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Radiation has long been the standard of care for many types of cancer. It is employed to
locally eradicate tumor cells as well as alter tumor stroma with either curative or palliative
intent. Radiation-induced cell damage is an immunologically active process in which dan-
ger signals are released that stimulate immune cells to phagocytose and present locally
released tumor-associated antigens (TAAs). Recent studies have indicated that radiother-
apy can also alter the phenotype of cancer cells that remain after treatment. These cells
upregulateTAAs as well as markers, including major histocompatibility complex and costim-
ulatory molecules, that make them much more immunostimulatory. As our understanding
of the immunomodulatory effects of radiation has improved, interest in combining this
type of therapy with immune-based therapies for the treatment of cancer has grown.Ther-
apeutic cancer vaccines have been shown to initiate the dynamic process of host immune
system activation, culminating in the recognition of host cancer cells as foreign. The envi-
ronment created after radiotherapy can be exploited by active therapeutic cancer vaccines
in order to achieve further, more robust immune system activation. This review highlights
preclinical studies that have examined the alteration of the tumor microenvironment with
regard to immunostimulatory molecules following different types of radiotherapy, including
external beam radiation, radiolabeled monoclonal antibodies, bone-seeking radionuclides,
and brachytherapy. We also emphasize how combination therapy with a cancer vaccine
can exploit these changes to achieve improved therapeutic benefit. Lastly, we describe
how these laboratory findings are translating into clinical benefit for patients undergoing
combined radiotherapy and cancer vaccination.
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RATIONALE FOR COMBINING RADIATION
AND IMMUNOTHERAPY
Radiation therapy (RT) is an integral component of cancer care.
A recent article in the Journal of Clinical Oncology reported that
the demand for RT during the initial course of cancer treatment
is expected to increase by 22% (from 470,000 patients receiving
RT in 2010 to 575,000 in 2020) as a result of the aging and diver-
sification of the U.S. population (Smith et al., 2010). Depending
on the presentation and site of disease, RT can have either a cura-
tive or palliative intent. In the traditional view, ionizing radiation
causes cancer cell death through irreparable DNA damage, which
results in apoptosis or failure to progress through the cell cycle. An
additional consequence of RT that has sparked significant interest
is its effects on cells not killed by RT and the resulting impact on
the immune system. Here, we review the immunogenic nature of
radiation in preclinical models as well as in the clinic. We also
provide a rationale for combining RT with immunotherapeutic
approaches.

Several studies have shown the various mechanisms by which
RT stimulates the immune system. One vital by-product of
radiation damage to tumors is the exposure of a large amount

of tumor antigens, in the form of necrotic and apoptotic tumor
cells and cellular debris, to the immune system (Melcher et al.,
1999; Chen et al., 2001; Kotera et al., 2001). The increased avail-
ability of released tumor-associated antigens (TAAs) for uptake
by circulating dendritic cells (DCs) and other antigen-presenting
cells (APCs) can result in tumor-specific immune attack. One
report confirmed that irradiating tumors expressing low lev-
els of antigen caused sufficient release of antigen to sensitize
tumor stromal cells to destruction by cytotoxic T lymphocytes
(CTLs; Zhang et al., 2007). In addition to causing the release
of TAAs, RT also creates an inflammatory milieu by inducing
the expression of several proinflammatory cytokines, including
IL-1β and TNF-α (Hallahan et al., 1989; Ishihara et al., 1993;
Hong et al., 1999; Demaria et al., 2005). Increased expression
of these cytokines has been linked to tumor regression, growth
inhibition, and tumor-cell death. Furthermore, upregulation
of major histocompatibility complex (MHC) molecules, cos-
timulatory molecules, adhesion molecules, and death receptors
in tumor cells, surrounding stroma, and vascular endothe-
lium following irradiation can also potentiate CD8+ cytolytic
responses (Friedman, 2002; McBride et al., 2004; Demaria et al.,
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2005; Nesslinger et al., 2007). Similarly, radiation-induced dam-
age can upregulate expression of vascular cell adhesion molecule
1 (VCAM-1) on tumor vessels, thus facilitating T cell migration
(Lugade et al., 2005). Cytokine release by irradiated tumor cells
can also increase T cell infiltration into the tumor microenvi-
ronment (Matsumura et al., 2008). Other reports have focused
on the release of “danger” signals in response to ionizing radi-
ation, which may link initial non-specific immune responses
to the development of specific adaptive immunity (McBride
et al., 2004). Two such signals that can promote antitumor
immune responses after irradiation include the translocation
of calreticulin to the cell surface (Obeid et al., 2007) and the
release of high-mobility group box 1 (HMGB1) by dying tumor
cells, which can activate DCs through Toll-like receptor 4 (Apetoh
et al., 2007).

