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Abstract: The fusion of multi-source sensor data is an effective method for improving the accuracy
of vehicle navigation. The generalization abilities of neural-network-based inertial devices and
GPS integrated navigation systems weaken as the nonlinearity in the system increases, resulting
in decreased positioning accuracy. Therefore, a KF-GDBT-PSO (Kalman Filter-Gradient Boosting
Decision Tree-Particle Swarm Optimization, KGP) data fusion method was proposed in this work.
This method establishes an Inertial Navigation System (INS) error compensation model by integrating
Kalman Filter (KF) and Gradient Boosting Decision Tree (GBDT). To improve the prediction accuracy
of the GBDT, we optimized the learning algorithm and the fitness parameter using Particle Swarm
Optimization (PSO). When the GPS signal was stable, the KGP method was used to solve the
nonlinearity issue between the vehicle feature and positioning data. When the GPS signal was
unstable, the training model was used to correct the positioning error for the INS, thereby improving
the positioning accuracy and continuity. The experimental results show that our method increased
the positioning accuracy by 28.20–59.89% compared with the multi-layer perceptual neural network
and random forest regression.

Keywords: INS/GPS integrated navigation; data fusion; Gradient Boosting Decision Tree

1. Introduction

With the development of sensor technology, context-aware vehicles (e.g., location services and
automatic driving) are becoming increasingly popular. However, these applications require high
context perception accuracy, especially in assisted and automatic driving, which has increasingly
high requirements for the continuity, reliability, and accuracy of vehicle positioning. The positioning
performance of a single Global Positioning System (GPS) may be decreased by various factors, such as
occlusion and interference when driving on urban roads [1,2]. Thus, it is difficult to meet the needs of
the Internet of Vehicles. However, multi-source sensor fusion, e.g., Inertial Navigation System (INS)
and GPS integrated navigation systems, can effectively solve these problems [3,4].

For the data fusion problem in integrated navigation, Kalman Filter (KF) is the existing optimal
trajectory estimation method, which solves the problem of tedious calculation caused by the weak
nonlinear ability. Particle Filter (PF) is considered a benchmark of the filtering method for predicting
vehicle position, but the large number of particles required by PF leads the algorithm computationally
expensive. In integrated navigation, when the GPS signal is interrupted [5,6], the positioning error in
the Inertial Measurement Unit (IMU) accumulates over time, decreasing the overall performance of the
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integrated navigation [7–9]. To improve the positioning performance during GPS signal interruption,
Artificial Neural Networks (ANNs) have been introduced into the INS/GPS integrated navigation
system, e.g., Multilayer Perceptron Neural Networks (MLPNNs) [10,11], Radial Basis Function
Neural Networks (RBFNNs) [12–14], Long Short Term Memory Recurrent Neural (LSTM-RNNs) [15],
networks and adaptive Neuron-Fuzzy Inference Systems (ANFISs) [16,17]. The main idea is to train
the relationship between the vehicle feature data and INS errors through ANNs when the GPS signal
is available. When the GPS signals are available, the current or latest training model is used to predict
the positioning data. This method effectively reduces the positioning error and ensures positioning
continuity. Since the ANN is trained completely using input data, its generalization ability is limited
when the vehicle state data during training is different from that during prediction. To solve this
problem, in one study [18], ensemble learning was included in the INS/GPS integrated navigation
system, which effectively improved the generalization ability. Although the Least Squares Boosting
and Bagging algorithms proposed in that study [18] could improve the positioning accuracy, the errors
of the INS internal sensor (e.g., steering deviation, running deviation, and scale factor drift) increased
the nonlinear complexity of the relationship between the input and output data. The model was weak
at recognizing feature variables, resulting in unsatisfactory predictions of positioning. In addition,
the sensor’s errors accumulated over time. When the GPS signal loss was over 5 min, the prediction
accuracy of the ensemble learning scheme began to decrease gradually [18].

