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Abstract: Coronavirus disease 2019 (COVID-19), which has recently emerged as a global pandemic,
has caused a serious economic crisis due to the social disconnection and physical distancing in
human society. To rapidly respond to the emergence of new diseases, a reliable in vitro model needs
to be established expeditiously for the identification of appropriate therapeutic agents. Such models
can be of great help in validating the pathological behavior of pathogens and therapeutic agents.
Recently, in vitro models representing human organs and tissues and biological functions have been
developed based on high-precision 3D bioprinting. In this paper, we delineate an in-depth assessment
of the recently developed 3D bioprinting technology and bioinks. In particular, we discuss the latest
achievements and future aspects of the use of 3D bioprinting for in vitro modeling.

Keywords: 3D bioprinting; in vitro model; hydrogel; bioink; 3D cell printing; tissue engineering

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated coron-
avirus disease 2019 (COVID-19), has recently become a global pandemic that caused a
serious economic crisis due to physical distancing and social disconnection [1]. Despite
the urgent need to develop therapeutics for COVID-19 infection, no treatment has been
developed to date due to a lack of sufficient knowledge about the emergence of new
pathogens [1,2]. Moreover, as new pathogens (SARS-CoV, MERS-CoV) continue to emerge,
appropriate models are needed to understand the disease pathology and to screen potential
therapeutic agents efficiently [3]. Conventional models for drug validation mainly use
animals. However, the development of animal models often involves long time periods,
high costs, and are not useful for human applications due to species differences [4–6]. In
addition, growing interest in animal ethics calls for alternatives to animal models. In 2013,
the European Union completely banned animal testing in the cosmetics industry [7].

Recently, in vitro models that represent the physiologically and functionally relevant
environment of human organs/tissues have been developed as an alternative to conven-
tional animal models [8,9]. An in vitro model, by implementing similar functions and
characteristics of human organs/tissues, can be used as a platform to test the performance
and side effects of new drugs and cosmetics [10–12]. Moreover, since these are manu-
factured using human cells, they can overcome the issue of species barrier [13]. In vitro
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models can accelerate cell maturation and represent the function of native organs/tissues
by implementing physical and mechanical properties such as microfluidic flow, pulse, and
electrical stimulation of human organs/tissues [14–17]. To date, various in vitro models of
the eyes [18], kidneys [9], skin [19], heart [20], and liver [21] have been actively developed.
This study provides a review of recent bioprinting technologies and bioinks and their
applications in the fabrication of in vitro models.

2. Commercialized In Vitro Models
2.1. Market Analysis of In Vitro Models

The in vitro model platform market is a nascent one (due to which the market analysis
differs per each research institution) and one with a high compounded annual growth
rate (CAGR). The total in vitro model market size is estimated to be USD 40–50 million
(CAGR: 36.6%), with liver-on-a-chip (CAGR: 43.5%), kidney-on-a-chip (CAGR: 38.1%),
lung-on-a-chip (CAGR: 30.8%), and heart-on-a-chip (CAGR 34.0%) representing the main
market segments [22].

The market size of the in vitro model by region is in the order of North America >
Europe > Asia. As of 2020, the North American market is estimated at USD 19 million
(50.0%, CAGR 43.5%), the European market at USD 7.9 million (20.8%, CAGR 38.1%), and
the Asian market at USD 5.5 million (14.4%, CAGR 30.8%) [22].

2.2. Companies and In Vitro Models in the Market

Several companies are active in the market of in vitro tissue models, using varying
technological methods. The majority of the companies use microfluidic technology, and
others provide physical or biochemical tissue environments with 3D printing technology
or bioink. The list of the companies is summarized in Table 1.

Mimetas (founders: Jos Joore, Paul Vulto, and Thomas Hankemeier), is one of the
leading companies in the in vitro model market. The core technology of this company
provides over 100 devices in one platform, which is a very high number for an in vitro
platform. The major product, OrganoPlateTM, is a 96-independent cell culture platform
based on a 384-well-plate. This platform does not include the 3D bioprinting technology,
but provides a 3D cell culture environment and offers compatibility with the existing
analysis equipment.

Emulate (founder: Donald Ingber), which is based on a highly developed technology,
provides various in vitro models, accessories, analysis services, and protocols. Their device
contains a cyclic stretch and pneumatic controller for mimicking the environment of the
tissue. Kidneys, liver, intestine, and lungs are the main target tissues, and the tissue
platform is designed to provide a culture module. Imaging can also be conducted using
their imaging adapter.

