/min. When the GFRK drops to 36.67 

(
≅

Gen

[Cr]0
+

V0
t

)
, the minimum has been pushed to the leftmost ΔV

Δt
, and the 

left tail still diverges to +∞ (purple). (e) When GFRK decreases below 36.67, the minimum vanishes (purple) and transitions into a left tail 
that plunges to −∞ (red). From here, the first derivative is always negative
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a.	 For 0 ≤ GFRK <
Gen

[Cr]0
+

V0
t

 (bottom domain), the first 
derivative will always be negative. See A1.3.

b.	 For Gen
[Cr]0

+
V0
t
< GFRK < 2

V0
t

 (middle domain), the first 
derivative has an absolute minimum and the left-sided 
tail can diverge to +∞ at the leftmost ΔV

Δt
 
(
→ −

V0
t

)
, 

with exceptions (see A1.2).
c.	 For 2V0

t
< GFRK (top domain), the first derivative has 

an absolute maximum, which can be positive (see 
Section 3.2).
(i)	 Calculate by a root-finding method the ΔV

Δt
 at which 

the �[Cr]t
�
ΔV
Δt

 vs. ΔV
Δt

 curve is tangent to the x-axis at its 
absolute maximum, that is, solve Equation (8) for 
ΔV

Δt
 (see Section 3.3).

(ii)	 Plug that ΔV
Δt

 and a known Gen into Equation (7) 
to calculate a benchmark [Cr]0 (Section 3.5).

1.	 If the patient's [Cr]0 is greater than the benchmark 
[Cr]0, then the absolute maximum lies above the x
-axis and �[Cr]t

�
ΔV
Δt

 can be positive.
2.	 If the patient's [Cr]0 is less than the benchmark 

[Cr]0, then the absolute maximum lies below the x
-axis and �[Cr]t

�
ΔV
Δt

 is always negative.

(iii)	 Alternatively, plug the ΔV
Δt

 from step c., i. and a 
known [Cr]0 into Equation (9) to calculate a bench-
mark Gen (see Section 3.5).

1.	 If the patient's Gen is less than the benchmark 
Gen, then the absolute maximum lies above the 
x-axis and �[Cr]t

�
ΔV
Δt

 can be positive.

2.	 If the patient's Gen is greater than the benchmark 
Gen, then the absolute maximum lies below the x
-axis and �[Cr]t

�
ΔV
Δt

 is always negative.

To know if �[Cr]t
�
ΔV
Δt

 is positive at the patient's actual ΔV
Δt

, 

not the calculated ΔV
Δt

 above, plug all of the patient's vari-
ables into Equation (5) and note the sign. One can also 
find the spread of ΔV

Δt
 values that yield a positive �[Cr]t

�
ΔV
Δt

 by a 

root-finding method. Vary the initial guess to find both ΔV
Δt

 
roots.

4   |   DISCUSSION

4.1  |  Positive paradox possible?

The positive �[Cr]t
�
ΔV
Δt

 paradox is fostered by the combination 

of a low creatinine generation rate and a high initial cre-
atinine. The two conditions are not mutually exclusive but 

they are at odds with one another, making the combina-
tion rare but not impossible. For a low Gen to be paired 
with a high [Cr]0, renal failure probably had to be sus-
tained for a while. To permit �[Cr]t

�
ΔV
Δt

 to be positive, the GFRK 

has to be at least > Gen

[Cr]0
+

V0
t

 and preferably > 2
V0
t

. The 

relatively high GFRK is going to decrease the [creatinine] 
over time 

(
[Cr]t

)
. Though it is decreased overall, can [Cr]t 

decrease less due to a volume rate increase? Then the [Cr]t 
would be comparatively increased. Or, can [Cr]t decrease 
more due to a volume rate decrease? Then the [Cr]t would 
be comparatively decreased. Either scenario is compatible 
with a �[Cr]t

