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ABSTRACT

Objective: After transcatheter aortic valve replacement, the mean transvalvular
pressure gradient indicates the effectiveness of the therapy. The objective is to
develop artificial intelligence to predict the post–transcatheter aortic valve replace-
ment aortic valve pressure gradient and aortic valve area from preprocedural echo-
cardiography and computed tomography data.

Methods: A retrospective study was conducted on patients who underwent trans-
catheter aortic valve replacement due to aortic valve stenosis. A total of 1091 pa-
tients were analyzed for pressure gradient predictions (mean age
76.8 � 9.2 years, 57.8% male), and 1063 patients were analyzed for aortic valve
area predictions (mean age 76.7 � 9.3 years, 57.2% male). An artificial intelligence
learning model was trained (training: n¼ 663 patients, validation: n¼ 206 patients)
and tested (testing: n ¼ 222 patients) to predict pressure gradient, and a separate
artificial intelligence learning model was trained (training: n ¼ 640 patients, valida-
tion: n ¼ 218 patients) and tested (testing: n ¼ 205 patients) for predicting aortic
valve area.

Results: The mean absolute error for pressure gradient and aortic valve area pre-
dictions was 3.0 mm Hg and 0.45 cm2, respectively. Valve sheath size, body surface
area, and age were determined to be the top 3 predictors for pressure gradient, and
valve sheath size, left ventricular ejection fraction, and aortic annulus mean diam-
eter were identified to be the top 3 predictors of post–transcatheter aortic valve
replacement aortic valve area. A training dataset size of more than 500 patients
demonstrated good robustness of the artificial intelligence models for pressure
gradient and aortic valve area.

Conclusions: The artificial intelligence–based algorithm has demonstrated poten-
tial in predicting post–transcatheter aortic valve replacement transvalvular pres-
sure gradient predictions for patients with aortic valve stenosis. Further studies
are necessary to differentiate pressure gradient between valve types. (JTCVS Tech-
niques 2024;23:5-17)
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AI demonstrates potential in
predicting postoperative trans-
valvular pressure gradient and
AVA for patients undergoing
TAVR.
PERSPECTIVE
AI can be used to predict the transvalvular pres-
sure gradient and AVA after TAVR given prepro-
cedural CT and echocardiography data.
Including intraprocedural variables as input fea-
tures can be investigated as a potential source
of improvement for the learning algorithms. Pro-
spective studies could be conducted to confirm
the durability of these models.
Transcatheter aortic valve replacement (TAVR) is currently
the most prevalent form of valve therapy for patients diag-
nosed with aortic stenosis (AS) in the United States and is
used as an alternative approach to surgical aortic valve
replacement (SAVR).1-3 Computed tomography (CT) is
the primary means for evaluating the aortic valve (AV)
and peripheral arterial vasculature. These preprocedural
measurements are evaluated to aid the selection of the
transcatheter heart valve prosthesis and femoral or
alternative access sheath access.4-6 Additional tools used
to assess patients include surgical risk assessment models,
such as the European System for Cardiac Operative Risk
Evaluation I and II, and the Society of Thoracic Surgeons
score, which apply statistical methods to predict
postprocedural outcomes.7

A complication of TAVR includes patient-prosthesis
mismatch (PPM), which is defined by an effective orifice
area (EOA) of the prosthetic valve that is too small in
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Abbreviations and Acronyms
AI ¼ artificial intelligence
ANN ¼ artificial neural network
AS ¼ aortic stenosis
AV ¼ aortic valve
AVA ¼ aortic valve area
BMI ¼ body mass index
BSA ¼ body surface area
CT ¼ computed tomography
EOA ¼ effective orifice area
EOAI ¼ effective orifice area index
GBM ¼ gradient boosting machine
IQR ¼ interquartile range
LVEF ¼ left ventricular ejection fraction
MAE ¼ mean absolute error
ML ¼ machine learning
PPM ¼ patient-prosthesis mismatch
SAVR ¼ surgical aortic valve replacement
STJ ¼ sinotubular junction
SVR ¼ support vector regression
TAVR ¼ transcatheter aortic valve replacement
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relation to the patient body surface area (BSA).8 Specif-
ically, moderate PPM is identified by an effective orifice
area index (EOAI) threshold less than 0.85 cm2/m2, and se-
vere PPM is defined by EOAI values less than 0.65 cm2/m2