CN Bio (founder: Linda G Griffith), the liver in vitro model-based company, provides
a liver platform, NASH (non-alcoholic fatty liver) model, and toxicity testing services. The
multi-well cell culture plate was specially designed for a 3D culture environment. Their
in vitro model contains a membrane-based 3D environment and fluid circulation even
though their platform is based on Transwell®.

TissUse (founder: Uwe Marx), a Germany-based company, developed an in vitro
model platform that can emulate biological environments such as the intestine, lung, skin,
or liver. In addition, their platform is designed for the multi-organ model. Four organs
were demonstrated on one platform over 28 days with a single device control.

Organovo (founders: Gaber Forgac, Keith Murphy), a NASDAQ listed company,
is the most famous in the 3D bioprinting field, with collaborations with several global
pharmaceutical and cosmetic companies. Organovo focuses on developing 3D human
tissues based on their patented 3D printing system NovoGen Bioprinter®. Based on this
3D technology, their platform provides a strong advantage as a result of mimicking the
physical environment of the tissue.
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Table 1. Summary of the companies that provide in vitro models and their technical production methods with strengths
and weaknesses.

Company Product Name Country Strength Weakness Scientific Ref

Mimetas OrganoPlateTM Netherlands
Multiple assays in one plate, able to
apply various cell types (neurons,
hepatocytes, endothelial cell, etc.)

High cell density
(108 cells/cm3), organ
specific biochemical
environment, cannot

provide a one
directional flow

[23]

Emulate Liver-Chip USA
Cyclic stretch and pneumatic

controller to mimic the environment
of the tissue

No 3D environment [24]

CN Bio PhysioMimix TM UK
Membrane based 3D environment,

transwell plate but has a fluid
circulation

Less number of assays in
one plate [25]

TissUse HUMIMIC
CHIP Germany Multi-organ platform Less number of assays in

one plate [26]

Organovo
ExVive3D TM,

NovoGen
Bioprinter®

USA
3D bioprinting technology (mimic the

physical environment of the
tissue well)

No microfluidic condition [27]

2.3. Technologies Required in the Development of In Vitro Models

To fabricate an in vitro model similar to a human tissue/organ, it is essential to cre-
ate an intrinsic environment and architecture that offers efficient physical and chemical
simulation, and the complex composition of various cells. Recent advances in 3D bio-
printing technology have facilitated the development of functional tissues through the
organization of various cells and biomaterials within physiologically relevant environments
(Figure 1) [28–30]. Various 3D bioprinting techniques have been developed to fabricate
3D tissue constructs, including light-assisted, droplet-based, and extrusion-based print-
ing systems that use computer-aided design (CAD) and computer-aided manufacturing
(CAM) [10].
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Figure 1. Manufacture of in vitro test models with bioinks and bioprinting.

Bioink, one of the key elements of 3D bioprinting technology, is a cell-encapsulating
material for bioprinting [11]. Most bioinks are made of hydrogel, which serves to improve
the precision of bioprinting and the viability of cells. To build a 3D tissue structure with
high fidelity, the bioink should provide adequate printability (e.g., viscosity, mechanical
properties, and cross-linking) [11]. Depending on the printing method, bioinks may
have photocurable properties or deposition abilities, which can produce high-precision
3D structures. Notably, bioink also provides an extracellular matrix for the printed cells,
affecting cell proliferation, differentiation, and maturation, creating organ/tissue analogues
with biofunctionality [30]. It is important to ensure the excellent printability and suitable
biological properties of bioinks. The biofabrication window is based on the concept of
correlation between the printability and biological properties of bioinks [31,32]. Bioinks
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with high printability generally have a high viscosity or crosslinking density, which can
lead to reduced biological properties. Conversely, bioinks with good biofunctionality (i.e.,
excellent cell proliferation, differentiation, and maturation) can have low printability. The
3D tissue structure needs to maintain its architecture to secure the biological activity of
the inner cells. Thus, the selection of bioink and the characteristics of the biofabrication
window should be carefully considered.

3. Technologies for Bioprinting

Bioprinting has now evolved into an effective technology for preparing complex
biological structures with biomaterials owing to the advancement of precise cell and
ECM positioning. Bioprinting technology can be divided into three different methods:
Micro-extrusion, droplet-based, and laser-assisted printing methods (Table 2).

Table 2. Characteristics of various bioprinting methods.

Bioprinting Methods Characteristics

Micro-extrusion

•Most commonly produced by the micro-extrusion method that prints directly onto the substrate
using a micro-extrusion head.
•By using physical force, biological materials and cells are selectively sprayed to the desired location
through a nozzle.