Although the most common form of RT, external beam
radiation therapy (EBRT), is conventionally administered in frac-
tionated doses, it is unclear what the optimal dose schedule for
EBRT should be when it is combined with immunotherapy. Recent
studies have focused on the importance of the dose and frac-
tionation of EBRT in modulating the immune system in order
to answer this question. As opposed to conventional RT, stereotac-
tic body radiotherapy takes advantage of technological advances
to allow for highly precise administration of ablative doses of RT
to tumors, while avoiding damage to the surrounding organs. Lee
et al. (2009) used a murine model to show that doses of RT (15–
25 Gy ×1 fraction) alone generated robust CD8+ T cell-dependent
immunity that led to tumor reduction, reduced relapse of pri-
mary tumor, and eradication of metastasis in some settings. This
group concluded that the fractionation and dose schedule exam-
ined successfully disrupted physical and immunologic barriers,
introduced danger signals, increased DC cross-presentation of
tumor antigen, and possibly reversed T cell unresponsiveness in
tumor-bearing hosts, leading to the rejection of local and distal
tumors. In a similar study, mice bearing OVA-expressing B16-F0
tumors that were treated with a total dose of 15 Gy of localized
RT delivered in a single fraction had enhanced APC traffick-
ing to draining lymph nodes and greater capability to present
tumor antigens compared to non-irradiated mice. This led to
increased numbers of tumor-specific T cells that secreted IFN-
γ upon peptide stimulation within tumor-draining lymph nodes
and improved lysis of tumor-cell targets (Lugade et al., 2005). A
report by Schaue et al. (2011) not only reinforced the importance
of dose and fractionation, but also highlighted the delicate bal-
ance between the immunostimulatory and immunosuppressive
effects of radiation. In this study, mice bearing B16-OVA murine
melanoma were treated with up to 15 Gy of radiation, given in
various size fractions. Subsequent observation of tumor growth
revealed that after single doses, tumor control increased with the
size of radiation dose, as did the number of tumor-reactive T cells.
However, this was offset at the highest dose by an increase in regu-
latory T cells (Tregs), which are known to suppress tumor-specific
immunity (Nishikawa and Sakaguchi, 2010). Fractionated treat-
ment with medium-size radiation doses of 7.5 Gy/fraction resulted
in the best tumor control and tumor immunity, while main-
taining low Treg numbers (Schaue et al., 2011). Taken together,
these results indicated that greater doses of RT delivered in fewer

fractions can generate tumor-specific immune responses similar
to that of lower doses given more frequently, although a threshold
level above which the balance shifts toward immunosuppression
may exist. Interestingly, preclinical studies suggest that modalities
of RT other than EBRT are able to modulate tumor phenotype
and enhance T cell-mediated killing. These modalities include
bone-seeking radionuclides, radiolabeled monoclonal antibodies
(mAbs), and brachytherapy, all of which will be discussed later in
this review.

In addition to the preclinical data presented above, there is
substantial clinical evidence of radiation-induced immune acti-
vation. Nesslinger et al. (2007) evaluated pre- and post-treatment
serum samples from 73 men with non-metastatic prostate cancer
and described the development of treatment-associated autoan-
tibody responses in nearly 14% of patients treated with EBRT
and 25% who received brachytherapy, compared with 0 of 14
patients who underwent radical prostatectomy. In agreement
with their preclinical findings, Schaue et al. (2008) observed that
tumor-specific T cells clearly increase in most colorectal can-
cer patients after completion of chemoradiation therapy and in
most prostate cancer patients after RT. Of note, levels of Tregs
increased in colorectal cancer patients following treatment, again
suggesting a potential threshold above which immunosuppres-
sive effects may dominate. In a recent case report published in
The New England Journal of Medicine, a patient suffering from
metastatic melanoma with disease progression on ipilimumab
(IPI, Yervoy; Bristol-Myers Squibb), a mAb that inhibits CTL-
associated antigen 4 (CTLA-4), an immunologic checkpoint on
T cells, showed a favorable response only after receiving local
RT for a metastatic spinal lesion (Postow et al., 2012). The
patient experienced out-of-field tumor shrinkage, with antibody
responses to tumor-specific antigens, changes in peripheral-blood
immune cells, and increases in antibody responses to other anti-
gens. These findings highlight a rare but important phenomenon
known as the abscopal effect, where local RT elicits a systemic
response and causes tumor regression at a site distant from the
irradiated field. The abscopal effect has also been reported in
tumors other than melanoma, such as lymphomas, hepatocellular
carcinoma, and certain adenocarcinomas (Ehlers and Fridman,
1973; Antoniades et al., 1977; Rees and Ross, 1983; Ohba et al.,
1998).