To solve the above-mentioned problems, a Kalman Filter-Gradient Boosting Decision Tree-Particle
Swarm Optimization (KF-GBDT-PSO, henceforth denoted KGP) data fusion method is proposed
herein [19], which consists of two consecutive phases: Training and prediction. In the training phase,
the KGP prediction model can compensate for the INS positioning error through the relationship
between vehicle feature data and KF estimations of the positioning error [20,21]. In the prediction phase
(during GPS signal loss), the trained model immediately predicts the positioning data. Compared
with ANNs, the predicted values of the GBDT are obtained through accumulating the residuals of
multiple trees. Due to its advantage of reducing model deviations, the Gradient Boosting Decision
Tree (GBDT) provides a better generalization ability with better accuracy. Additionally, selecting
regression parameters can be challenging. Thus, Particle Swarm Optimization (PSO) is introduced in
the training phrase to select the optimal parameters for GBDT [22]. The KGP not only could extract
nonlinear vehicle feature data in parking and driving states using the addition model and the forward
distribution algorithm but could also use the Huber loss function to eliminate the location outliers
collected due to road complexity. By flexibly covering various types of variables, the error rate of
the integrated navigation system was effectively reduced [23], increasing the prediction accuracy of
the positioning.

The remainder of this paper is organized as follows. In Section 2, an overview of the GBDT and
PSO theories is provided. In Section 3, the integration scheme for the KGP method is introduced and
discussed in detail. The experimental results are discussed in Section 4. Conclusions are presented
in Section 5.

2. Improved Methods

2.1. GBDT Regression Algorithm

The GBDT consists of a gradient boosting and regression decision tree. The decision tree uses
a Classification and Regression Tree (CART) as the base learner, which makes predictions quickly but
can easily overfit [24]. Gradient boosting can improve the model performance and reduce the fitting
ability of the decision tree by changing the weight of the sample [19]. The gradient boosting method
and the decision tree learning algorithm complement each other, increasing the overall performance.
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When training the model, we input the training sample D = {(xi, yi)}n
i=1, where xi is the feature

vector of the ith input sample, yi is the sample tag of xi, and n is the number of sample feature. Next,
we initialized the learner as follows:

f0(x) = arg min
c

N

∑
i=1

L(yi, c). (1)

We used a strong learner f (xi) and sample tag yi to construct the loss function L(yi, f (xi)).
Freidman [19] defined the loss function as:

L(yi, f (xi)) =
N

∑
i=1

1
2
[yi − f (xi)]

2. (2)

By observing the data characteristics of the vehicle, we found that the gyroscope and accelerometer
contained in the IMU are in the process of measuring the real road, and the data outliers will inevitably
be collected due to the interference of the urban environment. In order to visually observe the measured
values, the data in the three directions of acceleration and angular velocity are displayed by a scatter
plot (Figure 1); it is well known that the anomaly measurement information increases the complexity
of the system and largely affects the prediction accuracy of the navigation model.
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Therefore, in this study, the loss function is defined as follows based on real data:

L(yi, f (xi)) =

{
1
2 [yi − f (xi)]

2 |yi − f (xi)| < δ

δ|yi − f (xi)| − δ
2 |yi − f (xi)| < δ.

(3)

Here, δ is measured by quantile, and the value is 0.9. The Huber loss function uses absolute
loss for anomaly vehicle data. For normal data, we used the mean square error to effectively exclude
inappropriate data. This not only maintains the continuity of the loss function, but also has better
robustness to outliers.

In order to ensure the continuous decline of the loss function, the negative gradient of the loss
function is used in the iteration to calculate the approximate value of the current model residuals.
For the mth iteration, the negative gradient is defined as:

rim(yi, f (xi) =

{
yi − f (xi) |yi − f (xi)| ≤ δ

δsign(yi − f (xi)) |yi − f (xi)| ≥ δ.
(4)
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We fit (xi, rim) to obtain t CART regression trees. Each tree is represented by ht(x), and its
corresponding leaf node area is {Ri}J

1, where J represents the number of leaf nodes in the regression
tree. The linear search is used to estimate values of each leaf node region of the regressed trees,
which can minimize the loss function.

The traditional GBDT model does not introduce regularization, so it is easy to overfit complex
data. To prevent this phenomenon, a regularization term (5) is introduced in the loss function to
penalize the number of leaf nodes in each CART tree, which is equivalent to pruning the regression
tree during the training process.

Ω f = γT +
1
2

λ‖ω‖ (5)

Initially, the learning weights of the samples were the same. As the regression tree grew with
iterations completed, samples’ weights were updated. Samples having low prediction accuracies were
assigned larger weights, and high accuracy samples were assigned smaller weights. The weights were
defined as follows:

ρm = argmin
ρ

N

∑
i=1

L(yi, fm−1(xi) + ρmhm(x)). (6)

Through updating the residuals of the regression trees, we obtained a strong learner model as follows:

fmxi = fm−1(xi) + ρmhm(x). (7)

Therefore, the final GBDT model is

F(x) = F0(x) + v
N

∑
i=1
ρmhm(x), (8)

where v(0 < v < 1) is the learning rate that determines the iteration of GBDT.