for a body mass index (BMI) less than 30 kg/m2. For BMI
values greater than 30 kg/m2, the moderate and severe
PPM thresholds are set at less than 0.7 cm2/m2 and
0.55 cm2/m2, respectively.8

Based on echocardiographic measurements conducted
on patients with nonmechanical prostheses, the EOAI
threshold corresponds to a postoperative residual trans-
valvular pressure gradient greater than or equal to
10 mm Hg.9 PPM risk factors include older age, female
sex, higher BSA and BMI values, diabetes, hypertension,
and receiving a bioprosthetic valve instead of a mechan-
ical prosthesis.10 Regarding the clinical impact of postop-
erative echocardiographic gradients and PPM, recent
findings have demonstrated little to no association be-
tween post-TAVR echocardiographic pressure gradients
and mortality according to a multicenter retrospective
registry of patients undergoing TAVR.11 Additionally, a
study that conducted a PARTNER 3 trial to compare post-
procedural echocardiographic measurements for patients
with severe AS after SAVR versus TAVR reported no cor-
relation between severe PPM and 1-year mortality.12

Although these findings indicate an unclear relationship
among the transvalvular pressure gradient, PPM, and pa-
tient outcomes, it remains preferable to prevent the occur-
rence of PPM and minimize the pressure gradient by
calculating its incidence based on the preprocedural CT
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measurements and the anticipated transcatheter heart
valve prosthesis.13,14

Current predictive tools used for cardiovascular proced-
ures, in general, include the application of machine learning
(ML) and artificial intelligence (AI)-based models to pre-
dict in-hospital mortality and occurrence of intraprocedural
and postprocedural complications.15-17 Specifically
considering the development of predictive technology for
TAVR, ML models, such as gradient boosting machine
(GBM) algorithms, have been implemented to determine
predictors of 1-year mortality and in-hospital mortality in
patients with AS who underwent TAVR.15,16 The main lim-
itation of conventional predictive tools is the assumption
that the data are normally distributed and that all variables
considered are independent and hold a linear relationship
with the predicted variable. In contrast, ML models func-
tion by analyzing the relationship between a given input da-
taset and its corresponding output variable by iteratively
fitting an optimal linear or nonlinear function that allows
the input to be mapped to its output.18

With ML and AI-based learning algorithms becoming
more prevalent in predicting medical outcomes, we applied
AI-based learning models to investigate the predictive abil-
ity of pre-TAVR CT and echocardiography measurements
obtained from patients diagnosed with AS in estimating
the postprocedural pressure gradient across the AV as well
as the aortic valve area (AVA) measurements obtained using
Doppler echocardiography. Obtaining accurate predictions
of these values can provide insight into the impact of
TAVR on the transvalvular pressure gradient and thus aid
clinicians in adjusting the intraprocedural parameters to
minimize the pressure gradient value.
MATERIAL AND METHODS
A retrospective studywas conducted on patients withASwho have under-

gone TAVR from January 1, 2016, to December 27, 2021, at Piedmont Heart

Institute, Atlanta, Georgia. Data analyzed for this study involve preproce-

dural CT measurements of the patients’ vasculature and cardiac anatomy

and Doppler-echocardiography measurements acquired pre- and post-

TAVR. The features obtained from the CT data include diameter, perimeter,

area, and height of the aortic annulus, sinotubular junction (STJ), sinus of

Valsalva, coronary cusps, coronary ostia, peripheral arteries, and so forth,

as well as calcium, stenosis, tortuosity, and dissection severity. Additional as-

pects of the data considered include patient history, initial AVA, age, BSA,

and preprocedural echocardiography information, including pre-TAVR left

ventricular ejection fraction (LVEF) andAV peak velocity. Additionally, pro-

cedural information, such as valve sheath size, access site, and access

method, were set as variables. The echocardiography data include the

post-TAVR mean transvalvular pressure gradient and AVA that we aim to

predict given the preprocedural and intraprocedural data as the input. A com-

plete list of all variables examined during this study is shown in Table E1.