�
ΔV
Δt

 that is positive in sign. But what kind of pa-

tient fits the criteria of low Gen, high [Cr]0, and a relatively 
high GFRK? One plausible patient may have suffered sep-
sis that temporarily reduced the Gen (Doi et al., 2009; 
Prowle et al., 2014). Sepsis may have also caused kidney 
failure, so the [creatinine] went fairly high. Doctors then 
initiated continuous renal replacement therapy (CRRT) 
that provided a GFRK greater than 2V0

t
. (GFRK here is not 

used in the literal sense of clearance done by the glomeru-
lus. Rather, it is used in the broader sense of clearance 
done by any means, including extracorporeal).

4.2  |  Paradox by the numbers

The abstract math may be easier to grasp if we put some 
concrete numbers on it. Suppose that a septic patient now 
has a Gen = 40 mg/dl × ml/min. He develops acute tubu-
lar necrosis and the creatinine rises to 8 mg/dl. CRRT is 
started, and the total GFRK = 80 ml/min. The combina-
tion of conditions seems ripe for a positive �[Cr]t

�
ΔV
Δt

, so the 

algorithm is consulted. First, the GFRK falls into the top 
domain, since it is > 2

V0
t
=

50

3
⋅ 2 ⋅ 42

24
= 58. 3, assuming 

his volume (TBW) is 42 L and the time interval is going to 
be 24 h. The top domain implies that the �[Cr]t

�
ΔV
Δt

 vs. ΔV
Δt

 curve 

will have an absolute maximum. To know where the 
maximum is tangent to the x-axis, Equation (8) is solved 
by a root-finding method to yield a ΔV

Δt
= − 1.43818… Plug 

that ΔV
Δt

 and the [Cr]0 = 8 into Equation (9) to calculate a 
benchmark Gen of 78.42… (Alternatively, plug that ΔV

Δt
 

and the Gen = 40 into Equation (7) to calculate a bench-
mark [Cr]0 of 4.08…) The patient's Gen of 40 is less than 
the benchmark Gen, so the absolute maximum lies above 
the x-axis. (Alternatively, the patient's [Cr]0 of 8 is greater 
than the benchmark [Cr]0, and again the absolute maxi-
mum lies above the x-axis). If the maximum is positive, 
then �[Cr]t

�
ΔV
Δt

 stays positive over a spread of ΔV
Δt

 values. The 
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(+) sign says that changes in ΔV
Δt

 move in the same direc-
tion as changes in [Cr]t.

4.3  |  Effect size

Say that the CRRT ultrafiltration (UF)—volume 
removal—rate is turned up from 100 to 300 ml/h, that is, 
the ΔV

Δt
 goes from − 0.1 to − 0.3 L/h, making the �ΔV

Δt
 nega-

tive. At those two ΔV

Δt
s, the first derivative is positive 

(≈ 0.012 to 0.029 mg/dl per L/h). That forces the �[Cr]t to 
be negative. By Equation (2), the [Cr]t=24 goes from 0.982… 
to 0.978… mg/dl, a decrease that represents a negative 
�[Cr]t as advertised. Certainly, the change in [creatinine] 
is small, as predicted by the small �[Cr]t

�
ΔV
Δt

. Importantly, the 

positive sign assures the nephrologist that turning up the 
UF rate will actually improve the next day's [creatinine]. 
One might posit that the [Cr]t improvement is due to the 
higher UF rate increasing convective clearance (Tandukar 
& Palevsky, 2019), but the math disproves that by holding 
the GFRK constant. Besides, turning up the UF rate will 
worsen the next day's [creatinine] if the �[Cr]t

�
ΔV
Δt

 is negative, 

so convective clearance does not always match with the 
[creatinine] trajectory.

