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Circadian rhythms convergently evolved to allow for optimal synchronization of individuals’
physiological and behavioral processes with the Earth’s 24-h periodic cycling of
environmental light and temperature. Whereas the suprachiasmatic nucleus (SCN) is
considered the primary pacemaker of the mammalian circadian system, many extra-SCN
oscillatory brain regions have been identified to not only exhibit sustainable rhythms in
circadian molecular clock function, but also rhythms in overall region activity/function and
mediated behaviors. In this review, we present the most recent evidence for the ventral
tegmental area (VTA) and nucleus accumbens (NAc) to serve as extra-SCN oscillators and
highlight studies that illustrate the functional significance of the VTA’s and NAc’s inherent
circadian properties as they relate to reward-processing, drug abuse, and vulnerability to
develop substance use disorders (SUDs).
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INTRODUCTION

Life on Earth has evolved to adapt to the 24-h periodic cycling of temperature and sunlight as the
result of the planent rotating about its axis around the Sun. Over evolutionary time, the predictable
daily cycles of light and dark have been internalized in the form of circadian rhythms (Pittendrigh,
1993). These endogenous, self-sustaining rhythms allow for optimal synchronization of physiological
and behavioral processes with the external environment. Circadian rhythms are highly conserved
across the kingdoms of life and are present in archaea, bacteria, plants, and animals (Maniscalco
et al., 2014; Walton et al., 2022). Predictably, circadian rhythms confer increased fitness by reducing
energy expenditure and allowing organisms to anticipate, adapt, and organize their biological
processes and behaviors to appropriate times of the day. Well-known examples of mammalian
circadian rhythms are body temperature, sleep-wake cycle, and patterns of hormone secretion (e.g.,
cortisol and melatonin), but also include complex processes such as cognitive function, attention,
stress, mood, and reward.

In mammals, the circadian system is organized in a hierarchal fashion. At the top lies the
suprachiasmatic nucleus (SCN), a bilateral set of nuclei in the anterior hypothalamus (Kalsbeek et al.,
2006). In the absence of environmental cues, a highly coupled network of neurons and glia within the
SCN generate and maintain rhythms of ~24-h. However, SCN rhythmicity can be entrained in the
presence of zeitgebers (i.e., time givers) ; Kumar Sharma and Chandrashekaran, 2005). Although
other zeitgebers exist (e.g., food, sex, socialization, and even drugs of abuse), in mammals, light is the
most potent zeitgeber. Light signals to the SCN by first activating a specialized type of cell within the
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retina termed intrinsically photosensitive retinal ganglion cells
(ipRGCs). ipRGCs are a small portion of the larger class of retinal
ganglion cells within the eye. However, due to their expression of
the photopigment melanopsin, these cells are precisely
photosensitive (Brainard et al., 2001; Berson et al., 2002). The
melanopsin photopigment within ipRGCs is maximally sensitive
to blue light (~480 nm) and is minimally activated in the presence
of longer wavelength red light (>600 nm) (Spitschan, 2019). Of
note, light acting directly on melanopsin containing ipRGCs is
not the only mechanism by which ipRGCs can become active.
Indeed, ipRGCs also serve to integrate light information from
rods and cones (Prayag et al., 2019). Once activated, ipRGCs
propagate their neural signal via the retinohypothalamic tract
(RHT) directly into the SCN. Notably, in mammals, light input
into the eye is exclusive via the RHT. Enucleation prevents

photoentrainment, demonstrating that, unlike some
vertebrates, there are no functional extra-retinal
photoreceptors (Nelson and Zucker, 1981). This monosynaptic
RHT pathway results in the release of glutamate and pituitary
adenylate-cyclase-activating polypeptide (PACAP) onto the SCN
(Hannibal et al., 2000). Activation of the SCN via release of
glutamate and PACAP results in a rise in intracellular Ca2+ and
cyclic AMP (cAMP) levels and activation of downstream
signaling cascades [reviewed in detail (Ashton et al., 2022)].
Ultimately, the transcription factor cAMP response element-
binding protein (CREB) is activated that in turn binds and
modulates transcription of the core clock genes Per1 and Per2
(Ashton et al., 2022). Specifically, light-induced upregulation of
Period genes ultimately adjusts the core TTFL, shifting and
aligning the phase of the clock with the external light/dark

FIGURE 1 | The circadian molecular clock and its regulation of the VTA-NAc synapse. (A) Rhythms of the circadian molecular clock are generated through a
complex series of transcriptional-translational feedback loops (TTFLs). In the mammalian core TTFL, CLOCK (or its functional paralogue NPAS2) forms a heterodimer
with BMAL1, binds to E-box elements in the promoter regions of DNA, and drives the transcription of many clock-controlled genes (CCGs), including Period and
Cryptochrome. Throughout the day, PERs and CRYs accumulate in the cytoplasm, dimerize, and undergo phosphorylation. Into the night, PER:CRY dimers shuttle
back into the nucleus and inhibit their own transcription through repressing CLOCK/NPAS2:BMAL1 activity, thus completing the core TTFL which cycles approximately
every 24 h. Among its CCGs, CLOCK/NPAS2:BMAL1 also regulates the expression of the nuclear receptors RORα and Rev-erbα which form an ancillary TTFL of the
molecular clock. RORα and REV-ERBα compete at Rev-erb/Ror response elements (RREs) in the promoter regions of Bmal1, Npas2, and Cry1 to regulate their
transcription, where RORα promotes expression and REV-ERBα represses. Along with others, this ancillary TTFL works to sustain, stabilize, and reinforce the core TTFL
and rhythmic output as a whole, altogether temporally controlling nearly all aspects of cellular physiology. Arrows and (+) indicate promotion of expression, while bars and
(−) indicate repression of expression. (B) The ventral tegmental area (VTA) and nucleus accumbens (NAc) circuit is the key reward pathway of the brain. Rewarding stimuli
primarily stimulate dopamine (DA) neurons in the VTA to release DA into the NAc, driving medium spiny neuron (MSN) activity and subsequent reward-seeking behaviors.
The circadian molecular clock has been shown to regulate nearly all components of DA synaptic transmission, with synthesis, uptake, and degradation all showing
circadian variation in expression or activity. This includes the synthesis enzyme tyrosine hydroxylase (TH), the DA receptors (D1R, D2R, and D3R), DA release itself, the
dopamine reuptake transporter (DAT), and the dopamine degradation enzyme monoamine oxidase A (MAOA). Overall rhythms in activity, molecular clock genes, and
transcriptome wide rhythms have been detected in the VTA and NAc, with peaks aligning in the active phase (dark phase in nocturnal rodents). Robust rhythms have
been detected in NAc astrocytes, as well as rhythms in GABA, glutamate, and glutamate receptors (GLUR) in the NAc. Red clocks indicate observed rhythms in
expression or activity. Green dots are DA molecules. Vesicular monoamine transporter 2 (VMAT2) loads dopamine into the vesicles prior to synaptic release. Graphs
illustrate representative wave form of overall VTA (green) or NAc (red) rhythmicity in nocturnal rodents, with yellow bar indicating light phase and purple bar indicating dark
phase. Figure created with BioRender.com.
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cycle (Albrecht et al., 1997; Shearman et al., 1997). The SCN then
relays this light-induced temporal information throughout the
brain (e.g., extra-SCN central oscillators) and periphery (e.g.,
peripheral oscillators) via autonomic, metabolic, and hormonal
signals; thus, synchronizing and organizing rhythmic activity of
the organism.