Preprocessing
To ensure the optimal predictive performance of the resulting AI

learning algorithm, the pre-TAVR dataset was first analyzed and prepro-

cessed using python software (Google Colaboratory) by applying the

following steps: removing specific features, determining numerical and
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categorical features, performing the training-validation-test split, removing

outlier values, imputing/feature scaling, and eliminating multicollinearity.

A thorough description of these steps is provided in the Appendix E1 under

the “Preprocessing Steps” section.
Learning Algorithm
A combination of regression and artificial neural network (ANN)-based

AI learning models was trained and validated on 80% of the provided data

and then applied to the remaining 20% testing data to obtain the final pres-

sure gradient and AVA predictions (Figure 1). Specifically, the prediction

methods implemented include elastic net regression, support vector regres-

sion (SVR), random forest regression, gradient boosting regressor, multi-

layer perceptron regressor or ANN, and voting regression.

For the elastic net, SVR, random forest, gradient boosting, and ANN al-

gorithms, each model was iterated over an array of chosen sample values for

variable hyperparameters, such as the regularization parameter and accept-

able absolute error margin. Thesemodels were trained in this manner to iden-

tify the best combination of model hyperparameters that would yield the

lowest error between the predicted and true pressure gradient or AVA. Def-

initions of the hyperparameters and detailed explanations about how the

applied algorithms function are provided in the scikit-sklearn documentation

as well as several additional resources provided in the Appendix E1 Refer-

ences. In addition, details surrounding the hyperparameters chosen and the

range of values investigated for these variables can be found in the

Appendix E1 under the “Hyperparameter Fine-tuning: Regression” section.

After the fine-tuning process, the voting regressor was trained to provide

a final output by averaging the predictions outputted by the neural network

and the best estimators determined for the SVR, elastic net, random forest,

and gradient boosting models. This regression was performed to ensure the

robustness of the final predictive model. The mean absolute error (MAE)
Input

Can Artificial Intelligence Predict AV P
Patients Undergoing Transcathet

Artificial intelligence learning models demons
preprocedural CT data toward postoperative

can therefore be employe

AV Pressure Gradient
(1091 patients):
• Training: 663 patients
• Validation: 206 patients
•Testing: 222 patients

AV Area (1063 patients):
• Training: 640 patients
• Validation: 218 patients
• Testing: 205 patients

Preprocedural CT
Measurements

AV Pressure Gradie

AV Area

*AV = aortic valve, CT = computed tomography, M

FIGURE 1. Implementing a combination of AI learning models to predict AV

MAE, mean absolute error.
between the predicted, and the true pressure gradient was calculated to

assess the performance of each algorithm. By using the final voting regres-

sor estimator, the top 10 variables with the strongest predictive ability were

identified using a permutation-based feature importance function, which

computes the increase in MAE following a permutation of an input vari-

able.19 This change in performance was measured relative to the MAE

calculated before permuting the variables. A total of 10 different permuta-

tions were performed by the feature importance function to compute the

mean increase in MAE for each input variable.
RESULTS
As shown in Table 1, a total of 1091 patientswere analyzed