4.4  |  Come-from-behind win: getting to a 
lower [creatinine]

By itself, volume loss should concentrate and thereby in-
crease the [creatinine]. Somehow, this concentration ef-
fect is overridden by a creatinine-lowering effect. In 24 h, 
ΔV

Δt
= − 0.3 L/h got to a lower [creatinine] than ΔV

Δt
= − 0.1 

L/h. Having ΔV
Δt

= − 0.3 L/h would seem like a handicap, 
because removing more volume concentrates the [creati-
nine] and resists the GFRK that is trying to lower the [cre-
atinine]. Thus, the ΔV

Δt
= − 0.3 (Figure 5, blue curve) has 

a higher [creatinine] than the ΔV
Δt

= − 0.1 (Figure 5, red 
curve) at almost all time points. After about 5.7 h, however, 
the blue curve starts to catch up to the red curve (Figure 
5), which is peculiar as the two ΔV

Δt
s have not changed. 

Apparently, concentrating the [creatinine] can be advanta-
geous when the higher [Cr]t interacts with the steady GFRK 
to excrete more creatinine mass. That lowers the total cre-
atinine (numerator) faster than its volume (denominator), 
such that the creatinine concentration starts to decline more 
quickly. The blue curve catches up to the red curve at ~22 h 
(Figure 5). Then, the blue curve barely edges out the red 
curve at the 24-h mark (Figure 5, see inset), meaning that 
the higher UF rate ( − 0.3) came from behind to get to a 
lower [creatinine]. Despite the concentration disadvantage 

for most of the race, the higher UF rate's latent factor that 
slowly predominated was a synergy between the [Cr]t and 
the GFRK to boost creatinine excretion.

4.5  |  Volume gain can increase the 
[creatinine]

In the same clinical example, the 
�[Cr]t

�
ΔV
Δt

 stays positive briefly 
into the positive ΔV

Δt
 zone. If volume is given 

(
ΔV

Δt
positive

)
, 

could that increase the [creatinine]? Yes. If the UF is turned off 
and CRRT is used to give volume, let us say that ΔV

Δt
 increases 

from − 100 to 80 ml/h. The �ΔV

Δt
 is certainly positive. The 

�[Cr]t

�
ΔV
Δt

 
remains positive. That forces �[Cr]t to be positive too. In a race 
between ΔV

Δt
= − 0.1 and + 0.08 L/h, the [creatinine] at 24 h is 

0.982… vs. 0.983… mg/dl, respectively. Counterintuitively, giv-
ing volume resulted in a higher [creatinine] than continuing 
the UF. The explanation is similar to before. The baseline UF 
rate 

(
ΔV

Δt
= − 0.1

)
, by virtue of the concentration effect, lags 

behind in lowering the [Cr]t. Meanwhile, volume gain (
ΔV

Δt
= + 0.08

)
 is diluting the [Cr]t and helping the GFRK . 

Because the UF has a higher [Cr]t that is subjected to a rela-
tively high GFRK for most of the race, more creatinine is ex-
creted that eventually lowers the [creatinine] further versus a 
gain of volume, even with the latter's dilution effect advantage. 
So, the creatinine-lowering effect that overcomes the volume 
effect is facilitated by a higher GFRK, which explains why the 
GFRK should be > 2

V0
t

 to get a positive �[Cr]t
�
ΔV
Δt

.

4.6  |  Reality check

What if the GFRK is in the middle domain (see Section 3.8, 
b.)? That gives the �[Cr]t

�
ΔV
Δt

 curve an absolute minimum, and 

the tail to the left can be positive, maybe even going to 
+∞ . Unfortunately, obtaining a positive first derivative 
this way is clinically unrealistic. The ΔV

Δt
 is usually so nega-

tive that it would dry up nearly all of the TBW within an 
allotted time, killing the patient. Realistically, all of the 
positive first derivatives in medicine come from a GFRK 
being in the top domain of > 2

V0
t

.