Taken together, these data indicate that RT effectively stimulates
immune responses by increasing the production of inflammatory
cytokines, causing the release of large amounts of tumor antigen,
enhancing antigen processing and presentation, improving T cell
migration to sites of disease, and activating tumor-specific CTLs
(Figure 1). As described above, this activation may translate into
both local and systemic clinical benefit. Nevertheless, a large tumor
burden often creates enough immune suppression to prevent suc-
cessful immune intervention. In this case, studies have proposed
that local RT can also sufficiently reduce tumor burden to allow
for further therapeutic intervention by immunotherapy, such as
vaccination or blockade of inhibitory molecules, and, in some
cases, may synergize with such therapy (Kamrava et al., 2009). By
enhancing the frequency, magnitude, and character of the immune
responses induced by RT with immunomodulatory agents, cancer
patients could experience further improved outcomes.
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FIGURE 1 | Phenotypic and microenvironmental changes in tumors

elicited by RT that can be exploited by immunotherapy (Hodge et al.,

2008). Each of the potential mechanisms of RT-induced immunogenic
modulation shown here is discussed further and referenced in the text.

PRECLINICAL EVIDENCE OF SYNERGY WHEN RADIATION
AND IMMUNOTHERAPY ARE COMBINED
Several recent studies have indicated that radiation-induced cell
death is an immunologically active process. This is demon-
strated in one way because radiation-induced cell death causes
the release of TAAs that can potentially be exploited to stimulate
robust tumor-specific immune responses (Hannani et al., 2011).
On their own, tumor cells typically do not generate potent anti-
tumor immune responses due to their inefficient expression of
molecules that are critical for antigen processing and presenta-
tion, such as the antigen transporter gene product TAP-2, MHC
class I molecules, and T cell costimulatory molecules such as B7-
1 (CD80; Sanda et al., 1995). However, radiation-induced cell
death results in the release of novel TAAs that can be taken up,
processed, and presented by APCs in the tumor microenviron-
ment and draining lymph nodes. Reits et al. (2006) demonstrated
that RT increases the peptide repertoire available for MHC class I
molecules to present to CTLs, not only by increasing the degrada-
tion of existing proteins, but by activating the mammalian target

of rapamycin pathway, leading to increased protein translation
and creation of a novel peptide repertoire. Irradiation has addi-
tionally been shown to induce the expression of membrane-bound
calreticulin on tumor cells, which acts as a recognition and phago-
cytosis signal for DCs. It can also induce the release of “danger
signals” for DC activation, such as various heat shock proteins and
HMGB1 (Demaria et al., 2005; Tesniere et al., 2008). Friedman
(2002) has previously described a “danger model” of immunity,
wherein ionizing radiation generates an inflammatory microen-
vironment filled with apoptotic and necrotic cells, chemokines,
cytokines, and other inflammatory mediators. This inflammatory
milieu is believed to activate APCs and support their processing of
newly exposed TAAs.

Although RT is traditionally employed to destroy tumor cells,
some of the cells within a given tumor mass receive doses of radi-
ation that do not result in cell death because of the need to limit
damage to normal tissues. A number of preclinical studies have
shown that these lower doses of radiation are capable of inducing
phenotypic changes within tumor cells that ultimately facilitate
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immune-cell recognition and immune-mediated tumor killing.
Molecules reported to be altered by such doses of radiation include
TAAs, MHC class I, Fas/CD95, and the costimulatory molecules
B7-1, lymphocyte function-associated antigen 3 (LFA-3), and
intercellular adhesion molecule 1 (ICAM-1; Vereecque et al., 2000;
Vondracek et al., 2001; Chakraborty et al., 2003; Garnett et al.,
2004; Reits et al., 2006; Ifeadi and Garnett-Benson, 2012). These
molecules are well known to play a role in CTL-mediated killing.
MHC class I is responsible for direct presentation of tumor antigen
peptides to CTLs, while increased numbers of adhesion molecules
improve cell-to-cell attachment, enhancing the ability of a T cell
to kill its target (Zamai et al., 1994; Baluna et al., 2006; Reits et al.,
2006). Fas-mediated apoptosis plays an important role in CTL-
mediated tumor-cell destruction, with interaction of the Fas ligand
on activated CTLs with the Fas receptor on the target cell, inducing
apoptosis of the target cell.

Using a murine adenocarcinoma cell line transfected to express
carcinoembryonic antigen (CEA, MC38-CEA), Chakraborty et al.
(2003) demonstrated in vitro that irradiation enhanced the sur-
face expression of two molecules involved in T cell-mediated
immune attack, Fas/CD95 and ICAM-1, in a dose-dependent
manner. Moreover, they reported that exposure to radiation
(20 Gy) enhanced the sensitivity of this murine cell line to antigen-
specific CTL killing by up to fourfold, and that this increase in
CTL sensitivity was shown to be via the Fas/Fas ligand pathway
(Chakraborty et al., 2003). A follow-up study examined whether
this phenomenon similarly occurs in human cancer cells. Utilizing
a variety of human carcinoma cell lines (12 colon, 7 lung, and 4
prostate), Garnett et al. (2004) investigated whether 10 or 20 Gy
of gamma radiation could alter the cell surface expression of a
variety of molecules involved in T cell-mediated immune attack,
including Fas/CD95, adhesion molecules, MHC class I, and TAAs
such as CEA and mucin-1 (MUC-1). They found that at least one
of these molecules was upregulated in 91% of the cell lines post-
irradiation (Garnett et al., 2004). Moreover, five of five irradiated
CEA+, HLA-A2+ colon cancer cell lines demonstrated signifi-
cantly enhanced killing by CEA-specific HLA-A2-restricted CD8+
CTLs compared to non-irradiated controls (Garnett et al., 2004).
Modrak et al. (2003) also showed an increase in TAA expression
among irradiated colon cancer cell lines. These in vitro studies col-
lectively demonstrated that RT can make both mouse and human
tumor cells more amenable to immune recognition and attack.