At the molecular level, the mammalian circadian system is
driven by transcriptional-translational feedback loops (TTFLs;
i.e., the “circadian molecular clock”), which are autoregulatory
feedback loops of transcriptional activators and repressors
(Figure 1A) (Mohawk et al., 2012; Takahashi, 2017). The
proteins, brain and muscle arnt-like protein 1 (BMAL-1;
encoded by Arntl) and circadian locomotor output cycles
kaput (CLOCK), or the CLOCK paralogue neuronal PAS
domain protein 2 (NPAS2), encompass the positive arm of the
core circadian molecular clock (Vitaterna et al., 1994; Hogenesch
et al., 1997; Ikeda and Nomura, 1997; King et al., 1997; Zhou et al.,
1997; Hogenesch et al., 1998; DeBruyne et al., 2007). BMAL1 and
CLOCK and/or BMAL1 and NPAS2 form heterodimers to bind
to E-box regulatory elements within promoter regions of DNA to
drive transcription of thousands of genes. Particularly relevant to
the circadian molecular clock, these heterodimers drive
transcription of the negative arm of the clock, namely, Period
(Per1, Per2 and Per3) and Cryptochrome (Cry1 and Cry2)
(Shigeyoshi et al., 1997; Tei et al., 1997; Gekakis et al., 1998;
Takumi et al., 1998; Kume et al., 1999; Shearman et al., 2000;
Albrecht et al., 2001). PERs and CRYs accumulate in the
cytoplasm throughout the day, but into the night, PER and
CRY form heterodimers which translocate back into the
nucleus and repress their own transcription via interaction
with the BMAL1/CLOCK and/or BMAL1/NPAS2 complex.
This process completes the TTFL and requires ~24 h to
complete a full cycle; review in (Partch et al., 2014). Notably,
the degradation of PER and CRY proteins is regulated by casein
kinase 1δ (CK1δ) and CK1ϵ, which ultimately determines the
period length of the circadian clock, or the time it takes to
complete a cycle (Etchegaray et al., 2009; Lee et al., 2011).

In addition to the primary feedback loop, several additional
ancillary regulatory loops contribute to the circadian clockwork
(Cox and Takahashi, 2019). Indeed, CLOCK/NPAS2:BMAL1
complexes also drive transcription of reverse-ErbA alpha and
beta (REV-ERBα and REV-ERBβ; encoded by Nr1d1 and Nr1d2,
respectively), which compete with retinoic acid-related orphan
receptors (RORα, RORβ and RORγ; encoded by Nr1f1,Nr1f2 and
Nr1f3, respectively) for binding at retinoic acid-related orphan
receptor response elements (RRE) within the promoter regions of
DNA (Preitner et al., 2002; Sato et al., 2004; Akashi and Takumi,
2005). By binding to RREs, RORs activate transcription while
REV-ERBs inhibit transcription of BMAL1. REV-ERBs and
RORs have also been shown to regulate CRY1 and NPAS2 in
a similar fashion (Preitner et al., 2002; Crumbley et al., 2010).
Notably, additional feedback loops have been described,
including the D site of albumin promoter (albumin D-box)
binding protein (DBP) feedback loop (Lopez-Molina et al.,
1997; Ripperger et al., 2000; Yamaguchi et al., 2000), the basic
helix-loop-helix protein E 40 (BHLHE40) and BHLHE41 loops
(also known as DEC1 and DEC2) (Honma et al., 2002; Kawamoto

et al., 2004; Nakashima et al., 2008), and the computationally
highlighted repressor of the network oscillator (CHRONO)
feedback loops (Anafi et al., 2014; Goriki et al., 2014; Ono
et al., 2021). Altogether, these ancillary TTFLs allow for
redundancy to reinforce the molecular clock’s rhythmicity and
protect its function. Mutation or loss of most clock proteins can
be compensated for to minimize interruption to rhythmicity.
NPAS2, for example, can completely compensate for the loss of
CLOCK function (Reick et al., 2001; Bertolucci et al., 2008;
Landgraf et al., 2016b) as evidenced by the fact that double
knockout of both Clock and Npas2 is needed to completely
abolish activity rhythms (DeBruyne et al., 2007). However, the
only clock protein that cannot be compensated for is BMAL1
(McDearmon et al., 2006). Notably, beyond just regulating
molecular clock function, the circadian molecular clock has
far-reaching effects across the organism’s genome. Indeed,
transcriptome-wide sequencing studies demonstrate that ~40%
of the rodent genome exhibits circadian oscillations, and 80% of
genes are rhythmic in primates (Zhang et al., 2014; Mure et al.,
2018). These genome-wide rhythms and subsequent protein
rhythms are mediated through a host of transcriptional, post-
transcriptional, translational, and post-translational mechanisms
that in turn temporally organize nearly all aspects of cellular
function, physiology, and ultimately behavior.

Taken together, the SCN has traditionally been considered the
central pacemaker transducing environmental information
(namely light) to generate and synchronize circadian rhythms
from the system level down to the cellular circadian molecular
clock level. However, other brain regions have recently been
discovered that produce sustainable, entrainable 24-h rhythms in
core clock expression, electrophysiological activity, and/or overall
function, reviewed in (Dibner et al., 2010; Honma, 2018;
Begemann et al., 2020). These potential extra-SCN oscillators
point to a multi-oscillatory system in which other tissues, central
or peripheral, have inherent circadian oscillatory properties that
temporally organize physiology/function but are synchronized by
the SCN to maintain overall circadian organization of the
organism and its behaviors. While the SCN is important for
entraining rhythms, it is thought that localized extra-SCN
oscillators may play a more integral role in regulating specific
behaviors across time of day. In this review, we will present
evidence that suggests mesolimbic reward structures, specifically
the ventral tegmental area (VTA) and nucleus accumbens (NAc),
serve as extra-SCN circadian oscillators with a functional
circadian clock and that this timekeeping system ultimately
drives known rhythms in reward processing and motivated
behaviors. Finally, we will discuss the functional implications
of both the VTA and the NAc having circadian molecular clock
function as it relates to drug abuse and the development of
substance use disorders (SUDs).