4.7  |  Big picture

A positive �[Cr]t
�
ΔV
Δt

 paradox may not happen all that often, but 

it is a real mathematical phenomenon that can occur 
under the right circumstances, especially in septic pa-
tients who have become quite azotemic and are being 
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initiated on CRRT, a not uncommon scenario. In those 
cases, clinicians may want to pay attention to the CRRT 
volume settings. Turning up the UF rate, that is, decreas-
ing the ΔV

Δt
, can lower the [Cr]t a little more. On the other 

hand, turning down the UF rate (or giving volume), that 
is, increasing the ΔV

Δt
, can raise the [Cr]t a little. This coun-

terintuitive improvement or worsening of [creatinine] is 
marginal at best and pales in comparison to the overall 
effect that CRRT exerts on the [creatinine] trajectory. In 
addition, the paradox goes unnoticed because one patient 
cannot experience two separate ΔV

Δt
 rates to yield two [Cr]t

s for comparison.
Most patients will not be at risk for a positive paradox. 

The combination of low Gen, high [Cr]0, and high-ish 
GFRK is rare. The GFRK is < Gen

[Cr]0
+

V0
t

 in many instances 
of AKI, so those patients are protected from a paradox and 
likely will behave as expected in response to fluids or di-
uresis. Milder cases of AKI can have a GFRK that lies be-
tween Gen

[Cr]0
+

V0
t

 and 2V0
t

, which does permit a paradox but 

only under a ludicrous rate of volume loss 
(
ΔV

Δt
→ −

V0
t

)
 

that is clinically unrealistic. If the GFRK is high-ish enough 
to be > 2

V0
t

, the paradox, if it occurs, alters [Cr]t in a negli-
gible way. Finally, more than just the ΔV

Δt
 changes in clini-

cal practice, so if the paradox seems to occur, it may be due 

to the other variables changing and confounding the pic-
ture. With all that said, we think the possibility of a posi-
tive �[Cr]t

�
ΔV
Δt

 is intellectually enlightening, and it differs 

markedly from the �[Cr]t
�GFRK

 that was proved to always be neg-

ative (Chen & Chiaramonte, 2021).
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F I G U R E  5   Positive derivative paradox viewed as evolution of [creatinine]. This paradox can happen in a septic patient with kidney 
failure on continuous dialysis. Raise the ultrafiltration rate from ΔV

Δt
= − 0.1 to − 0.3 L/h, which is a negative � ΔV

Δt
, and if the first derivative 

is positive, then tomorrow's [creatinine] will be further decreased, which is a negative �[Cr]24 h. The fixed variables are V0 = 42 L, Gen = 40 
mg/dL⋅mL/min, [Cr]0 = 8 mg/dL, and GFRK = 80 mL/min. Then, Equation (2) is graphed as [Cr]t (y-axis) versus time (x-axis). Seen as the 
evolution of [Cr]t, the red curve shows the effect of a baseline ΔV

Δt
= − 0.1 L/h, while the blue curve shows the effect of a ΔV

Δt
= − 0.3 L/h. 

Predictably, both [creatinine] curves decrease over time due to the relatively high GFRK of 80 mL/min. But the blue curve declines more 
slowly, because its greater volume removal will concentrate the [Cr]t more. As time goes by, the blue curve catches up to the red curve at 
about 22 h. After that, blue surpasses red and gets to a lower [Cr]t at the 24-h mark (see inset), consistent with the first derivative being 
positive
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APPENDIX 

A1.1   |   GFRK  root derivations
How are the 58.34 and 36.67  values derived? They are 
GFRK roots where the second derivative equals zero as 
ΔV

Δt
→ −

V0
t

, since the first derivative maximum and mini-
mum can be successively situated at the leftmost ΔV

Δt
. If we 

graph �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
 vs. GFRK when ΔV

Δt
 is nearly leftmost, 

the two roots lie at about 58.34 and 36.667 (Figure A1, 
red). The values can be deduced by trying to make 

�

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0 , even as the leftmost ΔV

Δt
 is setting up 

Equation (6) to divide by zero in several places. In the 
graph, V0 = 42, t = 24, ΔV