Another clinically relevant form of radiation, bone-seeking
chelated radionuclide, is similarly capable of inducing pheno-
typic changes within tumor cells, thereby enabling immune-
cell recognition and enhancing CTL killing. Chakraborty et al.
(2008b) evaluated the FDA-approved bone-seeking radionuclide
samarium-153 (153Sm-EDTMP; Quadramet®, Cytogen), used as
palliation for pain caused by metastatic bone lesions, for its ability
to change the phenotype of tumor cells. The calculated dose of
radiation delivered to bone metastases by this agent is between
18 and 80 Gy (Eary et al., 1993; Maini et al., 2004). In this study,
10 human tumor cell lines representing classes of tumors that
metastasize to bone (four prostate, two breast, four lung) were
exposed to clinically relevant levels of 153Sm-EDTMP for 4 days,
then examined by flow cytometry for modulation of several cell
surface molecules. Of the 10 cell lines, 100% upregulated Fas and

CEA, 70% upregulated MUC-1, 40% upregulated MHC class I,
and 30% upregulated ICAM-1. Exposure of the prostate cancer
cell line LNCaP to 153Sm-EDTMP also resulted in upregulation
of prostate-specific antigen (PSA), prostate-specific membrane
antigen (PSMA), and prostatic acid phosphatase (PAP). Addition-
ally, treatment of LNCaP cells with 153Sm-EDTMP rendered them
more susceptible to killing by a variety of antigen-specific CTLs.
These preclinical data suggest that 153Sm-EDTMP may work syn-
ergistically with immunotherapy to increase the susceptibility of
tumor cells to CTL killing, and have formed the basis for an
ongoing clinical trial.

These and other preclinical studies have collectively demon-
strated that radiation can be utilized to make tumor cells more
amenable to immune recognition and attack, and form the ratio-
nal basis for the combinatorial use of local tumor irradiation and
immunotherapy. A number of preclinical studies have demon-
strated that localized treatment of tumors with lower doses of
EBRT acts synergistically with immunotherapy to enhance antitu-
mor immune responses. Chakraborty et al. (2003) demonstrated
that EBRT (8 Gy) of subcutaneous MC38-CEA tumors markedly
enhanced the efficacy of immunotherapy in the form of CTL
adoptive transfer. In this study, C57B6 mice were implanted sub-
cutaneously on the hind leg with MC38-CEA cells. Nine days
later, mice were randomized to receive no treatment, EBRT of
the tumor alone, adoptive transfer of CEA-specific CTLs alone,
or the combination of both EBRT and adoptive transfer. EBRT
alone and adoptive transfer alone ultimately failed to significantly
impact tumor growth in these mice relative to untreated controls
(Chakraborty et al., 2003). However, treatment of tumors with
the combination of EBRT and CTL adoptive transfer resulted in
a significant reduction in tumor growth rate and volume relative
to mice receiving either no treatment or EBRT or CTL adoptive
transfer alone. Moreover, 50% of mice receiving the combination
treatment remained tumor-free for the duration of the experiment
(40 days; Chakraborty et al., 2003). In a similar study by Reits
et al. (2006), mice were implanted with MC38 tumor cells. When
tumors became established, mice received EBRT (10 Gy) and/or
adoptive transfer of gp70-specific CTLs (Reits et al., 2006). Nei-
ther radiation nor adoptive transfer alone was curative; however,
the combination of local irradiation of the tumor and adoptive
transfer of CTLs significantly reduced tumor burden and, in most
mice, completely eradicated the tumor mass.