2.2. PSO Algorithm

The regression parameters in the GBDT determine the prediction accuracy of the model. Parameter
selection requires extensive experience or large-scale searching. We introduced PSO into the GBDT
to search for high-quality parameters [25], as it was easy to implement and improved the global
optimization and convergence velocity.

In the PSO algorithm, each particle represents a parameter. The model’s particle dimension
is θ = (v, m, l, d), where v, m, l, d respectively represent the learning rate, the number of iterations,
the minimum number of leaves, and the maximum depth of the regression tree in the GBDT.

In four-dimensional space, we generate a set of position vectors Xθ and flight velocity vectors Vθ .
Each particle represents an adaptive value assigned by the objective function f itness (·). To obtain
the optimal objective values of the regression parameters, the particles’ positions and velocity s are
updated with reference to their two current extreme values as follows [26]:

Vθ(t) = ωVθ(t− 1) + c1r1

(
Pθ

best − Xθ(t− 1)
)
+ c2r2

(
Gθ

best − Xθ(t− 1)
)

, (9)

Xθ(t) = Xθ(t− 1) + Vθ(t). (10)

where ω is a negative inertia factor; c1 and c2 are the particle learning rate and global learning rate,
respectively; r1 and r2 are random numbers between 0 and 1; and Pi

best and Gi
best represent the particle

and global best locations, respectively.
The algorithm continuously updates Pi

best and Gi
best based on the calculated particle position,

velocity, and adaptive function values. The regression parameter’s optimal value is determined when
the maximum number of iterations or the accuracy requirement is reached.
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3. Integration Scheme of KGP

An “East-North-Up” (ENU) geographic coordinate system was used in this work as the vehicle
navigation coordinate system. The system’s origin is located at the vehicle’s center of mass, where the
x and y axes are in tangential directions of the local meridian and parallel, respectively, and the z axis
is in the vertical direction.

Most vehicles run closely to the ground; the horizontal plane error was used in this study
as an indicator to measure the performance of the vehicle navigation system during GPS signal
interruptions. Figure 2 describes the INS/GPS integrated navigation system based on KGP.
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The KGP includes two phases: training and prediction. We input vehicle data in the east-north
direction (including velocity, posture, and the outputs of the gyroscope and accelerometer) to the
GBDT model. The GBDT model output estimated the two-dimensional position errors of the KF filter.
The KGP predictive model’s input/output formulas are defined as follows:

Input : X(t− s) =
[
Ve

t−s Vn
t−s Ψe

t−s Ψn
t−s wt−s at−s

]
. (11)

Output : ∆Yt = [∆pe
t ∆pn

t ] =
[
pe

t − pe
t−s pn

t − pn
t−s
]
. (12)

The subscript s indicates the data processing time interval; [Ve
t−s Vn

t−s] and [Ψe
t−s Ψn

t−s] are the
velocity and angles in the east-north direction, respectively; w and a respectively represent the angular
velocity from the gyroscope and the acceleration from the accelerometer; and pe

t and pn
t respectively

represent the east and north positions after the latitude and longitude conversion.
When the GPS signal is normal, the system is in training mode; its function diagram is shown

in Figure 2a. The system builds the KGP model using relationships between the temporary input/
output variables:

P(x) = P0(x) + v
N

∑
i=1
ρtht(x). (13)

The above formula is used to calculate vehicle data, such as the velocity, posture, and relationship
between the IMU output and the KF estimation error through fitting.
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To improve the quality of the GBDT regression parameters, PSO was adopted. The c1, c2, andω
parameter values are shown in Table 1 [27]. The adaptive function was defined as the standard mean
squared error (MSE):

Fit(t) =
1
N

N

∑
d=1

(ys − ŷd)
2. (14)

In the above equation, Fit(t) represents the fitness value of the t-dimensional particle, ys is the
sample output value, and ŷd is the sample prediction value. The optimal value can be obtained by
continuously iterating the GBDT regression parameters. The values are shown in Table 2.

Table 1. Parameters for PSO.

Parameter Value

Particle factor (c1) 0.103
Population factor (c2) 2.897

Inertia weight (ω) 0.6

Table 2. Values of parameters for GBDT.