for predicting pressure gradient (76.8 � 9.2 years, 631
[57.8%] male). A total of 663 patients were used for training
the learning models, and 206 and 222 patients were used for
validation and testing, respectively. Implementing the
learning algorithm yielded a final calculated MAE of
2.7 mm Hg and 3.0 mm Hg for the training and test set,
respectively. The respective mean pressure gradients for the
true and predicted output for the training set were computed
to be 10.0mmHg and 9.7 mmHg, and the calculated SDs for
the true and predicted sets for the training data were 4.5 and
2.1, respectively. For the testing set, the mean values were
9.8 mm Hg and 9.7 mm Hg, and the SD values were
4.2 mm Hg and 1.9 mm Hg, respectively. The average 5th
percentile and 95th percentile values from the prediction in-
tervals output by the gradient boosting algorithm were
Hidden
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TABLE 1. Patients analyzed during study for pressure gradient and aortic valve area predictions

Variables No. of patients Age (y) Gender Train-validation-test split

Pressure gradient 1091 76.8 � 9.2 631 M: 460 F Train: 663 patients

Validation: 206 patients

Test: 222 patients

AV area 1063 76.7 � 9.3 608 M: 455 F Train: 640 patients

Validation: 218 patients

Test: 205 patients

AV, Aortic valve.
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calculated to be 3.3mmHg and 18.5mmHg for both training
and testing sets, respectively.

For AVA predictions, 1063 patients were analyzed
(76.7 � 9.3 years: 608 [57.2%] male). The training set con-
sisted of 640 patients, and the validation and testing sets con-
sisted of 218 and 205 patients, respectively. The final
computed MAE values obtained from applying the learning
algorithm were 0.40 cm2 and 0.45 cm2 for the training and
test set, respectively. The mean values for the true and pre-
dicted output for the training set were calculated to be
1.94 cm2 and 1.90 cm2, and the SD values were 0.57 cm2

and0.15cm2, respectively. For the testing set, themeanvalues
were 1.90 cm2 for both the true and predicted sets, and the
respective SD values were computed to be 0.59 cm2 and
0.14 cm2. The final prediction intervals obtained from the
gradient boosting algorithm resulted in average 5th percentile
and 95th percentile values computed to be 1.15 cm2 and
2.96 cm2 for both the training and testing sets, respectively.

Scatter plots of the predicted versus true pressure
gradient were generated for both the training and test data
as shown in Figure 2, A and B. The top 10 input variables
with the highest calculated feature importance values for
pressure gradient and AVA predictions were obtained using
the voting regression algorithm. The results are displayed in
Figure 3, A and B. The strongest predictors of AV pressure
gradient were identified to be valve sheath size, BSA, and
age with an average increase in MAE computed to be
approximately 0.6, 0.2, and 0.2 mm Hg, respectively. For
AVA, the strongest determinants were valve sheath size,
LVEF, and aortic annulus mean diameter with an average
increase in MAE calculated to be 0.02, 0.01, and
0.01 cm2, respectively. The MAE values computed for
each learning algorithm are listed for both pressure gradient
and AVA test set predictions in Table 2. Figure 4, A and B
provide the learning curves generated for the ANN trained
with the optimal hyperparameters for the pressure gradient
and AVA datasets, respectively. In addition, the hyperpara-
meters for the optimal estimator determined for each
learning algorithm are provided in Table E2.
B

TRUE AREA

Train Set Test Set

FIGURE 2. Predicted pressure gradient versus true pressure gradient (A)

and predicted AVA versus AVA (B).
DISCUSSION
A summary of the main findings for this novel analysis is

as follows: (1) an MAE value of 3.0 mm Hg was obtained
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for AV pressure gradient predictions; (2) an MAE value
of 0.45 cm2 was obtained for AVA predictions; and (3) the
valve sheath size was found to be the strongest predictor
of pressure gradient and AVA.