A number of preclinical studies have revealed that RT acts
synergistically with active therapeutic vaccination to enhance anti-
tumor immune responses. Chakraborty et al. (2004) focused on
the combination of 8 Gy EBRT delivered directly to the tumor in
combination with a vaccine composed of vaccinia and fowlpox
vectors that express CEA and a triad of costimulatory molecules:
B7-1, ICAM-1, and LFA-3 (rV/F-CEA/TRICOM). Although either
treatment alone was ineffective at reducing tumor burden, the
combination of EBRT and vaccine was not only curative in 50%
of mice bearing CEA-expressing tumors, but also imparted pro-
tection from subsequent tumor challenge (Figure 2; Chakraborty
et al., 2004). Notably, mice cured of tumors demonstrated antigen
cascade, developing CD4 and CD8 T cell responses not only to
CEA, but also to other tumor antigens not encoded in the vaccine,
such as gp70 (Chakraborty et al., 2004). They reported that the
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FIGURE 2 | Combination of single-dose or fractionated RT with

vaccine therapy. Mice transgenic for CEA were implanted subcutaneously
on day 0 with the MC38-CEA tumor cell line, then randomized to receive
either no treatment, vaccine alone, EBRT alone, or the combination of
vaccine and EBRT. The vaccine consisted of poxviral vectors expressing
CEA and TRICOM (rF/V-CEA/TRICOM). All vaccines were coadministered

with a poxviral vector expressing GM-CSF. RT was administered
either as a single dose (8 Gy on day 14) or fractionated (2 Gy on
days 11, 12, 13, and 14). Neither modality was effective alone, but
the combination of vaccine with single-dose or fractionated RT was
curative in 40 and 55% of mice, respectively. (Adapted from
Chakraborty et al., 2004.)

immune response to gp70 was markedly greater than that seen to
the antigen encoded in the vaccine, suggesting that the immune
response to the cascade antigens may play an important role in
the observed antitumor activity. Results from this preclinical study
provided the rationale to evaluate the use of EBRT and therapeutic
cancer vaccines in the clinic.

Therapeutic synergy has also been reported utilizing vaccine-
mediated immunotherapy combined with radiolabeled mAb.
mAbs can guide radionuclides to cancer cells, precisely and prefer-
entially target tumor cells, and seek out micrometastases that are
unobservable by current imaging technology and cannot be tar-
geted by EBRT. A recent study cited the ability of radiolabeled mAb
to alter tumor-cell phenotype and enhance immunologic target-
ing of tumor cells (Chakraborty et al., 2008a). In that study, mice
transgenic for CEA were transplanted with MC38-CEA tumor
cells, then treated with yttrium-90-labeled anti-CEA mAb alone or
in combination with CEA-targeted vaccine therapy. A single dose
of yttrium-90-labeled anti-CEA mAb, in combination with vac-
cine, statistically increased survival in tumor-bearing mice relative

to vaccine or mAb therapy alone (Figure 3; Chakraborty et al.,
2008a). Of note, mice receiving the combination therapy also had
a marked increase in the percentage of viable tumor-infiltrating
CEA-specific CD8 T cells relative to vaccine alone, demonstrat-
ing that these cells were unaffected by the residential radiation
source. Similar to what was noted with EBRT,mice cured of tumors
demonstrated an antigen cascade, resulting in CD4 and CD8 T
cell responses not only for CEA, but also for tumor antigens not
encoded in the vaccine.

Brachytherapy, yet another form of clinically relevant RT,
has also been evaluated in combination with vaccine-mediated
immunotherapy. Brachytherapy, which involves implanting a
radiation source such as iodine-125 into or near the site of a
malignant tumor to target tumor cells with continuous high-
dose radiation, has also been shown to alter the phenotype of
tumor cells. A single study demonstrated the ability of iodine-
125 to increase the expression of Fas >2-fold in tumors relative
to sham-treated mice (Hodge et al., 2012). In this study, CEA-
transgenic mice were implanted with a Lewis lung carcinoma
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FIGURE 3 | Combination of a radiolabeled mAb with vaccine

increased survival in tumor-bearing mice. Mice transgenic for CEA
were implanted subcutaneously on day 0 with the MC38-CEA tumor cell
line. A control group (open squares) received HBSS buffer only. A second
group (closed squares) received a vaccine consisting of poxviral vectors
expressing CEA and TRICOM (rV/F-CEA/TRICOM). All vaccines were

coadministered with a poxviral vector expressing GM-CSF. A third group
(open triangles) received RT consisting of 100 μCi yttrium-90-labeled anti-CEA
mAb (Y-90-labeled COL-1) intravenously on day 14. A fourth group (closed
circles) received the combination of vaccine plus radiolabeled mAb. Mice
were monitored weekly for tumor size and survival. (Adapted from
Chakraborty et al., 2008a.)

cell line expressing CEA (LL2-CEA) both subcutaneously and
intravenously. Mice received either no treatment, brachyther-
apy alone in which iodine-125 seeds were implanted near the
subcutaneous tumor, vaccine alone, in this case a diversified
prime and boost of poxviral vectors expressing gp70 and TRI-
COM, or the combination of brachytherapy and vaccine. The only
therapeutic regimen that suppressed the number of pulmonary
metastases in this model was the combination of brachytherapy
(directed at the primary subcutaneous tumor alone) with vaccina-
tion (Hodge et al., 2012). Thus, the abscopal effect only occurred
in mice treated with the combination of brachytherapy and vac-
cine. A recent study by Dewan et al. (2009) similarly noted that
RT induced an abscopal effect only when used in combination
with immunotherapy. In their study, they noted that fraction-
ated local radiotherapy to one palpable tumor synergized with
CTLA-4 blockade to induce antitumor T cell immunity and inhibit

the growth of a second palpable tumor outside the radiation
field.