Δt
= − 1.74999, Gen = 60, and 

[Cr]0 = 8 . The larger root, 58.34, comes from setting 
1 +

GFRK
ΔV
Δt

 equal to − 1, that is, GFRK = − 2
ΔV

Δt
. At the left-

most ΔV

Δt
, GFRK = 2

V0
t

. Reason: If the exponent in 

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 is − 1, while the base is a +∞ 
(
due to V0 +

ΔV

Δt
t → 0+

)
 , the exponential shrinks rapidly 

to zero. The exponential is multiplied by everything in 

Equation (6), giving �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0. Checking the for-

mula, we find that GFRK = 2
V0
t
=

50

3
⋅ 2 ⋅

42

24
= 58. 3. Next, 

the smaller root, 36.667, comes from setting 
Gen

GFRK +
ΔV
Δt

− [Cr]0 equal to 0, that is, GFRK =
Gen

[Cr]0
−

ΔV

Δt
. At 

the leftmost ΔV
Δt

, GFRK =
Gen

[Cr]0
+

V0
t

. Around that GFRK, 

Equation (6) is balanced in its tendency to go off to ±∞, 

giving another �

�
ΔV
Δt

(
�[Cr]t

�
ΔV
Δt

)
= 0 (Figure A1). Checking 

the other formula, we find that 
GFRK =

Gen

[Cr]0
+

V0
t
=

60

8
+

50

3
⋅

42

24
=36. 6.
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The two roots encoded by our GFRK formulas are the far-
thest left that a root pair can go, because they represent the 
GFRKs small enough to shift a first derivative's maximum 
and then minimum all the way to the leftmost ΔV

Δt
 (Figure 

A1, red). For a first derivative's max/min to be located at 
any ΔV

Δt
 x-coordinate to the right of − V0

t
, the second deriva-

tive's GFRK root pair is going to be larger. To demonstrate, 
we graphed the second derivative like before but changed 
the ΔV

Δt
 from − 1.74999 to − 1.7. This plot has less vehement 

swings, without all of the leftmost ΔV
Δt

 causing division by 
zero. As predicted, the GFRK root pair for ΔV

Δt
= − 1.7 is 

larger and to the right of the 58.34 and 36.667 pair (Figure 
A1, blue dotted curve). If we could shift the GFRK root pair 
to the left of (36.67, 58.34), then the smaller root would van-
ish behind a wall at 36.67, turning the pair into a single. 
That is why, in a sense, that GFRKs between 36.67 and 
58.34 lack their partner. That suddenly-single root relates to 
the first derivative having only a minimum when 
36.67 < GFRK < 58.34 (Figure 4c). Further, if we could shift 
the GFRK root pair to the left of 36.67, then both roots would 
vanish, forecasting that �[Cr]t

�
ΔV
Δt

 will lose its minimum next, 
letting the first derivative plummet toward −∞ (Figure 4e).

F I G U R E  A 1   Second derivative goes to infinity near the leftmost ΔV
Δt

 but still has two GFRK roots. Equation (6) is graphed with GFRK as 

an independent variable (x-axis) and �

�
ΔV

Δt

(
�[Cr]t
�
ΔV

Δt

)
 as the dependent variable (y-axis). The fixed variables in this figure are V0 = 42 L, t = 24 h, 

Gen = 60 mg/dL⋅mL/min, and [Cr]0 = 8 mg/dL, while the two ΔV
Δt

 values are − 1.74999 
(
approaching −

V0
t

)
 and − 1.7 L/h. For ΔV

Δt
 at its 

leftmost, the second derivative is volatile. It swings to and from ±∞ (red curve). Yet, it crosses the x-axis twice and therefore has two roots 
that can be estimated as GFRK ≈