Droplet-based
•Print a controlled volume (fine droplets) of bioink containing cells at the location to be printed.
•Droplet-based bioprinting can be categorized in thermal, piezoelectric, magnetic-assisted, and
acoustic bioprinting.

Laser-assisted

•In photo-curing printing, biological structures are patterned and printed by the laser-guided
forward transfer.
•Stereolithography generally uses a solidification method of liquid photopolymers by laser-induced
photopolymerization at ultraviolet, infrared, or visible wavelengths.

3.1. Micro-Extrusion Printing Method

Micro-extrusion is the most commonly used method for printing 3D biological struc-
tures, wherein the print is essentially deposited on the substrate by a micro-extrusion
head. In this printing, physical forces such as pneumatic or mechanical pressure can be
used to selectively distribute biomaterials and cells to desired locations through nozzles
and needles [33]. Heterogeneous and complex structures can be prepared by applying a
micro-extrusion-based system equipped with multiple printing heads containing different
cells/bioinks [34,35]. When using multiple heads, parameters such as nozzle position and
spacing, printing speed, blowing force, and the nozzle diameter must be considered. In
addition, sufficient viscosity of the bioink is required to maintain the shape of the struc-
ture. Although bioinks of varying viscosities can be deposited through micro-extrusion,
those with higher viscosity are useful in preventing the collapse of printed structures and
ensuring high-resolution printing.

3.2. Droplet-Based Printing Method

The droplet-based printing method allows a controlled volume (droplet) of the cell
suspension liquid to be delivered to a predefined location. When the liquid passes through
the printing nozzle, water droplets can be created from the microbubble formation using
electric heating nozzles [36], piezoelectric actuators [37], acoustic actuators [38], and mag-
netic fields [39]. The electric heating printing method has a high printing speed and low
cost, but the cells are exposed to heat, and the uneven droplet size is a disadvantage to
reckon [33]. Printing with piezoelectric actuators can solve the aforementioned problems of
electric heating, but the 15–25 kHz frequency used for piezoelectric actuators can cause cell
membrane damage and lysis [40]. Droplet printing with the acoustic method uses a gentle
acoustic field generated by an acoustic actuator from a bioink pool. Using this method, cells
are not exposed to stress, however, acoustic fields are unstable, leading to poor printing
results [38]. Droplets can also be printed using magnetic fields. A micro-valve module
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consists of a solenoid coil and a plunger, which blocks the bioink flow before applying the
magnetic field. By applying voltage to the solenoid, a magnetic field is produced, and the
plunger goes up for bioink extrusion. The droplet size can be controlled by adjusting the
voltage [38].

Droplet-based printing can deliver cell droplets with much more accurate resolution
than micro-extrusion printing, but large-scale biological structures cannot be printed. De-
spite the drawback, droplet-based bioprinting is likely to narrow down complex biological
structures owing to its advantages of high-resolution droplet printing.

3.3. Laser-Assisted Printing Method

The laser-assisted printing system applies a laser-guided front transfer to prepare
biological structures [41]. This laser-assisted printing can overcome several limitations
associated with the micro-extrusion printing and droplet-based printing methods. For
example, laser-assisted printing allows for droplet printing of the highest resolution owing
to laser interference. The typical mechanism of laser-assisted printing is as follows: (1)
The laser is focused onto a laser-absorbing support layer, the so-called ribbon (2) pulse
of the laser hits the cell-laden hydrogel which is beneath the ribbon, and (3) cell droplets
are printed onto the receiving substrate [42,43]. The resolution of laser-assisted printing is
affected by several factors, such as the laser power, the design of the biological layer, and
the interference between the ribbon and the reception. Therefore, laser-assisted printing
offers the highest resolution, albeit with the need to adjust many factors, similar to other
printing methods.

Stereolithography (SLA) is another type of laser-assisted printing method. The basic
mechanism of SLA is to coagulate a liquid photopolymer by photopolymerization with a
laser. Ultraviolet (UV), infrared (IR), or visible light is commonly used in the polymerization
process. Laser pulses can solidify materials and produce solidified structures in reservoirs,
which are combinations of bio-inks, cells, and photoinitiators. Finally, the 3D patterned
solidified layers can be stacked to prepare 3D biological structures [44].