THE MESOLIMBIC REWARD PATHWAY
AND SUBSTANCES OF ABUSE

Accumulating evidence from both clinical and preclinical studies
points to the mesolimbic pathway as being the primary neural
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structures mediating reward and reward-related behaviors (Wise,
2008; Koob and Volkow, 2010; Baik, 2013; Volkow and Morales,
2015). Notably, there are two primary pathways that connect the
midbrain to the striatum: the nigrostriatal pathway, consisting of
dopaminergic projections from the substantia nigra (SN) to the
dorsal striatum (DS), and the mesolimbic pathway, consisting of
dopaminergic projections from the VTA to the NAc in the ventral
striatum.While there is some evidence to suggest the nigrostriatal
pathway may play some role in mediating reward (Wise, 2009),
the mesolimbic pathway has historically been considered the
central reward pathway of the brain. Briefly put, when
dopaminergic neurons in the VTA are activated, dopamine is
released from the VTA axon terminals into NAc synapses. The
VTA-mediated activation of dopamine receptor-expressing
neurons in the NAc is thought to underly the assigning of
motivational/hedonic salience to a stimulus (e.g., natural
rewards like food and socialization, or even non-natural
rewards like drugs of abuse). This activation, in turn,
reinforces rewarding behavior and ultimately drives goal-
directed behaviors towards rewarding stimuli. (Schultz, 2002;
Volkow and Morales, 2015; Morales and Margolis, 2017).

The VTA is a heterogeneous region containing
dopaminergic, GABAergic, glutamatergic, and other
neuronal subtypes. Though heterogeneous, dopaminergic
neurons are the primary neuronal subtype, accounting for
60%–65% of all VTA neurons in rodent models (Swanson,
1982; Nair-Roberts et al., 2008). Historically, these dopamine
neurons have primarily been classified by their expression of
tyrosine hydroxylase (TH) (Grace and Onn, 1989; Nair-
Roberts et al., 2008), a rate-limiting enzyme in the
biosynthesis pathway for dopamine, as well as by their
electrophysiological properties (Ungless and Grace, 2012).
For the synthesis of dopamine, TH converts L-tyrosine into
L-DOPA, which is then converted into dopamine by aromatic
L-amino acid decarboxylase. In addition to expressing TH,
dopaminergic neurons in the VTA generally also express
dopamine transporter (DAT) and vesicular monoamine
transporter 2 (VMAT2), which work to reuptake dopamine
after synaptic release and package dopamine back into
synaptic vesicles, respectively. However, it is important to
note rodent studies have shown there are subpopulations of
TH-expressing dopamine neurons that co-release glutamate
(Stuber et al., 2010; Hnasko et al., 2012; Mingote et al., 2017)
or even minimally co-express DAT and VMAT2 (Lammel
et al., 2008; Stamatakis et al., 2013)—further underscoring the
cellular heterogeneity of the VTA even within the defined
neuronal subtype populations. However, one generally
common feature among dopamine neurons in the VTA is
their distinct electrophysiological firing patterns; dopamine
neurons either fire in a stable tonic pattern of 1–8 Hz
frequency or in a more transient high-frequency phasic
firing pattern of >15 Hz frequency. This phasic high-
frequency firing pattern is thought to result in the fastest
and largest dopamine release into the NAc necessary to drive
reward, while the tonic firing pattern is associated with less
dopamine release and reward attenuation—both mediated by
specific dopamine receptors. (Grace and Onn, 1989; Dreyer

et al., 2010; Ungless and Grace, 2012; Paladini and Roeper,
2014).

Unlike the VTA, the NAc almost entirely consists of
GABAergic medium spiny neurons (MSNs)—with rodent
studies suggesting GABAergic MSNs account for roughly 95%
of neurons in the NAc (Surmeier et al., 2007; Heiman et al., 2008;
Gangarossa et al., 2013). Within this population, theMSNs can be
divided into two primary functional subtypes based on their
relative expression of either D1 (Drd1) or D2 (Drd2) G-protein
coupled dopamine receptors. Though there are actually five
specific dopamine receptor subtypes (D1–D5), each of the
receptors are generally classified as being either D1-like
receptors (D1 and D5) or D2-like receptors (D2–D4), based on
whether they stimulate or inhibit secondary messenger cyclic
AMP (cAMP), respectively (Missale et al., 1998; Surmeier et al.,
2007; Bhatia et al., 2022). In addition to differences in synaptic
plasticity, intrinsic excitability, and signaling cascades (Lu et al.,
1998; Surmeier et al., 2007; Baik, 2013), the most notable
difference between D1-receptor containing versus D2-receptor
containing MSNs is their involvement in projections back to the
VTA. In addition to receiving dopamine input from the VTA, the
NAc sends reciprocal projections back to the VTA through both a
direct striatonigral pathway (projecting to the VTA and
substantia nigra in the ventral mesencephalon) and an indirect
striatopallidal pathway (projecting to the ventral mesencephalon
by way of the globus pallidus), with both having downstream
effects on thalamus-mediated motivated motor control
(Macpherson et al., 2014). Notably, the direct pathway is
thought to primarily consist of D1-receptor containing MSNs
and is reward-promoting, while the indirect pathway is thought
to primarily consist of D2-receptor containing MSNs and
aversion-promoting (Hikida et al., 2010, 2013; Lobo and
Nestler, 2011; Kravitz et al., 2012). However, it is important to
note recent evidence suggests this classification may be
oversimplifying and ignoring nuances of the system (Kupchik
et al., 2015), which should be taken into consideration. Finally,
the NAc can also be subdivided anatomically into the lateral core
and medial shell, with the core primarily mediating goal-directed
behavior and learning and the shell primarily mediating
processing/assigning of hedonic value and salience (Meredith
et al., 2008; West et al., 2018). Differences between the shell and
core arise through differences in integrating not only VTA
dopamine input, but also differential glutamatergic input from
the prefrontal cortex, hippocampus, thalamus, amygdala, and
other regions (Scofield et al., 2016). Notably, the NAc is also is
enriched with astrocytes, or astroglia, that serve an integral role in
regulating these glutamatergic synapses, among many other
functions (Scofield and Kalivas, 2014). Though the NAc
integrates information from all these cortical and limbic
structures to mediate motivation and goal-directed behaviors,
the VTA-NAc projection is most integral to the processing of
reward, hedonic value, and incentive salience.