Parameter Value

Learning rate (ν) 0.05
Number of iterations (m) 514

Minimum number of leaf (l) 2
Max depth(d) 8

When the GPS signal is interrupted, the KGP switches to prediction mode, as shown in Figure 2b.
At this time, only the INS is operating in the integrated navigation system. The system sends the
combined prediction estimation error back to the INS and generates predicted positioning data while
correcting the INS position error in real time.

4. Results and Discussion

Two experiments were conducted. In Experiment 1, the generalization ability of the training model
to the INS error under different driving states of the vehicle was investigated. In Experiment 2, the KGP
model’s ability to compensate for the INS error in its positioning predictions was tested. We also compared
the results from the KGP with that from the MLPNN and random forest regression (RFR) [28,29].

We used the Chery eQ model to build the experimental platform, with the built-in GNSS receiver
model MC20 and MG10 inertial navigation system as the hardware measurement equipment to collect
reference data. The GPS position measurement accuracy was less than 2 m; the output frequency was
1 Hz; and the velocity measurement accuracy was 0.185 m/s, updated at 1 Hz. The output frequency
of the INS inertial measurement unit was 1 Hz, and the sample IMU was used to acquire the linear
and angular velocity of the vehicle at 1 Hz. The study was conducted in Guilin City, Guangxi Province,
China, under five different road conditions: Straight, curved, sloped, downhill, and at an intersection
with acceleration and deceleration.

4.1. Model Generalization Ability

The vehicle was tested on the road, shown in Figure 3. The tests included three types: A normal
driving test (e.g., stops at traffic lights, corner turns, acceleration, and deceleration), a parking test (with
only engine working), and a combined test (normal driving and subsequent parking). Figure 4 shows
the vehicle’s velocity s during the three tests over 48 min. Table 3 lists the time frames for the tests.
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Table 3. Time allocations of different independent stage.

GPS On (s) GPS Loss(s) Total Time (s)

Driving 29–1192 1192–2429 2400
Parking 2429–2771 2771–2909 480

Combined 328–2129 2129–2728 2400

4.1.1. Results of the Normal Driving Test

Figure 5 depicts three algorithms that predicted the positioning error of the INS in the east-north
direction. The RFR algorithm obtained better predictions [22] in shorter times. The prediction error of
the RFR gradually decreased after the GPS signal was interrupted for over 5 min. Since we use the
squared difference as the loss function, the MLPNN algorithm yielded better predictions in the latter
half. The KGP algorithm was better than other algorithms in that it maintained good generalization
ability for 20 min, reduced the positioning error in the north direction from 142 to 1.13 m, and reduced
the positioning error to 0.051 m in the east direction.
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As shown in the figure, there was a significant cumulative error in the east direction, and the
positioning error in the north direction was relatively stable. This is because the KGP method was set
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up with a positioning fix. Errors were compensated immediately when the parking time exceeded 5 s.
For example, the positioning fix began working if the vehicle keeps moving forward at traffic light.
The east direction corresponds to the y-axis of the inertial coordinate system, and the vehicle frequently
turns and changes lanes after restarting at traffic lights. Therefore, the positional compensation effect
of KGP in the east direction was not significant.

4.1.2. Results of the Parking Test

The positioning error shown in Figure 6 exhibited small fluctuations. Since the engine was still
running, vehicle shaking could cause small errors in the INS. The prediction accuracies of the three
methods were not much different, and the overall performance was better than that of INS alone.
The prediction results of the GBDT and RFR were better than that of MLPNN because the initial
weights and thresholds of the MLPNN were random, resulting in different results for each calculation.
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Figure 6. Prediction results of the parking test: (a) north position error and (b) east position error.

4.1.3. Results of the Combined Test

The combined test used the training model in the driving phase to predict INS errors in driving
(motion) and parking (stationary) states. As shown in Figure 7, the RFR fluctuated greatly in the driving
state, and the prediction accuracy was far lower than that in the parking state. When the vehicle’s state
in the training phase was inconsistent with that in the prediction phase, the generalization ability of
the MLPNN was greatly weakened; the prediction was good only in the driving state. As a result,
compared with other methods, the KGP algorithm had the highest positioning accuracy and could fit
the trajectory curve well. The prediction was accurate and stable under various states. Table 4 shows
the INS absolute error maxima in the driving and parking states in Test 3.
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Table 4. Comparing errors of the combined test in east-north direction.