4. Technologies for Bioinks

Bioinks enable the fabrication of 3D cell structures, which have appropriate mechan-
ical and rheological properties to maintain their structural stability. They also provide a
suitable extracellular matrix to induce cell adhesion, proliferation, and differentiation after
fabrication [45,46]. Among the several types of bioinks, water-soluble polymers known
as hydrogels are attractive candidate materials for building cell-laden 3D structures by
bioprinting technologies due to their relatively good biocompatibility and also biodegrad-
ability. Their high water content can provide a promising environment to encapsulate cells
with freely exchanging nutrients, oxygen, and other supplements to maintain their viability
and functionality [47–49]. Natural polymers are comprised of short repeating units that
can induce non-covalent bonding (such as hydrogen bonding and π–π interactions). Due
to this reversible interaction between inter and intra polymer chains, they usually show
a shear-thinning behavior [50]. Typically, a mixture of polymer solution as bioink and
desired cells to load cross-links or polymerizes by relatively cell-friendly reagent and con-
dition [51–54]. Appropriate materials should be carefully chosen for the desired purpose,
since each material for the hydrogel bioink has intrinsic characteristics. Blended polymers
have been used to complement the characteristics of each polymer material to improve
printability and mechanical, physicochemical, and biological properties of the bioink [55].
In particular, photo-cross-linkable polymers (e.g., PEGDA (poly(ethylene glycol) diacrylate)
and GELMA (gelatin methacrylate)) are broadly used as solidifiers, and contribute to the
solidification of blended bioinks using UV light [56,57]. Moreover, several additives (e.g.,
graphene oxides, hydroxyapatite, nano-cellulose) are added as supplements into polymer
bioinks to improve their specific functionality (e.g., fidelity, differentiation) [58–60]. In this
section, we described the use of polymer-based hydrogel materials as bioinks (Table 3).
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Table 3. Natural and synthetic polymer candidates as bioinks in biomedical applications.

Type Material Advantage Disadvantage Typical
Cross-Linking

Natural Alginate Simple gelation
Good stability

Less cell interaction
Less biodegradation Ionic

Gelatin Low antigenicity
Low cost

Less stable
Low mechanical properties UV

Hyaluronic acid Good cell interaction
Good angiogenesis

Rapid degradation
Poor mechanical stability UV

Silk fibroin Slow degradation
Good mechanical properties

Allergic response
Less cell interaction Physical

Collagen Good cell interaction Less stability
Low mechanical properties Thermal

Fibrin Good angiogenesis
Fast gelation

Poor mechanical stability
Easily clogs Enzymatic

Decellularized extracellular
matrix (dECM)

Similar to native ECM
composition and structure

Low shape fidelity
Low mechanical properties Thermal

Agarose Simple gelation Less stability
Low mechanical properties Thermal

Synthetic Poly ethylene glycol (PEG) Reproducibility
Easy chemical modification

Low cell interaction
Poor mechanical strength UV

Polysiloxane Good mechanical properties
Slow degradation

Low cell interaction
Relatively expensive UV

4.1. Natural Polymers
4.1.1. Alginate

Alginate is refined from brown seaweed, which is one of the most preferable natural
hydrogels owing to its low toxicity, relatively low price, and applicability for various
printing techniques [61,62]. In particular, the alginate solution can easily solidify upon
mixing with divalent ions (e.g., Ca2+, Sr2+, and Ba2+) without the need for chemical reagents
or the production of byproducts during cross-linking [41,63]. Cell-laden alginate based
bioinks with the calcium solution were utilized to fabricate 3D structures by ionic cross-
linking before or after printing [64–66]. Usually, alginate has been blended with other
polymers to ensure its biological functionality [67–69]. Another approach is the introduction
of bioactive molecules (e.g., peptides) into the alginate backbone before printing to improve
its functionality [70,71]. In addition, to improve mechanical properties and structural
stability, chemical cross-linking, such as methacrylation and thiolation, is also used [65,72].

4.1.2. Gelatin

Gelatin is derived from collagen via acidic (type A) or basic (type B) hydrolysis, which
is relatively easy to obtain in large quantities from animal sources (e.g., bones, tendons, or
skins) compared to pure collagen [73]. Gelatin has a thermo-reversible gelation behavior
against the surrounding temperature, which is particularly attractive as a bioink. Due to this
property, the cell-laden gelatin can easily build up the desired 3D structure by regulating the
temperature and concentration [74,75]. In addition, gelatin has cell responsive properties
such as the RGD peptide for cell binding motif and matrix metalloproteinase (MMP)
recognition sequences for degradation [76,77]. However, while gelatin is advantageous
for bioprinting, it offers insufficient structural stability due to its low mechanical strength
and temperature sensitivity. Chemical cross-linking (e.g., methacrylation, resulting in
cross-linking via UV) can overcome these limitations and support fabricated features for a
long time under various physiological conditions [78–80].
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4.1.3. Hyaluronic Acid

Hyaluronic acid, abundant in cartilage, connective tissues, and synovial fluid in our
body, has excellent rheological and biochemical properties, and is an attractive material
for bioink [81,82]. In particular, hyaluronic acid has been used for cartilage tissue regen-
eration, since it has the potential to induce chondrogenic differentiation due to the CD44
interaction with laden cells [83,84]. The use of hyaluronic acid as a bioink requires chemical
modifications and/or mixing with other polymer materials, resulting in solidification of
the fabricated 3D structure. Typical chemical modifications of hyaluronic acid for use as
bioinks are methacrylation and thiolation to solidify the printed polymer solution [85,86].
In addition, hyaluronic acid has been mixed with other polymer materials (e.g., gelatin and
β-cyclodextrin) to overcome the limitations of a single hyaluronic acid application [86,87].