The “Dopamine Hypothesis of Addiction” posits that
substances of abuse, much like natural rewards, act directly on
this reward system to increase VTA-mediated dopamine release
into the NAc to both promote reward and drive subsequent
reward-seeking behaviors (Spanagel and Weiss, 1999; Diana,
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2011). Both clinical and preclinical studies have shown that nearly
all substances of abuse produce an increase of dopamine and/or
dopamine receptor binding in the NAc, including cocaine,
amphetamine, opioids, alcohol, marijuana, and nicotine
(Willuhn et al., 2010; Wise and Robble, 2020). In particular,
it’s thought that drugs of abuse significantly increase phasic
dopaminergic firing in the VTA that results in fast, large, and
sustained supraphysiological releases of dopamine into the NAc
shell that both activate reward-promoting D1 receptor containing
MSNs of the direct pathway while inhibiting reward-attenuating
D2 receptor containing MSNs of the indirect pathway (Di Chiara,
2002; Volkow et al., 2008; Owesson-White et al., 2009; Volkow
and Morales, 2015). In addition to increasing dopamine levels,
repeated drug exposure has also been shown to downregulate D2

receptor expression and/or binding (Volkow et al., 2001; Nader
et al., 2006; Volkow et al., 2009; Trifilieff and Martinez, 2014), as
well as induce long term neuroplasticity changes that enhance
sensitivity of the NAc to substances of abuse and drive
motivation/reward-seeking behaviors (Kalivas and O’Brien,
2008; Grueter et al., 2012; Volkow and Morales, 2015).
Though significant advances have been made in understanding
the transition from drug reward to compulsive drug seeking and
SUDs (Volkow and Morales, 2015; Koob and Volkow, 2016;
Poulton and Hester, 2020), the specific mechanisms that drive
this transition are still unknown. Of particular interest for this
review, disruption to circadian rhythms and/or circadian
regulation of the VTA and NAc are mechanisms warranting
further investigation (Logan et al., 2014, 2018; Becker-Krail and
McClung, 2016; Webb, 2017; Tamura et al., 2021). More
specifically, accumulating evidence suggests the VTA and NAc
are not only hubs for reward regulation, but also serve as extra-
SCN circadian oscillators.

THE VENTRAL TEGMENTAL AREA AS A
CIRCADIAN OSCILLATOR

Through preclinical research, we have long appreciated that reward
processing is intertwined with the circadian system (Parekh and
McClung, 2015; DePoy et al., 2017). For example, food is a naturally
potent reward across species, and its intake is highly governed by the
circadian system such that food intake aligns with organisms’ active
phase (Volkow et al., 2011; Challet, 2019; Mendoza, 2019; Pickel and
Sung, 2020). This is also true for drugs of abuse; decades of
preclinical work has revealed diurnal variations in drug reward
sensitivity, conditioned place preference, locomotor sensitization,
and operant self-administration, with behavior primarily peaking
during the animal’s active phase (Webb et al., 2009; Webb et al.,
2015). This is partly attributed to the observation that both natural
rewards, such as food, and especially drugs of abuse, act as strong
zeitgebers that entrain the circadian system and subsequent
motivated behaviors (Gillman et al., 2019). Alternatively,
accumulating evidence suggests both the VTA and NAc act as
circadian oscillators themselves that regulate reward and motivation
across time of day.

While it was long thought that VTA dopamine neurons do not
exhibit circadian variation in activity, several studies in the past

2 decades suggest the contrary. Through electrophysiological
recordings in anesthetized rats, VTA neurons exhibited a
circadian rhythm in their spontaneous activity, with activity
being greatest during the animal’s active phase or dark phase
(Luo et al., 2008; Luo and Aston-Jones, 2009). Expression of cFos,
a marker for neuronal activation, is also significantly higher in
VTA TH+ and TH− neurons in the animal’s active phase or dark
phase (Baltazar et al., 2013). In another study in anesthetized rats,
VTA neurons exhibited intra-diurnal 12-h rhythmic patterns of
firing across both the light and dark phases, as well as total active
dopamine neurons and the pharmacological response of D2

receptors both higher in the dark phase (Domínguez-López
et al., 2014). Finally, in vivo multi-unit activity recordings in
mice have also revealed VTA activity to exhibit a strong circadian
rhythm, with VTA neuronal activity significantly higher during
the animal’s active phase (dark phase) (Fifel et al., 2018).
Interestingly, however, the substantia nigra, a neighboring
dopamine-rich midbrain region, did not exhibit this circadian
variation in multi-unit activity (Fifel et al., 2018). Ultimately, the
rhythmic activity of the VTA can be attributed to both local
circadian molecular clock function and entrainment by indirect
SCN innervation.

Several studies report diurnal variation of core circadian clock
gene and protein expression in the VTA (Baird et al., 2013; Chung
et al., 2014;Wang et al., 2019). This is further supported by ex vivo
bioluminescent recordings of PERIOD2::LUCIFERASE rhythms
in the VTA of PER2:LUC reporter mice (Landgraf et al., 2014;
Logan et al., 2015; Landgraf et al., 2016a), a knock-in mouse line
expressing the firefly luciferase gene fused to the Period2 gene that
allows for real-time visual monitoring of self-sustained circadian
oscillations (Yoo et al., 2004)). Most notably, a recent study
utilized whole-genome microarray hybridization analysis to
investigate transcriptome-wide rhythms in mouse VTA
samples collected across six times of day (ZT0, 4, 8, 12, 16,
and 20) (Koch et al., 2020). Strikingly, the VTA transcriptome
exhibited robust rhythms in gene expression; roughly 10% of the
2,643 transcripts investigated had significant rhythms with peaks
in expression primarily clustering at ZT3 (inactive/light phase)
and even more so at ZT16 (active/dark phase) (Koch et al., 2020).
In particular, several studies have shown VTA dopamine-related
genes diurnally vary in expression and function, and/or maybe
directly regulated by the circadian molecular clock, including TH,
DAT, and the dopamine degradation enzyme monoamine
oxidase A (MAOA) (Figure 1B) (McClung et al., 2005;
Hampp et al., 2008; Chung et al., 2014; Ferris et al., 2014;
Logan et al., 2019; Alonso et al., 2021). Together, these
findings point to a functional circadian clock system within
the VTA that organizes its function on a 24-h timescale.
While this local molecular clock works to temporally
coordinate VTA gene expression and subsequent cellular
physiology, these rhythms may be entrained by rewarding
stimuli (e.g., natural rewards and drugs of abuse) and/or
through indirect innervation by the SCN.

To date, no studies have identified a direct projection from the
SCN to the VTA. However, some studies have reported the VTA
can receive circadian information from the SCN indirectly by way
of the medial preoptic area (mPOA) of the hypothalamus and the
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lateral habenula (LHb) (Figure 2). It is well established that the
SCN sends direct projections to the mPOA and the LHb (Van
Drunen and Eckel-Mahan, 2021). The POA is well established as
a region regulating sleep/wake and other circadian rhythms
through its innervation from both the SCN and ipRGCs
directly (Rothhaas and Chung, 2021; Tsuneoka and Funato,
2021; Zhang et al., 2021). One of the first studies to show the
SCN indirectly projects to the VTA, Luo and Aston-Jones utilized
retrograde tracer transsynaptic pseudorabies virus injected into
the VTA of rats and found labeling in the SCN that was indicative
of an indirect afferent which was significantly abolished with
mPOA lesion (Luo and Aston-Jones, 2009). This study confirmed
the functional implications of this innervation through
electrophysiological recordings showing VTA neuronal activity
exhibits diurnal variation in impulse firing as a result of
significantly higher rates during the active phase (Luo et al.,
2008; Luo and Aston-Jones, 2009). Alternatively, this circadian
timekeeping in the VTA may also be mediated through the LHb.
Extensive work has shown the LHb exhibits robust, sustainable
rhythms that are entrained by both innervation from the SCN
and even direct photic input from the ipRGCs themselves (Zhang
et al., 2009; LeGates et al., 2014; Sakhi et al., 2014; Baño-Otálora
and Piggins, 2017; Mendoza, 2017). Moreover, the LHb is well-
established to regulate reward and motivated behaviors through
glutamatergic innervation of both dopaminergic and GABAergic
VTA neurons, which can bidirectionally modulate VTA function

depending on which neurons are being activated (Omelchenko
et al., 2009; Quina et al., 2015; Baker et al., 2016; Wallace et al.,
2020). Taken together, the LHb may serve as a key mediator
between the SCN and the VTA, working to impart circadian
timing and driving the known rhythms in VTA clock and reward
function (Salaberry and Mendoza, 2015; Mendoza, 2017).
However, future studies testing this idea are still needed.