Position Error
Value

INS KGP (m) RFR (m) MLPNN (m)

North East North East North East North East

Maximum (m) 142 201 138.66 201.67 128.64 151.43 144.52 198.82
Minimum (m) 68 107 68.97 106.50 78.22 27.55 70.53 81.06
Average (m) 103.78 156.41 103.78 155.45 103.93 79.46 105.51 152.35

Driving state.

Position Error
Value

INS KGP (m) RFR (m) MLPNN (m)

North East North East North East North East

Maximum (m) 95 107 94.81 109.84 94.70 108.21 90.53 84.93
Minimum (m) 94 106 93.86 103.23 93.99 90.86 89.13 39.21
Average (m) 94.18 106.81 94.16 106.81 94.17 106.62 89.92 81.65

Parking State.

Compared with the predicted results of the normal driving test, with increased amounts of
training data, the combined test could obtain more accurate positioning in a shorter time than the
normal driving test.

4.2. Model Validity

The prediction models for the experiments described in Section 4.1 were applied to different roads
(Figure 8). The system switched between training and prediction modes based on the actual conditions
of the road, and the positioning prediction was divided into three phases. The blue area indicates good
GPS navigation. The red area represents an occlusion test when the GPS signal was unstable and the
accuracy was lowered due to high-rise buildings on both sides of the road. The blank area represents
a tunnel test in which the GPS lost its lock due to the vehicle passing through a tunnel. Figure 9 shows
the vehicle’s velocity during 40 min of travel.
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Figure 10 depicts the final positioning error of these algorithms in three phases.
In phase 1, when the vehicle was driving on the city street which was straight and narrow for

more than 5 min, the GPS signal was unstable. When the road was crowded, it was accompanied
by frequent acceleration and deceleration, which enhanced the nonlinear relationship between input
and output. Therefore, the prediction accuracy of MLPNN was low in the initial stage, RFR and KGP
could fit the error curve well. But when the time was longer than 60 s, the prediction accuracy of RFR
decreased, and KGP maintained strong generalization ability.

In phase 2, the vehicle entered the tunnel, and the INS error accumulation speed increased due
to the complete loss of signals in the tunnel. It could be seen from Figure 10b that the prediction
performance of KGP was higher than that of RFR and MLPNN algorithms. The maximum error was
only 11.03 m, and the prediction result was stable.

In phase 3, the vehicle was driving on a curved road. The driving velocity and direction will
change greatly with the curve trajectory, resulting in serious system cumulative error and less data set
in a short time. Therefore, the prediction accuracy of the three methods was far less than that of phase
1 and phase 2, and there was a slight oscillation. But KGP still had obvious advantages compared
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with other methods, which was attributed to the improved KGP that could find out the relationship
between the input and output, make up for the inherent error of the sensor, effectively model the
position errors.
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(c) phase 3.

To fully evaluate the effectiveness of the system’s positioning data, we used the Root Mean Square
Error (RMSE) to compare the predicted performance of the three methods. The RMSE is defined as
follows (15):

RMSE =

√
∑T

i=1
(
ŷp − yp

)2

T
, (15)

where T is the GPS signal interruption time and ŷp and yp represent the predicted value and the actual
output value, respectively.

Table 5 shows the RMSEs of different prediction algorithms. Compared with the RFR and MLPNN,
the predicted result of the KGP algorithm had less error, and the predicted positioning data was closer
to the reference data.
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Table 5. Comparison results of RMSE with different algorithms.

Phase KGP RFR MLPNN

Outage 1 (60 s) 2.63 6.80 4.63
Outage 2 (60 s) 5.02 7.00 11.88
Outage 3 (60 s) 6.28 22.64 16.03

Although the RFR and GBDT are both ensemble learning algorithms, the RFR continues to reduce
the variance of the data set during the training phrases, while the GBDT improves the accuracy by
reducing bias. Therefore, the RFR prediction produced larger errors, while the KGP prediction yielded
better agreement with the data collected by the vehicle.

5. Conclusions

The KGP model can better meet the needs of accurate positioning during GPS signal interruption.
The GBDT algorithm was integrated based on KF, and the regression parameters of the GBDT were
optimized by the PSO algorithm to obtain a better prediction model. The road test showed that
the generalization ability of the GBDT algorithm was stronger than that of a single algorithm in the
integrated learning. The KGP model could effectively compensate for the cumulative error of the INS
and correct the position data during GPS failures. The prediction remained accurate during a 20 min
period. Compared with the existing methods, the positioning accuracy of our navigation solution was
28.20–59.89% higher than those of the MLPNN and RFR.
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