4.1.4. Silk Fibroin

Silk fibroin, as a biomaterial from several animal sources, has shown promising char-
acteristics due to its superior mechanical properties and biocompatibility [88]. Although
it has attractive properties as a biomaterial, there is a limitation to its use as a bioink due
to the β-sheet formation by shear stress during printing [89]. To overcome this limitation,
some supplements (e.g., glycerol, silica) and/or polymer materials (e.g., alginate, PEG) are
added to silk fibroin in order to improve its viscoelastic and physical properties for print-
ing [90–92]. Sibce silk fibroin exhibits a lack of interaction with typical adherent cells [93],
other polymers (e.g., collagen, dECM) have been mixed with silk fibroin to increase its
cellular activity and tissue formation capability [94,95].

4.1.5. Collagen

Collagen, an abundant component in the body (approximately 25% of the total dry
weight of mammals), has extremely good biological properties (e.g., cellular interaction and
functional expression) [96,97]. Therefore, numerous tissue engineering and drug delivery
applications have been reported for collagen [98,99]. However, pure collagen as a bioink
has intrinsic limitations such as a lack of suitable mechanical properties and structural
stability after bioprinting due to slow cross-linking by a shift of temperature to 37 ◦C [100].
To overcome this limitation, collagen has been incorporated with a different type of polymer
(e.g., hyaluronic acid, alginate) [101,102]. Another promising approach for collagen as a
bioink is UV cross-linking to solidify bioprinting structures via methacrylation [103].

4.1.6. Fibrin

Fibrin, an essential protein involved in blood clotting and wound healing, has been
utilized as a scaffold for tissue engineering due to its suitable biological properties (e.g.,
cell adhesion) by fibrinogen and thrombin mixing under suitable physiological condi-
tions [104,105]. Fibrin has also been employed as a protein carrier for long-term drug
delivery through its heparin-binding domains and growth factor affinity [106,107]. How-
ever, fibrin has insufficient mechanical strength and long-term instability in cells [108]. To
overcome these drawbacks, fibrin is generally incorporated with other polymer materials
such as gelatin, alginate, silk fibroin, and collagen to improve its mechanical properties
and printability [109,110].

4.1.7. Decellularized Extracellular Matrix (dECM)

Decellularized extracellular matrix (dECM), with cells removed by chemical reagents,
physical and mechanical processes, can mimic the target tissue-specific environment with
an original chemical composition and structural intricacy [111–113]. Although dECM can
generate a 3D structure via a thermogelling mechanism, the sole use of dECM is difficult
due to its low mechanical stability. As a result, the solubilized dECM is generally blended
with other polymers or printed together with other structural supporting materials [92,114].
The dECM as a bioink has the potential to provide an understanding of how cells work in
native tissue mimetic ECM with regard to cellular activity and tissue regeneration.
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4.1.8. Agarose

Agarose is generally used in the biochemical analysis for DNA and protein separation
during electrophoresis. It has also been broadly utilized as a hydrogel material for biomed-
ical applications, due to its biocompatibility, abundance, and simple gelation behavior
resulting from temperature shifts [115,116]. To improve its printability and/or interaction
with cells, agarose has been mixed with other bioactive polymers and molecules (e.g.,
collagen, fibrin, alginate) [117,118]. Nevertheless, the mechanical properties of agarose are
not sufficient for long-term cell culture and in vivo application. To overcome these intrinsic
properties, agarose has been blended with other materials or introduced via an additional
cross-linking mechanism [119].

4.2. Synthetic Polymers
4.2.1. Poly(ethylene glycol)

Poly(ethylene glycol) (PEG) is typically regarded as a relatively safe synthetic polymer,
for which physical and chemical properties such as the chain length and structure can be
easily controlled. It also has strong mechanical properties, non-cytotoxicity (depending
on molecular weight), and non-immunogenicity as a biomaterial. However, PEG on its
own cannot form a hydrogel structure with a shift in temperature or ionic cross-linking,
similar to natural polymers. In addition, there is no interaction between PEG and cells
to induce adhesion and other cellular activities. Therefore, PEG needs to be conjugated
with functional groups (e.g., methacrylation) and/or accompany other functional polymer
materials [120,121]. Pluronic® F127 (PF127), a commercial block copolymer consisting of
PEG and poly(propylene glycol) (PPG), has a thermo-reversible gelation behavior, resulting
in having it utilized more than pure PEG as a bioink for tissue regeneration [122–124].