Finally, in addition to the VTA’s known rhythmicity and
indirect innervation from the SCN, a recent study in mice has
uncovered a potential role for the VTA to reciprocally regulate
the SCN and thus overall circadian rhythms. Though it has long
been known that the D1 receptor is expressed in the SCN of both
mice and non-human primates (Weaver et al., 1992; Bender et al.,
1997; Rivkees and Lachowicz, 1997), the functional role of this
expression has remained largely unknown. The importance of D1

receptor expression in the SCN was demonstrated using the Drd1
knockout mouse model coupled with SCN site-specific
manipulations and measuring photic entrainment (Grippo
et al., 2017). Strikingly, Drd1 global knockout mice exhibited a
significantly slower rate of photoentrainment of behavioral
rhythms that could be ameliorated through selective re-
expression of Drd1 specifically in the SCN. Most notably,
using retrograde fluorescent bead tracing, a direct projection
from the VTA to the SCN was identified for the first time,
and when activated using excitatory Gq-coupled Designer
Receptors Exclusively Activated by Designer Drugs

FIGURE 2 | The VTA and NAc are integrated into the circadian system through indirect SCN input. The suprachiasmatic nucleus (SCN) of the anterior
hypothalamus receives photic information from intrinsically photosensitive retinal ganglion cells (ipRGCs) in the retina via the retinohypothalamic tract (RHT). While the
SCN generates rhythms through its highly coupled network of neuronal and glial oscillators, the SCN rhythms are entrained to environmental light/dark cycles by retinal
photic information. The SCN synchronizes extra-SCN oscillators throughout the organism, both centrally and peripherally, via autonomic, metabolic, and hormonal
signals. These extra-SCN oscillators are thought to afford local temporal control of complex physiology and behaviors. In particular, the ventral tegmental area (VTA) and
nucleus accumbens (NAc) of the mesolimbic pathway may receive and integrate circadian information through indirect connections with the SCN. In addition to
reciprocally communicating with the NAc through direct and indirect projections to mediate reward, the VTA may receive indirect SCN circadian input via the lateral
habenula (LHb) and/or the medial preoptic area (mPOA)—both of which are direct outputs of the SCN and also receive photic information from ipRGC innervation.
Notably, the VTA has also been shown to directly innervate the SCN and regulate photoentrainment. The NAc may receive indirect SCN circadian input via the
paraventricular nucleus of the thalamus (PVT), one of the densest extrahypothalamic outputs of the SCN, or via the VTA. Schematic illustrates a sagittal section of a
rodent brain. Undefined: olfactory bulb (Ob); cerebellum (Cb); See key for more details. Figure created with BioRender.com.
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(DREADDs), VTA-SCN projection neurons significantly
accelerate circadian photoentrainment of behavioral rhythms
in mice (Grippo et al., 2017). This relationship is even
supported from earlier findings in which knock-down of the
circadian gene Clock specifically in the VTA significantly reduced
the circadian period and amplitude of mouse wheel-running
rhythms (Mukherjee et al., 2010). In theory, this reciprocal
communication between the VTA and SCN sets up a feedback
mechanism by which reward processing and reward-related
behavior is under circadian regulation, and conversely,
rewarding stimuli (e.g., natural rewards or drugs of abuse) can
directly affect circadian rhythms to temporally organize and drive
reward-seeking behaviors. Although separate evidence points to
this mechanism as being possible, a study tying together these
observations has yet to be reported.

THE NUCLEUS ACCUMBENS AS A
CIRCADIAN OSCILLATOR

As mentioned, extensive preclinical work has illustrated the
temporal organization of reward and reward-related behaviors
with peak activity often aligning with individuals’ active phase
(Logan et al., 2014; Parekh andMcClung, 2015; Webb et al., 2015;
Tamura et al., 2021). Alongside the role of the VTA in mediating
this rhythmicity in reward, there is considerable evidence
suggesting the NAc may also serve as a circadian oscillator
that receives and integrates both sensory and circadian
information to temporally regulate motivated behaviors. This
is evidenced by the observation that the NAc exhibits diurnal
variation in activity/function, robust rhythms in molecular clock
function, and its integrated position within the circadian system.

Evidence from electrophysiological recordings suggest MSN
activity in the NAc is under circadian regulation. Using ex vivo
whole-cell patch-clamp recordings, Parekh et al. (2018) measured
MSN excitatory synaptic transmission, synaptic strength, and
intrinsic excitability in mice during both the light and dark phase.
Interestingly, MSNs exhibit diurnal variability in glutamatergic
synaptic transmission and intrinsic excitably, with peaks during
the mouse’s active/dark phase (Parekh et al., 2018). In addition to
NAc neuronal activity, nearly all aspects of dopamine handling
and signaling have been shown to diurnally vary in the NAc
presynaptically, postsynaptically, and extracellularly. Through
studies in rodents, concentrations of dopamine and its
metabolites have been shown to have robust diurnal rhythms
in the NAc (Schade et al., 1995; Castañeda et al., 2004; Hampp
et al., 2008; Ferris et al., 2014; Koch et al., 2020; Alonso et al.,
2021). This rhythmicity in dopamine levels can be attributed to
both the aforementioned rhythmic activity of the VTA, as well as
diurnal variation in the proteins that regulate dopamine
synthesis, degradation, and signaling. Work from the McClung
lab and others have shown significant diurnal variation in the
expression of all dopamine receptors in the NAc (e.g., D1, D2 and
D3 receptors), as well as levels/activity of TH, DAT, and MAOA
(Figure 1B) (Sleipness et al., 2007, 2008; Hampp et al., 2008;
Chung et al., 2014; Ferris et al., 2014; Ozburn et al., 2015; Logan
et al., 2019; Alonso et al., 2021). Moreover, at the gene level,

transcription of Th,Dat,Maoa, andDrd1,2,3 have actually shown
to be directly regulated by the circadian molecular clock (e.g.,
either demonstrated through knockdown studies or through
identifying E-boxes and/or RREs in their promoters) (Ueda
et al., 2005; Hampp et al., 2008; Ikeda et al., 2013; Chung
et al., 2014; Ozburn et al., 2015; Logan et al., 2019). This
regulation by the circadian molecular clock is important given
that the NAc has robust rhythms in molecular clock function.