CLINICAL EVIDENCE OF THE EFFICACY OF COMBINED
RADIATION AND IMMUNOTHERAPY
Results from the preclinical studies described above and from
additional reports as well have provided the rationale for clinical
evaluation of the combination of RT and cancer immunother-
apy. In a phase I study of patients with advanced hepatoma,
participants were given 8 Gy of radiation, followed 2 days
later by an intratumoral injection of autologous immature DCs.
Of 10 patients evaluated for immune response, six showed
increased natural killer cell activity, eight had increases in alpha-
fetoprotein (AFP)-specific immune responses by cytokine-release
assay, and seven showed increased AFP-specific immune responses
by ELISPOT. Of the 14 patients who entered the trial, four
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had minor responses and two had partial responses, including
a patient who had a decrease in AFP from 128 to 1.6 ng/mL
(Chi et al., 2005).

A randomized phase II study in men with localized prostate
cancer evaluated the use of a recombinant poxviral-based vaccine
expressing PSA combined with standard definitive radiotherapy
(Gulley et al., 2005). Patients in the combination arm received
a priming vaccine of recombinant vaccinia (rV) expressing PSA
(rV-PSA) admixed with rV expressing the costimulatory molecule
B7-1. This was followed by monthly boosts with recombinant
fowlpox (rF)-PSA. The vaccines were administered with local
granulocyte–macrophage colony-stimulating factor and low-dose
systemic IL-2 (4 million IU/M2). Two courses of EBRT were given
daily for 5 days, with a 2-day holiday between the fourth and
sixth vaccinations. Results from this clinical trial indicated that
the combination was safe, well tolerated, and, more importantly,
effective at generating PSA-specific immune responses. Approxi-
mately 76.5% of patients (13 of 17) in the combination therapy
arm showed a ≥3-fold increase in PSA-specific T cells vs. 0%
(0 of 8) in the radiation-alone arm (P < 0.0005). In addition,
six of eight patients developed post-treatment T cell responses
specific for at least one additional endogenous TAA not encoded
by the vaccine, indicating the presence of antigen cascade. These
included the generation of T cells against PSMA, PAP, prostate
stem cell antigen (PSCA), and/or MUC-1 (Table 1). In some cases
the immune response to a cascade antigen was even greater than
the response to PSA. There were no significant changes in the
patients’ responses to flu peptide, and all patients remained neg-
ative for responses to HIV. Only grade 2 toxicities were related to
the vaccine itself; however, some grade 3 toxicities were attributed
to IL-2. A follow-up study was conducted to evaluate the use of a
metronomic dose of IL-2 (0.6 million IU/M2) in order to reduce
some of the toxicity seen in the previous trial (Lechleider et al.,
2008). This study used the same vaccination schedule as the pre-
vious trial, except that RT was administered following the third
booster vaccination instead of the fourth. Patients in this trial
experienced less toxicity attributable to IL-2 and developed similar
immune responses (Table 2). A third trial was conducted evalu-
ating the combination of the rV/F-CEA/TRICOM vaccine with
EBRT delivered directly to liver metastases in patients with CEA+
solid tumors (Gulley et al., 2011). Twelve patients, 11 with CEA+
colon cancer and 1 with CEA+ rectal cancer, received a prim-
ing vaccination with rV-CEA/TRICOM on day 1, with biweekly
booster vaccinations with rF-CEA/TRICOM. Four 8-Gy courses
of EBRT were delivered to sites of liver metastasis 1 day following
booster vaccinations. Unfortunately, the design of this study was
not optimal for assessing the ability of radiation to enhance the
clinical benefit of vaccine treatment strategies. Of the two evalu-
able patients, neither showed an increase in CEA-specific T cells
above baseline after therapy.

The combination of 153Sm-EDTMP and vaccine is also cur-
rently being studied in a randomized phase II trial in patients
with castration-resistant prostate cancer (CRPC) metastatic to
bone (Heery et al., 2012). The primary endpoint of the trial
is to determine if 153Sm-EDTMP combined with vaccine can
improve time to progression over 153Sm-EDTMP alone. Patients
will receive 1 mCi/kg 153Sm-EDTMP alone or in combination

Table 1 | Immune responses following treatment with poxviral

vaccines expressing PSA and B7-1 in combination with EBRT and

low-dose IL-2 (Gulley et al., 2005).