4.2.2. Polysiloxane

Silicone, a common name for polysiloxane, is an elastic synthetic polymer that has
been extensively utilized in the clinical field owing to its biocompatibility and mechan-
ical durability [125]. Polysiloxane can easily engineer processing and casting at a high
molecular weight and fabricate solid structures by simply mixing with a curing agent (e.g.,
platinum) [126]. Similar to other polymers, silicone can also be applied to a UV-curable
system to form a hydrogel structure via methacrylation or thiolation. Such a structure cures
relatively fast and shows low toxicity, and is suitable for biomedical applications such as
bioink. Thus, polysiloxane can easily regulate photo-cross-linking reactions and fabricate
3D structures with good surface properties and fidelity [127,128].

5. Application to In Vitro Models
5.1. Respiratory System

The respiratory system consists of specialized parts for breathing to deliver oxygen
to the blood. This system directly interfaces with the external environment, such as air.
In addition, the respiratory tract is one of the representative organs that develop local
defensive barriers to prevent the inflow of foreign substances. Therefore, the development
of an in vitro model of the human respiratory system is essential to explore advanced
medicine, particularly for the treatment of respiratory diseases.

To recapitulate the airway tissue structure consisting of an epithelium sitting on a
basement of the vascular network, an epithelium-assembled vascular bed system was 3D
bioprinted (Figure 2a) [129]. In this model, a cylindrical container with a porous bottom was
covered with a tracheal mucosa decellularized extracellular matrix (tmdECM) to accelerate
epithelial differentiation. In addition, 3D bioprinting was applied to a construct containing
endothelial cells and fibroblasts mixed with tmdECM to induce vascular network formation.
The epithelium monolayered container was then assembled into the construct of the
vascular network. The resulting bioprinted airway-on-a-chip showed a more tighter
junction formation and more mucus secretion as compared to the other airway-on-a-
chip printed with collagen, which has been widely used as a matrix for 3D cell culture.
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Consequently, the airway-on-a-chip biorpinted with tmdECM was a better representative
of the physiological features of the defense system of the airway epithelial barrier.
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Figure 2. The 3D bioprinted in vitro models. (a) Airway-on-a-chip. The red-lined inset images
indicate the formations of (left) epithelium with functional goblet cells and (right) endothelium in
the chip. Adapted from Park et al. [129]. (b) Liver-on-a-chip. The red-lined inset image indicates
a monolayer of red-dyed cells onto a bioink containing green-dyed cells. This arrangement was
applied in the co-culture of endothelial cells (monolayer on the top) and hepatocytes (encapsulated
in the bioink at the lower part). Adapted from Lee et al. [34]. (c) Bioprinted cardiac muscle. The
red-lined inset image indicates the maturation of the cardiac muscle in the system. Adapted from Das
et al. [20]. (d) Perfuable blood vessel-on-a-chip. Adapted from Gao et al. [130]. (e) Renal proximal
tubule-on-a-chip. The red-lined inset images show a proximal tubule bilayered with renal epithelium
(outer layer, green) and endothelium (inner layer, red). Adapted from Singh et al. [9].

5.2. Digestive System

The digestive system, including many internal organs of the human body, is the main
tract influenced by drugs administered through the oral route. In particular, the liver is
a representative organ responsible for metabolism and detoxification. Therefore, in new
drug development processes, the liver is frequently a subject of investigation to understand
how the drug is metabolized and the resultant hepatotoxic effect.

As the liver environment includes multiple types of cells with different functions,
Lee et al. applied a multi-material printing process to construct an in vitro liver model
composed of various kinds of cells in a chip structure (Figure 2b). By alternately depositing
different materials on demand, the entire in vitro liver model can be fabricated through
a one-step process. The housing was fabricated with polycaprolactone, and liver tissue
was printed with HepG2-laden collagen bioink and HUVEC-laden gelatin bioink. The
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bioprinted liver model showed higher hepatocyte viability and albumin/urea secretion
levels [34].