Studies in both rodents and human post-mortem tissue have
shown significant rhythmicity in NAc circadian molecular clock
function. Using the PER2:LUC mouse model, sustained
bioluminescent rhythms have been detected in the NAc ex
vivo (Logan et al., 2015; Landgraf et al., 2016a; Porcu et al.,
2020). This corroborates gene expression analyses in mice
showing significant diurnal variation in molecular clock
mRNA levels in the NAc (Falcon et al., 2013; Natsubori et al.,
2014; Logan et al., 2015; Brami-Cherrier et al., 2020; Porcu et al.,
2020; Becker-Krail et al., 2022b), as well as protein expression
analyses in the striatum (Schnell et al., 2015). This is also seen in
human post-mortem NAc tissue RNA-sequencing analyses
where transcript levels are organized by time-of-death and
tested for rhythmicity. In the NAc of healthy neurotypical
control donors, robust rhythms in the canonical clock genes
have been seen (e.g., Bmal1, Npas2, Period, Cryptochrome, and
Rev-erbα), as well as pathway analyses revealing Circadian
Rhythm Signaling as a pathway enriched among the top
rhythmic genes (Li et al., 2013; Ketchesin et al., 2021; Xue
et al., 2022). Finally, though these findings point to a
functional molecular clock at the whole NAc level, functional
investigation of these rhythms has largely been in MSNs or MSN
subtypes. Remarkably, in a study published just this year, NAc
astrocytes in particular were also found to have robust rhythms
(Becker-Krail et al., 2022a). Using next-generation total RNA-
sequencing in NAc astrocytes across time-of-day, NAc astrocytes
were found to not only express robust rhythms in all the
canonical clock genes, but also roughly 43% of the entire NAc
astrocyte transcriptome exhibited a significant diurnal rhythm
(Becker-Krail et al., 2022a). Relative to only 6% detected to be
rhythmic across the whole NAc (all cells) (Brami-Cherrier et al.,
2020), this newly characterized astrocyte-specific rhythmicity
highlights the complex nature of circadian regulation in the
NAc and underscores the need to investigate circadian
regulation of reward regions in a cell-type-specific manner,
including both neurons and glia. Altogether, these studies
point to a self-staining, functional circadian clock system
within the NAc that organizes its function across time of day.
Whereas this local molecular clock works to temporally
coordinate NAc gene expression and subsequent cellular
physiology, much like the VTA, these rhythms may also be
entrained by rewarding stimuli (e.g., natural rewards and
drugs of abuse) and/or through indirect innervation by the SCN.

In common with the VTA, a direct projection from the SCN to
the NAc remains unspecified. However, in addition to the direct
input from the VTA that may impart rhythmicity, some studies
have reported the NAc may receive circadian information from
the SCN indirectly by way of the paraventricular nucleus of the
thalamus (PVT) (Figure 2). The PVT is a highly rhythmic
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thalamic nucleus that reciprocally communicates with the SCN,
receiving one of the densest extrahypothalamic direct outputs of
the SCN while also sending glutamatergic projections back (Kolaj
et al., 2012; Colavito et al., 2015). The PVT has been implicated in
regulating mood, reward, stress, sleep/wake, and arousal, in part
due to its interface with the SCN and a number of corticolimbic
regions, including the PFC, amygdala, and the NAc (Moga et al.,
1995; Li and Kirouac, 2008; Vertes and Hoover, 2008). Though
only the amygdala has been confirmed to receive indirect SCN
input via the PVT using tracing techniques (Peng and
Bentivoglio, 2004), it is likely this also extends to the NAc
given the NAc’s aforementioned rhythmicity in function and
the known role of PVT-NAc projections in mediating reward
(Kirouac, 2015; Barson et al., 2020; De Groote and de Kerchove
d’Exaerde, 2021). Furthermore, PER expression is similar
between the NAc and PVT in rodents, with higher expression
in the active/dark phase, and in both regions is entertainable to
food intake (Angeles-Castellanos et al., 2007; Feillet et al., 2008;
Falcon et al., 2013). However, whether the PVT relays SCN photic
information or rhythmicity to the NAc and whether it may be
important for reward remains to be investigated.

Finally, in addition to the role of the circadian system in
regulating NAc function, accumulating preclinical evidence
suggests the NAc may in turn also regulate circadian rhythms,
namely sleep/wake rhythms. Though it has long been known that
many psychiatric and neurological disorders commonly share
both disruptions in sleep and altered NAc function, including
drug abuse and SUDs (Wulff et al., 2010; Russo and Nestler, 2013;
Ahrens and Ahmed, 2020), we have only more recently begun to
appreciate the role the NAc plays in regulating sleep/wake.
Through electroencephalography (EEG) studies in rats, rats
with generalized lesions to the NAc core or shell exhibited
26% and 17% increases in wakefulness, respectively, and
reductions in non-rapid eye movement (NREM) sleep bout
duration (Qiu et al., 2010, Qiu et al., 2012). Expanding on
these findings, optogenetics or DREADDs were used to target
a specific NAc MSN subpopulation and investigate its role in
sleep (Oishi et al., 2017). Activation of NAc core adenosine A2a

receptor-expressing MSNs of the indirect pathway strongly
promoted and increased slow-wave sleep (SWS), while
inhibition of these neurons decreased SWS (Oishi et al., 2017;
Valencia Garcia and Fort, 2018). Conversely, other studies have
found optogenetic activation of VTA terminals in the NAc
actually decreases NREM and REM in mice and can promote
arousal (Eban-Rothschild et al., 2016). More specifically, using in
vivo fiber photometry coupled with optogenetics or DREADDs,
activation of D1 MSNs in the NAc rapidly induces a transition
from NREM to wakefulness, while inactivation of these neurons
suppresses arousal and increases nest-building (Luo et al., 2018).
This differential regulation of sleep by the NAc is further
supported by recent data showing activation/inactivation of D1

versus D2 MSNs can bidirectionally regulate sleep;
i.e., inactivation of D1 MSNs or activation of D2 MSNs
promotes sleep (D2 MSNs specifically promoting SWS), while
activation of D1 MSNs promotes wake or arousal but targeting D2

MSNs has no effects on arousal (McCullough et al., 2021).
However, beyond this role in differentially regulating sleep/

wake rhythms, whether the NAc extends regulation to the
broader circadian system is still unknown.