Patient Sample PSA PSMA PAP PSCA MUC-1

3 pre ND ND ND ND ND

post 3 1/50,000 ND 1/85,714 1/85,714 1/23,077

post 8 1/46,154

6 pre ND ND ND ND ND

post 3 1/54,545 1/85,714 ND ND 1/60,000

post 8 1/22,222

7 pre ND ND ND ND ND

post 3 1/42,857 1/200,000 1/85,714 ND ND

post 8 1/15,000

8 pre ND ND ND – 1/80,000

post 3 ND 1/62,500 ND – 1/46,154

post 8 1/66,667

11 pre 1/100,000 ND ND ND ND

post 3 1/85,714 ND ND ND 1/40,000

post 8 ND

12 pre 1/100,000 ND 1/200,000 1/200,000 ND

post 3 1/150,000 ND ND ND 1/35,294

post 8 1/200,000

ND, none detected (<1/200,000).
Samples obtained after indicated vaccine cycle.

with an rV/F-PSA/TRICOM vaccine (PROSTVAC®, Bavarian
Nordic) administered in a biweekly diversified prime/boost reg-
imen for the first three vaccinations starting on day 1, then
monthly thereafter. 153Sm-EDTMP will be administered on day
8, then every 12 weeks thereafter. Currently, 37 of a projected
68 patients have been enrolled. Interim analysis determined
that at 4 months, 5 of 17 patients (29.4%) receiving com-
bination therapy remained progression-free, while only 2 of
17 (11.8%) remained progression-free on 153Sm-EDTMP alone.
The median time to progression was 60 days in the 153Sm-
EDTMP-alone group and 117 days in the combination group.
This early indication of improved time to progression supports
the continuation of this trial, allowing for the evaluation of
secondary endpoints of immunogenic stimulation and overall
survival.

In addition to vaccines, RT has also been evaluated clinically
in combination with additional types of immunotherapy. Three
trials have been undertaken to determine if RT can enhance the
antitumor efficacy of IPI in patients with metastatic CRPC. In all
three trials, single-fraction RT was given just prior to the start
of IPI therapy which was given at doses of either 3 or 10 mg/kg
once every 3 weeks for four cycles. All three trials determined that
the combination was well tolerated, but similar reductions in PSA
were observed in the IPI treatment groups regardless of the addi-
tion of RT (Beer et al., 2008; Slovin et al., 2009, 2012). Additional
trials examining the timing of RT with respect to IPI treatment
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Table 2 | Immune responses following vaccination with poxviral

vaccines expressing PSA and B7-1 in combination with EBRT and

metronomic IL-2 (Lechleider et al., 2008).

Patient Sample PSA MUC-1 PAGE-4 XAGE-1

31 pre ND 1/85,714 ND ND

post 3 ND ND ND ND

post 3 + 2 1/45,455 – – –

post 5 + 2 – ND ND ND

post 8 1/60,000 1/37,500 ND 1/27,273

32 pre 1/120,000 ND 1/100,000 1/23,077

post 3 1/17,391 ND 1/80,000 1/28,571

post 3 + 2 ND – – –

post 5 + 2 – ND 1/22,222 1/46,154

post 8 ND ND 1/100,000 1/50,000

33 pre – ND ND ND

post 3 – ND 1/200,000 1/54,545

post 5 – ND ND ND

post 8 – 1/46,154 ND 1/24,000

34 pre ND – – –

post 3 1/46,154 – – –

post 5 + 3 ND – – –

post 8 ND – – –

37 pre 1/150,000 – – –

post 2 ND – – –

post 5 1/12,000 – – –

38 pre ND – – –

post 3 1/85,714 – – –

post 8 1/28,462 – – –

PAGE-4 and XAGE-1 denote members of the PAGE/GAGE family of prostate can-
cer TAAs.
ND, none detected (<1/200,000).
Samples obtained after indicated vaccine cycle (i.e., post 3 + 2 = 2 months after
cycle 3).

may lead to a combination treatment that acts synergistically sim-
ilar to that reported in metastatic melanoma (Postow et al., 2012).
A recent single arm phase I/II trial examined the efficacy of com-
bining low-dose RT (4 Gy over 2 days) with administration of
the TLR9 agonist PF-3512676 to 15 patients with low-grade B
cell lymphoma (Brody et al., 2010). In this trial, PF-3512676 was
administered via intratumoral injection to the same site as local RT.
PF-3512676 was administered immediately prior to the first dose
of radiation, immediately following the second and then weekly
for 8 weeks. The combination was well tolerated and resulted in
one complete response, three partial responses, and two patients
having stable/regressing disease. Responding patients displayed
increases in tumor-reactive CD8+ T cells and a reduction in Tregs.
Another recent phase I trial examined the combination of stereo-
tactic body RT with systemic IL-2 therapy for the treatment of
metastatic melanoma and renal cell carcinoma (RCC; Seung et al.,
2012). Twelve patients (seven with melanoma, five with RCC)
received one, two, or three doses of 20 Gy stereotactic body RT

with bolus IL-2 (600,000 IU/kg) beginning 3 days following the
final dose of RT. IL-2 was given every 8 h for a maximum of 14
doses with a second cycle of treatment occurring 2 weeks later. By
positron emission tomography, five patients with melanoma and
one with RCC achieved a complete response while two additional
RCC patients achieved a partial response. Responding patients
exhibited a higher frequency of early-activated effector memory
CD4+ T cells in the peripheral blood. Both of these studies support
the immunomodulatory activity of RT and its combination with
additional forms of immunotherapy. Additional trials, however,
still need to be performed to determine the extent of the increased
efficacy of these combinations.