5.3. Cardiovascular System

The cardiovascular system is responsible for transporting nutrients, gases, hormones,
cytokines, and cells through a blood stream. In this system, as the heart and vascu-
lar/lymphatic vessels are connected in a closed loop, the continuous and periodic contrac-
tion of cardiac muscle induces pressure to drive blood circulation. Therefore, many soluble
agents and drugs are injected intravenously to deliver the substances to the target site
through the transportation system of the body. Otherwise, drugs are administered orally,
are metabolized, and the byproducts circulate through the vessels. Hence, the interaction
between the cardiovascular system and the drug plays a crucial role in pharmacokinetic
and pharmacodynamic studies. In addition, as the cardiovascular system is constantly
exposed to circulating drugs, the cardiotoxicity evaluation is an essential process in new
drug development. Thus, an in vitro model of the cardiovascular system is highly valuable
for establishing a reliable drug testing platform.

To monitor the contraction of the cardiac muscle cultured in vitro, a flexible and
biocompatible strain gauge was 3D printed as the bottom substrate of a system containing
multi-chambers. In this system, cardiac muscle monolayers were cultured on the strain
gauges that exhibited a periodic contraction following differentiation and maturation. The
contractile force readout was collected in a real-time manner [16,131]. In addition, Das et al.
demonstrated the promising effect of a heart-derived decellularized ECM (hdECM) bioink
on accelerating the maturation of cardiac muscle tissue constructs in vitro (Figure 2c) [20].
Using a 3D bioprinting process, an in vitro model of the cardiac muscle was constructed to
allow fixation of the cell-laden hdECM hydrogel on poly(ethylene/vinyl acetate) anchors.
The bioprinted cardiac muscle tissue hung on the anchors showed continuous compaction
over time due to the stretch of muscle cells during tissue maturation. The resulting chip
exhibited a higher level of differentiation markers of cardiac muscle following the use of
the hdECM hydrogel bioink, compared to the use of collagen.

In the 3D bioprinting of the in vitro vessel model, a co-axial nozzle system presented
the construction of vessels with a complete transportation function (Figure 2d) [130]. Via
the application of a water-soluble Pluronic F-127-based hydrogel to a core nozzle and an
endothelial cell-laden vessel-derived dECM bioink to a shell nozzle, a hollow tubule struc-
ture can be extruded in a hydraulic reservoir. The bioprinted vessel showed endothelial
monolayer formation on the luminal surface. In addition, the resulting vessel exhibited
pump-driven fluid circulation, low permeability without leakage, and functionality as
an endothelium barrier for circulating cells, such as platelets and leukocytes. Thus, the
applicability of 3D bioprinting has been demonstrated for the construction of an in vitro
cardiac vessel model that allows the investigation of circulation, as well.

5.4. Renal System

The renal system includes urinary organs and is responsible for the elimination of
waste from the body. In particular, kidneys consist of highly congested vascular capillaries
in the nephron and glomerulus, which are specialized units for the filtration and removal
of toxins. Therefore, the circulating byproducts of drug metabolism frequently affect the
nephron filtration system, and the renal proximal tubule becomes a primary target for
drug-induced toxicity. Hence, the development of an in vitro model of renal tissue has
been a remarkable achievement that drew significant attention.

Homan et al. first employed a 3D bioprinting process to create the intricately winding
structure of the proximal tubule [132]. A winding path was printed with a PF-127 hydrogel
on a pre-cast gelatin-based hydrogel, and then the entire chamber was embedded with a
gelatin-based hydrogel. As the PF-127 hydrogel turns into a liquid state from the solid state
at a low temperature, such as 4 ◦C, while the gelatin hydrogel forms a solid at the chilled
temperature, the PF-127-printed path could be eliminated via a light negative pressure,
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leaving a hollow channel in the low-temperature condition. Finally, the renal proximal
tubular cells were coated on the luminal surface of the channel. The bioprinted renal
tissue model showed morphological and molecular maturation, and also demonstrated
destruction of the renal epithelium barrier following the treatment with cyclosporine A,
a well-known drug of nephrotoxicity. In addition, Lin et al. exhibited the bioprinting
of vessel tubules alongside the printed proximal tubule structure. The co-bioprinted
tubules showed mass transportation across the luminal surfaces, as seen in the native
nephron [133]. Furthermore, the application of the kidney-derived decellularized ECM
(kdECM) bioink to print proximal tubules demonstrated the superior efficacy of kdECM
in inducing functionalities of the renal epithelium barrier, compared to that of collagen
(Figure 2e) [9].