Gen

[Cr]0
+

V0
t
= 36. 6 and GFRK ≈ 2

V0
t
= 58. 3 . As ΔV

Δt
 is increased, the second derivative curve shifts to the right 

(blue dot curve). It is not as volatile, and its roots are greater than when ΔV
Δt

 is leftmost. In a way, the GFRK roots are a continuum, beginning 
at Gen

[Cr]0
+

V0
t

 and transitioning at 2 V0
t

, with the root pair locations depending on the ΔV
Δt
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A1.2   |   GFRK  domain:  curve has a 
left  tail  that blows up to be  
positive
The two GFRK  landmarks divide the GFRK  number line 
into three domains. The top domain is GFRK > 2

V0
t

, like 
the GFRK  of 100 that was chosen for all of the curves in 
Figures 2 and 3. GFRKs this large allow both the 

absolute maximum and the relative minimum to be to 
the right of ΔV

Δt
= −

V0
t

 (Figure A2, blue). If GFRK  de-

scends into the middle domain of 2
V0
t
> GFRK >

Gen

[Cr]0
+

V0
t

, then the 
�[Cr]t

�
ΔV
Δt

 curve has shifted far enough left to still 
have a minimum but also to vanish/transition the 

F I G U R E  A 2   Types of first derivative curves. The �[Cr]t
�
ΔV

Δt

 (y-axis) vs. ΔV
Δt

 (x-axis) curve takes one of three shapes depending on the GFRK. If 

the GFRK falls into the bottom domain of being < Gen

[Cr]0
+

V0
t

, then the graph has a generic shape like the green curve. It has no minimum or 

maximum, and it remains below the x-axis, so all of the 
�[Cr]t
�
ΔV

Δt
 values are negative. If the GFRK lies in the middle domain of 

Gen

[Cr]0
+

V0
t
< GFRK < 2

V0
t

, then the graph has a generic shape like the red curve. It has an absolute minimum, and to the left of the minimum, 

as ΔV
Δt

→ −
V0
t

, the �[Cr]t
�
ΔV

Δt

 values blow up to +∞. To the right of the minimum, the �[Cr]t
�
ΔV

Δt

 stays negative. If the GFRK is in the top domain of 

being > 2
V0
t

, then the graph has a generic shape like the blue curve. It has an absolute maximum that can be positive, as demonstrated by the 
blue curve. A small part of the curve is positive, and the rest of the curve is negative in terms of the �[Cr]t

�
ΔV

Δt

 sign
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absolute maximum into the left tail of a curve that 
blows up to +∞. We graphed an example of this curve 
shape using GFRK = 52 ml/min, which is between 58.34 
and 36.67 (Figure A2, red).

In special cases, the left tail may remain negative. If the 
two GFRK roots are so close that the middle domain is 
squeezed, then an absolute minimum is forced to be near 
the leftmost ΔV

Δt
, a wall that truncates the left tail before 

F I G U R E  A 3   Types of derivative curves when the GFRK roots are reversed. (a) Unlike in Figure A2, the Gen
[Cr]0

+
V0
t

 root may be greater 
than 2 V0

t
, especially when Gen is larger and/or [Cr]0 is smaller. The 2 V0

t
≈ 58.343 is now the smaller GFRK root of the second derivative, and 

the Gen
[Cr]0

+
V0
t
≈ 66.643 is the larger root, due to a Gen = 150 mg/dL⋅mL/min and [Cr]0 = 4 mg/dL, while V0 = 42 L, t = 24 h, and 

ΔV

Δt
= − 1.74999 L/h (red). When ΔV

Δt
 is barely increased to − 1.748 (blue), the roots get closer together instead of shifting as a spaced pair to 

the right, like in Figure A1. Increase ΔV
Δt

 to − 1.747 (green) and the roots get closer still, while staying between 58.343 and 66.643. When ΔV
Δt

 is 
increased to − 1.746 (purple), the second derivative no longer has roots. (b) The absence of second derivative roots under most conditions 
means that the first derivative usually lacks a maximum and a minimum when the GFRK roots are reversed. For GFRK > 66.643 , the typical 
curve approaches y = 0, and the first derivative is always negative (blue). For 66.643 > GFRK > 58.343, the curve has an absolute minimum 
at ΔV

Δt
= − 1.748 ≅ −

V0
t

 , and the first derivative is always negative (red). For 58.343 > GFRK, the curve has no maximum or minimum, again, 
and the first derivative is always negative (green)
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�[Cr]t

�
ΔV
Δt

 can increase to a positive value, much less blow up to 
+∞.