PERSPECTIVES ON THE FUTURE OF COMBINED RADIATION
AND IMMUNOTHERAPY FOR THE TREATMENT OF CANCER
The goal of cancer immunotherapy is to overcome tolerance to
weakly immunogenic TAAs and to stimulate an immune response
to tumor cells. Ionizing radiation induces tumor-cell death,
thereby releasing the multiple novel tumor antigens required
to overcome tolerance and igniting the “danger signals” needed
to stimulate an immune response. RT may be able to over-
come the ability of cancer cells to escape immune recognition
and therefore act synergistically with immunotherapy to enhance
immune responses, inhibit immunosuppression, and/or alter the
phenotype of tumor cells, rendering them more susceptible to
immune-mediated killing. Preclinical studies have shown that RT
from a variety of different sources cannot only induce tumor-cell
death in a manner consistent with antitumor immune activation,
but can also phenotypically modify tumor cells not killed by RT
in a way that facilitates both immune recognition and immune-
mediated killing. Capitalizing on the immunologic effects induced
by RT by adding potent antitumor immunotherapy agents may
lead to synergistic approaches to cancer management that offer
feasible, well-tolerated therapeutic options for cancer patients.

Questions remain, however, as to how best to exploit the
largely untapped resource of radiation and immunostimulatory
combination therapy. First, although many modes of RT have
been shown to induce similar alterations in tumor phenotype
and microenvironment, there may be subtle variations in the
induction of these responses brought about by a given type of
RT. These variations may be better exploited by a specific type
of cancer immunotherapy, including those discussed herein or
other emerging immunotherapies such as the vaccine sipuleucel-T
(Provenge®, Dendreon Corp.). Second, as discussed here, com-
bining a specific dosage and course of RT with immunotherapy
may be more efficacious at enhancing clinical benefit; this con-
cept, however, needs further investigation. Along these same lines,
the timing of administration of RT and immunotherapy during
combination treatment also needs further investigation. As dis-
cussed, administering immunotherapy prior to RT allows for the
generation of a memory immune response that is less susceptible
to immunodepletion brought about by RT. Although it was not
designed for definitive determination, one may infer from the trial
evaluating rV/F-CEA/TRICOM with EBRT delivered directly to
liver metastases in patients with CEA+ solid tumors that 1 day
post-vaccination is too soon for RT. On the other hand, admin-
istering immunotherapy following RT may take advantage of the
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homeostatic peripheral expansion of the immune compartment
that occurs following some types of RT. As with phenotypic and
microenvironmental changes, the timing of each therapy may
depend on the specific therapies being combined. The final con-
sideration concerning the combination of RT and immunotherapy
for the treatment of cancer is identifying the most appropri-
ate patient population. EBRT and vaccine combination trials in
prostate cancer may have yielded more positive results because
definitive RT for localized prostate cancer does not involve
extensive lymph node irradiation, thus sparing much of the
patients’ lymphocyte population. This could suggest that com-
bination therapy should be examined further in the setting of
RT that avoids extensive lymph node irradiation. However, in
the prostate cancer trials discussed here, some patients devel-
oped more stable immune responses that were less susceptible
to blunting by RT than others. The reason for this result is
unclear, however, indicating that further studies are required to
determine which patient population would benefit most from
this combination therapy. In addition, it will also be impor-
tant to determine the stage of disease at which this combination
will be most beneficial to the patient. As monotherapies, both
immunotherapy and radiation may be insufficient to eliminate
bulky tumor masses or an entire metastatic burden. Even though
combination therapy may be more effective in this advanced

state, patients with smaller primary tumors and lower metastatic
burdens may derive greater clinical benefit due to the lower
tumor burden needed to be overcome. Additional clinical tri-
als in earlier disease settings will be needed to confirm this
approach.

Substantial preclinical evidence has revealed a synergistic rela-
tionship between RT and immunotherapy. Anecdotal evidence
and prospective clinical data also support the efficacy of this
treatment regimen. As most of the studies reviewed here have
focused on an immunological response as the primary endpoint,
further clinical trials are needed to determine if adding active
immunotherapy to definitive RT can affect clinical outcomes.
Learning how best to exploit radiation-induced immunogenic
changes in cancer patients with the addition of active immunother-
apy is an exciting frontier in cancer therapy research, and has the
potential to greatly improve patient care in the future.
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