6. Conclusions and Future Aspects

Significant progress has been made in the development of in vitro models using
bioprinting technology. Various types of 3D bioprinting technologies, including droplet-
based, extrusion-based, and light-assisted bioprinting, can be utilized to fabricate in vitro
models that mimic the structural and functional features of human organs and tissues by
positioning cells and bioinks in a spatiotemporal manner. Bioinks, mainly made of hydrogel,
are responsible for the resolution of bioprinting and affect the precision and mechanical
strength of a bioprinted structure [10,32]. Bioinks also encapsulate cells, providing a
microenvironment for cell survival, proliferation, differentiation, and maturation, and
preserve cells from negative exogenous factors that occur during the printing process [31].
To create an in vitro model that exhibits biological functions which are similar to those of
human tissues/organs, it is important to replicate the physical, chemical, and biological
properties of native tissues/organs [14–17].

Thus, the biochemical cues of bioink should be properly modulated. The cellular
microenvironment composed of ECM and soluble factors (e.g., cytokines and growth
factors) guides cell behavior, function, and fate, and has a great influence on tissue regen-
eration [134]. Since the composition of the microenvironment differs based on the tissue
type and location, modulating the specific composition of the bioink for each tissue is
necessary. The decellularization bioink, which has been actively studied in recent years,
has the advantage of using the unique ECM environment of each tissue. However, there
are challenges that need to be addressed, such as the low mechanical properties and poor
deposition ability of the decellularized bioink [135]. Recently, attempts to overcome these
limitations have been made by introducing an additional cross-linking agent [136] or a new
printing method [137] to the dECM bioink.

Securing both tissue regeneration ability and printing ability in bioink simultaneously
is difficult. Tailoring the printing ability requires changing the concentration or cross-
linking density, whereas increasing these parameters can result in a lower biocompatibility.
Therefore, the development of an advanced bioprinting technology is needed to break out
of this traditional biofabrication window.

Recent advances in bioprinting modalities have offered the possibility of addressing
these challenges. The microfluidic-based bioprinting technology enables simultaneous
dispensing of various bioinks and cross-linking agents, ensuring a high shape fidelity of
bioinks [138]. The FRESH technique facilitates the manufacture of 3D volumetric structures
by dispensing a low-viscosity bioink into a gel-based bath [139].

The development of advanced bioinks is also breaking the boundaries of biofabrication
windows. Bioinks with low initial viscosity can tackle low shape fidelity and printability
through various stimuli-responsive hydrogels.

Thermo-responsive hydrogels undergo sol-gel conversion due to the network alter-
ation in response to temperature changes. Various thermo-responsive bioinks such as
gelatin and PF-127 play a major role in the deposition ability of bioinks [140]. These are
added to bioink compositions to improve their deposition capacity, or to print supports
with sacrificial bioinks that help create architecture with overhang structures.
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A shear-responsive bioink is characterized by crosslinking hydrogels using shear
stress. In silk fibroin, the β-sheet transition promotes a self-assembly behavior and hydrogel
formation. Since the β-sheet transition can be induced by shear stress, the application of silk
fibroin properties to bioink has been developed [141]. The advantage of shear-responsive
bioinks is that no additional crosslinking agents are required. Thus, they are cell friendly
and their mechanical strength and viscosity can be controlled spatiotemporally [142].

Photo-responsive hydrogels have the property of changing polymer chains when
stimulated by light. In bioink development, these hydrogels are mainly used for cross-
linking purposes. Photo-responsive bioinks can secure a wide range of biofabrication
windows through changes in light irradiation time and photoinitiator concentration. In
particular, they can overcome the traditional biofabrication window when used with
bioprinting modalities with added light irradiation. Performing UV crosslinking while
printing photocurable bioink through the nozzle can improve the printability of bioink
with low viscosity [143].

Nevertheless, current, single, component hydrogel-based bioinks simultaneously
rarely meet major requirements, including adequate printability and high cellular function-
ality. An effective method to secure a wider biofabrication window may be the development
of multi-component bioinks using the respective advantages of single-component bioinks
(e.g., deposition ability, tissue specificity, cross-linking method, viscosity, etc.) [52].

Through the advanced bioprinting modalities and bioinks, it is possible to manufacture
external structures that can provide physical simulation, and to create a chemical and
biological microenvironment. Recent advanced bioprinted in vitro models effectively
reflect the characteristics of normal and diseased tissue models, and they can therefore
be used to understand the disease mechanism of pathogens and determine the dose
and efficacy of therapeutic agents [8,11,137,144]. In addition, the various advantages of
bioprinting make it useful for the human-on-a-chip development that implements various
organs/tissues (such as heart, liver, lung, intestine, and bone) as one model [144,145].
Through this type of multi-organ modeling, complex drug metabolism, which cannot be
simulated on a single-organ model, can be realized as in an in vivo human environment.
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