IMPLICATIONS FOR REWARD AND
SUBSTANCE ABUSE

During the past 2 decades, accumulating evidence points to an
association between disruptions in circadian rhythms, drug
abuse, and the development of SUDs. Nearly all substances of
abuse have been shown to disrupt circadian rhythms (Bolelli
et al., 1979; Vescovi et al., 1992; Danel et al., 2001). Those with
SUDs also tend to have poor sleep parameters and exhibit
significantly disrupted sleep/wake rhythms (Angarita et al.,
2016; Koob and Colrain, 2020). Alternatively, individuals with
disrupted circadian rhythms and/or poor sleep have an increased
propensity to abuse substances and show altered reward-related
brain function (Breslau et al., 1996; Brower et al., 2001; Johnson
and Breslau, 2001; Hasler et al., 2012a, Hasler et al., 2012b; Hasler
and Clark, 2013; Angarita et al., 2016; Dolsen and Harvey, 2017,
Hasler et al., 2017; Logan et al., 2018; Goodhines et al., 2019).
Together, these observations suggest a bidirectional relationship
between circadian rhythm disruption and substance abuse,
setting up the potential for a feed-forward, self-perpetuating
cycle that could both establish and reinforce a SUD (Tamura
et al., 2021). At the heart of this relationship, extensive preclinical
evidence suggests proper circadian molecular clock function in
both the VTA and NAc is integral in the regulation of reward and
reward-related behavior.

In the VTA, genetic knockout and/or functional mutation
studies have illuminated the functional significance of VTA
circadian molecular clock function for reward-regulation and
overall VTA function. One of the most studiedmodels illustrating
this, ClockΔ19 mice carry a functional mutation in the
transactivation domain of Clock, which disrupts its core clock
binding functions (King et al., 1997). Interestingly, in addition to
altered circadian function, ClockΔ19 mice exhibit a hyper-
hedonic behavioral phenotype; e.g., increased locomotor
response to novelty, increased exploratory drive, increased
cocaine preference, cocaine self-administration, and cocaine
reward sensitivity, increased sucrose preference, and increased
propensity for ethanol consumption (McClung et al., 2005;
Roybal et al., 2007; Ozburn et al., 2012; Ozburn et al., 2013).
Importantly, many aspects of the ClockΔ19 phenotype can be
recapitulated through a site-specific knockdown of Clock in the
VTA (Mukherjee et al., 2010; Ozburn et al., 2013) and aspects of
the reward-related phenotype are attributed to CLOCK
regulating VTA dopamine neuron firing, ion channel
expression, and importantly, diurnal rhythms in Th expression
(Mukherjee et al., 2010; Logan et al., 2019). In fact, diurnal
rhythms of Th expression are directly regulated by both
CLOCK and REV-ERBα, whereby both circadian proteins
normally act to repress transcription of Th in a phase-
dependent manner through competitive binding at E-box and
RREs in the Th promoter, respectively; however, knockdown or
loss of either Clock or Rev-erbα in the VTA drives increased
expression of Th, leading to disrupted diurnal rhythms in the
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VTA, higher NAc concentration of dopamine and metabolites,
and increased reward-related behaviors (Chung et al., 2014;
Logan et al., 2019). Notably, other clock proteins have been
shown to regulate circadian expression and function of
MAOA in the VTA (e.g., BMAL1, NPAS2 and PER2), and in
Per2 mutant mice, MAOA rhythms are blunted in the VTA
leading to an accumulation of dopamine in the NAc and altered
mood-related behaviors (Hampp et al., 2008). Together, these
clock-disruption-mediated changes to VTA function and
downstream behavior are particularly alarming given that
substances of abuse have been shown to not only alter
molecular clock rhythms specifically in the VTA (Li et al.,
2009), but also entrain overall circadian rhythms (Kosobud
et al., 2007; Honma and Honma, 2009; Glass et al., 2012;
Prosser et al., 2014; Stowie et al., 2015; Gillman et al., 2019),
which could feed into the VTA and/or partly be mediated by
the VTA.

Relative to the VTA, additional evidence exists to suggest
disruptions in NAc circadian molecular clock function drives
aberrant reward-processing, motivation, and mood. Of
particular interest for NAc-mediated reward regulation,
NPAS2 is a circadian molecular clock protein that is highly
expressed in the forebrain and enriched particularly in the D1

MSNs of the NAc (Zhou et al., 1997; Garcia et al., 2000; Reick
et al., 2001; Ozburn et al., 2015), unlike the ubiquitous
expression of its functional homolog CLOCK. Notably,
while CLOCK seems to play a role in regulating reward
through its expression in the VTA, NPAS2 has been shown
to regulate reward through its expression in the NAc. The use
of Npas2 mutant mice or knockdown of Npas2 in the NAc
decreases cocaine conditioned place preference through its
expression in D1 MSNs (Ozburn et al., 2015; Parekh et al.,
2019; Becker-Krail et al., 2022b); Npas2 mutant mice actually
show significant increases in locomotor response to novelty,
exploratory drive, cocaine self-administration and self-
administration motivation (Ozburn et al., 2017; DePoy
et al., 2020). In addition to its enriched expression in the
D1 MSNs of the NAc, this disrupted reward regulation can also
be attributed to NPAS2’s transcriptional regulation of reward-
related transcripts and downstream regulation of excitatory
synaptic transmission and plasticity (Parekh et al., 2019;
Becker-Krail et al., 2022b). In addition to NPAS2, loss of
function or decreased expression of other molecular clock
proteins in the NAc (e.g., CLOCK, PER, CRY, and REV-
ERBα) have also been shown to directly alter a whole range
of behaviors, including reward, anxiety, cognitive function,
stress-susceptibility, mood and depressive-like behaviors (De
Bundel et al., 2013; Spencer et al., 2013; Landgraf et al., 2016a;
Parekh et al., 2018; Zhao and Gammie, 2018; Porcu et al.,
2020). Most notably, circadian molecular clock function
specifically in NAc astrocytes is also critical for NAc
function and reward regulation. In addition to NAc
astrocytes exhibiting robust transcriptome-wide rhythms,
mice with a loss of NAc astrocyte molecular clock function
exhibit disrupted diurnal variation in reward behavior driven
by increased light-phase locomotor response to novelty,
exploratory drive, and food self-administration and

motivation (Becker-Krail et al., 2022a). Alongside these
behavioral effects, loss of NAc astrocyte molecular clock
function also disrupts metabolic homeostasis in the NAc
and alter glutamatergic synaptic transmission onto
neighboring MSNs (Becker-Krail et al., 2022a). In addition
to regulating reward-related behavior, altering but not
disrupting NAc glial molecular clock function (i.e., Per2
deletion) is sufficient to alter mood-related behavior
through reducing behavioral despair (Martini et al., 2021).
Finally, although preclinical findings suggest disrupted NAc
molecular rhythms are associated with altered reward and drug
abuse, whether molecular rhythms are disrupted in brains of
people with SUD is largely understudied. In a preliminary
report using human post-mortem NAc tissue from healthy
donors and individuals previously diagnosed with opioid use
disorder, total RNA sequencing analysis of the transcriptome
was organized by time-of-death and uncovered robust
molecular rhythms in the NAc that were significantly
altered in those with opioid use disorder (Xue et al., 2022).
Though it is unclear what functional role these rhythm
alterations contributed to the development of the donor’s
opioid use disorder, this is some of the first evidence in
humans to suggest altered NAc molecular rhythms are
associated with SUDs.