A1.3   |   GFRK  domain:  curve has no 
maximum or minimum and stays 
negative
If GFRK lies in the bottom domain of Gen

[Cr]0
+

V0
t
> GFRK, 

then the �[Cr]t
�
ΔV
Δt

 curve has shifted so far to the left that even 
the minimum has been transitioned into the left tail of a 
curve that plunges toward −∞ (Figure A2, green). To the 
right, the curve asymptotically approaches y = 0 from the 
negative side. The absence of both a maximum and a mini-
mum is corroborated by the fact that the second derivative 
cannot equal zero when the GFRK <

Gen

[Cr]0
+

V0
t

 (Figure A1). 

We graphed an example of this curve shape using GFRK = 32 
ml/min, which is below 36.67 (Figure A2, green).

A1.4   |   GFRK  root reversal  keeps �[Cr]t
�
�V

�t

 
negative
The second derivative as ΔV

Δt
→ −

V0
t

 has two GFRK roots, 

but Gen
[Cr]0

+
V0
t

 does not have to be < 2
V0
t

. What if the order 
of the roots is reversed, because Gen is larger and/or [Cr]0 
is smaller? Then the second derivative behaves differently. 
Its GFRK root pair exists only transiently. Before, the root 

pair of 
(

Gen

[Cr]0
+

V0
t
, 2

V0
t

)
 was the smallest since it was at 

the leftmost ΔV
Δt

, so root pairs at any ΔV
Δt

> −
V0
t

 would get 
larger, but at least the pairs would persist (Figure A1). 
Now, when the roots are reversed, the pairs no longer shift 
to the right. They stay confined between 2V0

t
 and Gen

[Cr]0
+

V0
t

, and the two roots get closer to each other as ΔV
Δt

 is in-
creased. Even a minuscule increase from − V0

t
 is sufficient 

to close the gap between the two roots. After that, the sec-
ond derivative lies above the x-axis and does not have any 
roots (Figure A3a, purple). If the root pairs cease to exist, 
then the concept of GFRK domains becomes mostly irrel-
evant. That said, the middle domain does contain all of the 
roots.

With roots reversed, the first derivative almost always 
lacks a maximum and a minimum. The stereotypical 
shape of this �[Cr]t

�
ΔV
Δt

 curve is to increase from a left endpoint 

at ΔV
Δt

= −
V0
t

 toward y = 0, asymptotically from the nega-
tive side (Figure A3b, blue or green). The window for hav-
ing two GFRK roots of the second derivative is narrowly 
open when ΔV

Δt
 is in the vicinity of − V0

t
. If ΔV

Δt
≅ −

V0
t

 and 
the GFRK lies between the smaller 2V0

t
 and the larger 

Gen

[Cr]0
+

V0
t

 , flipped due to root reversal, then the �[Cr]t
�
ΔV
Δt

 curve 

has an absolute minimum (all roots in this GFRK domain 
are minimums), and the left tail gets truncated by the − V0

t
 

wall before the first derivative can turn positive (Figure 
A3b, red). Overall, the combination of larger Gen and 
smaller [Cr]0 is not conducive to a first derivative being 
positive. A necessary but not sufficient condition for first 
derivative positivity, judging by root order, is that Gen

[Cr]0
+

V0
t

 
should at least be < 2

V0
t

, or Gen
[Cr]0

<
V0
t

. Further restrictions 
on Gen

[Cr]0
 apply, in order for the first derivative to be positive 

(see Sections 3.4 and 3.5).