Interestingly, in addition to altering rhythmic function of the
VTA and NAc, some evidence suggests substances of abuse may
even generate circadian rhythms independent of the SCN. In
rodents, exposure to methamphetamine, a widely-abused illicit
psychostimulant, has been shown to induce robust circadian
rhythms in locomotor activity (Honma et al., 1987). In this
original study, SCN-lesioned rats were given
methamphetamine in their drinking water across a range of
concentrations and their locomotor activity was monitored.
Strikingly, exposure to methamphetamine manifested a robust
locomotor activity rhythm that was independent of the SCN
central pacemaker (Honma et al., 1987). This methamphetamine-
sensitive circadian oscillator (MASCO) has not only been shown
to be independent of the SCN (Honma et al., 1987; Tataroglu
et al., 2006; Honma and Honma, 2009), but may also be
independent of the canonical circadian molecular clock
mechanism, in that multiple clock gene knock-out mice still
show methamphetamine induced rhythms in locomotor
activity (Mohawk et al., 2009). Though potentially not
mediated by the molecular clock, clock gene rhythms in extra-
SCN regions do appear to correlate with methamphetamine
induced behavioral rhythms and are desynchronized from
SCN driven rhythms (Masubuchi et al., 2000; Natsubori et al.,
2013) While the exact mechanisms are still unknown, this
MASCO may be a derivative of dopaminergic ultradian
oscillator (DUO) rhythms, whereby ultradian rhythms in
locomotor activity (~4 h) undergo period-lengthening to ~24 h
via a DAT and/or dopamine-mediated mechanism (Blum et al.,
2014). Notably, the exact origin of this extra-SCN MASCO still
remains to be determined. Given that methamphetamine
primarily acts on dopamine neurons in the VTA to drive
increased dopamine release and reduced uptake in the NAc, it
is likely the mesolimbic system is involved in the MASCO.
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However, future studies should integrate the more recent
circadian work in the VTA and NAc to specifically test a
potential role for the mesolimbic system in MASCO
manifested rhythms.

Taken together, the above studies not only highlight the
presence of a circadian time-keeping system in the VTA and
NAc, but also underscore the functional importance of an intact
circadian molecular clock for the regulation of reward-processing
and reward-related behaviors. Furthermore, these studies point to
a potential mechanism by which circadian molecular clock
disruption may drive drug abuse and eventual SUD
development. However, given that most of the preclinical
literature utilized molecular clock genetic mouse models and/
or viral mediated-knock down of circadian molecular clock
proteins to investigate circadian rhythm disruption, more
translational models are needed in the study of circadian
rhythms and reward-regulation. For example, exposure to light
at night (LAN) has become increasingly pervasive with the advent
of modern lighting, smart devices, and night shiftwork. Notably,
in mice, LAN not only disrupts circadian rhythms, but also alters
metabolism, immune function, stress, anxiety-like behavior, and
mood-related behaviors (Fonken et al., 2010; Bedrosian et al.,
2013; Fonken et al., 2013; Fonken and Nelson, 2014; Russart and
Nelson, 2018; Walker et al., 2020a, Walker et al., 2020b;
Bumgarner and Nelson, 2021, Walker et al., 2021). However,
more translational models of circadian rhythm disruption such as
LAN, or even social jet lag and shift work (Wittmann et al., 2006;
Barclay et al., 2012; Opperhuizen et al., 2015; Haraguchi et al.,
2021; Oneda et al., 2022), have been heavily underutilized in the
study of circadian rhythm disruption and drug abuse, especially
in the context of VTA and NAc circadian function. Future studies
would benefit from utilizing these models to understand how
unhealthy light practices (e.g., LAN, social jet lag, night shift
work, etc.) not only affects circadian rhythms globally, but also
how they specifically affect VTA and NAc function as they relate
to drug abuse and vulnerability to develop SUDs.

CONCLUSION

Though the SCNwas considered to be the only central pacemaker
or clock in the brains of mammals, emerging evidence suggests
many extra-SCN circadian oscillators exist in the brain to drive
rhythms in physiology and behavior (Begemann et al., 2020).
Importantly, for a region to be considered an extra-SCN circadian
oscillator, the region must 1) exhibit endogenous, self-sustaining,
near 24 h rhythms that persist in the absence of environmental
cycles and in isolation from all other tissues (e.g., ex vivo slice
PER2:LUC rhythms), 2) be cable of being entrained (e.g.,
zeitgebers such as light, drugs of abuse, and other rewards), 3)
be capable of communicating or transducing temporal
information downstream, and 4) be temperature compensating
or unaffected by temperature changes, though less relevant for
homothermic animals like mammals with stable internal brain

and body temperatures. (Guilding and Piggins, 2007). Following
the identification of the retina as the first true extra-SCN
oscillator (Tosini and Menaker, 1996), this opened the door to
investigating oscillatory potential in regions across the entire
brain (Begemann et al., 2020). In this review, we presented the
most recent evidence in support of the VTA and NAc as extra-
SCN circadian oscillators. In summary, the VTA and NAc both
exhibit highly robust 24-h rhythms in function,
electrophysiological activity, molecular clock function, and
even transcriptome-wide rhythms. Notably, molecular clock
function as measured by ex vivo PER2:LUC bioluminescent
rhythms illustrates the VTA and NAc can sustain rhythms
even in the absence of environmental cycles or input from
other tissues, albeit for far fewer cycles than the SCN though.
Moreover, rhythms of both the VTA and NAc are capable of
being entrained, even by drugs of abuse or other rewarding
stimuli. Finally, both the VTA and NAc have been shown to
convey circadian information downstream and even directly
affect circadian rhythms, with the VTA directly affecting
photic entrainment and the NAc bidirectionally regulating
sleep/wake. Not only do the VTA and NAc have intrinsic
circadian oscillatory properties, but also extensive preclinical
data suggests this circadian function is indeed integral to
reward regulation and reward-related behaviors. Taken
together, this review supports the VTA and NAc being
classified as extra-SCN circadian oscillators, at least as semi-
autonomous oscillators. However, further research is needed into
characterizing the VTA and NAc as circadian oscillators in a cell-
type-specific manner and through using cutting-edge genetic
tracing tools. Additional studies should also further investigate
1) the relationship between the VTA, NAc and SCN as it relates to
timekeeping, 2) where the VTA and NAc sit among the
hierarchical multi-oscillatory network, and 3) how altogether
these interactions facilitate reward and/or may go awry in
SUDs. Such studies will provide invaluable information in the
pursuit of novel therapeutic targets and the development of much
needed new treatment options for SUDs.
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