The application of ML and AI-based learning models
have become more prevalent in predicting patient outcomes
for various interventions. Within the context of TAVR,
learning algorithms have been developed to aid clinicians
in selecting the optimal procedural method. One study
developed a GBM model that outperformed the standard
statistics-based TAVI2 score and CoreValve score models
given that the area under the curve calculated from the
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receiver operating characteristic curve was computed to be
0.72 for the GBM model versus 0.53 and 0.56 for the score
models, respectively.15 Interest has been shown in specu-
lating the post-TAVR AV pressure gradient to aid preproce-
dural planning. Recently, a study applied a logistic
regression model to predict the probability of developing
a postoperative residual gradient greater than 20 mm Hg
given a particular valve type subject to specified in vitro
conditions.20 The resulting area under the curve values for
this study were reported to be 0.9465 and 0.9054 for Sapien
3 and Magna Ease valves, respectively.20
Although transvalvular pressure gradient and PPM have
demonstrated unclear and complex relationships with
post-TAVR outcomes, there is a consensus to minimize
these effects. Specifically, a study investigating the impact
of post-TAVR transvalvular pressure gradient on outcomes
found higher mortality associated with lower postoperative
echocardiographic gradients and higher invasive postopera-
tive gradients.11 Likewise, the nonlinearity of how PPM is
related to clinical outcomes was analyzed in a 2021 study
by Abbas and colleagues,21 in which severe PPM was
directly correlated with increased mortality in patients
JTCVS Techniques c Volume 23, Number C 9



TABLE 2. Calculated pressure gradient and aortic valve area mean

absolute error for each learning algorithm

Variables

MAE pressure

gradient MAE AVA

SVR Train: 2.9 mm Hg

Test: 3.0 mm Hg

Train: 0.42 cm2

Test: 0.45 cm2

Elastic net regression Train: 2.8 mm Hg

Test: 3.0 mm Hg

Train: 0.40 cm2

Test: 0.45 cm2

MLP regression Train: 2.7 mm Hg

Test: 3.0 mm Hg

Train: 0.43 cm2

Test: 0.45 cm2

Random forest regression Train: 2.7 mm Hg

Test: 3.0 mm Hg

Train: 0.42 cm2

Test: 0.45 cm2

Gradient boosting regression Train: 3.2 mm Hg

Test: 3.2 mm Hg

Train: 0.41 cm2

Test: 0.46 cm2

Voting regression Train: 2.7 mm Hg

Test: 3.0 mm Hg

Train: 0.40 cm2

Test: 0.45 cm2

MAE, Mean absolute error; AVA, aortic valve area; SVR, support vector regression;

MLP, multilayer perceptron.
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with low flow post-TAVR and low ejection fraction post-
SAVR. In this study, severe PPM in normal flow was not
associated with poor clinical outcomes.21 Although the
post-TAVR pressure gradient may be insufficient to predict
clinical outcomes, including PPM, decreasing the pressure
gradient value remains an important objective because a
higher gradient can result in increased stress on the pros-
thesis and heart failure.22,23 Therefore, accurately predict-
ing the postprocedural values for AV pressure gradient
and AVA can potentially provide insight into how the
selected TAVR approach can be further optimized during
preprocedural planning. Considering the superior perfor-
mance of learning models in cardiac interventions, we im-
plemented AI-based learning algorithms to predict the
mean AV pressure gradient and AVA from patient-derived
CT data and postprocedure echocardiography.
Pressure Gradient and Aortic Valve Area Predictions
The calculated MAE values for the post-TAVR mean AV

pressure gradient and AVA test predictions obtained from
the final voting method were 3.0 mm Hg and 0.45 cm2

(Table 2). All applied algorithms yielded consistent MAE
values for the test set predictions, indicating the models’
overall robustness and applicability to unseen datasets. In
addition, the ANN learning curves generated for the
training and validation sets (Figure 4, A and B) demonstrate
good convergence as the training set size exceeds 500 pa-
tients and approaches 100% of its value, suggesting an opti-
mized neural network structure. These observations further
suggest that the final developed learning model does
demonstrate potential in predicting these postoperative
echocardiography measurements within a stable error
range. A linear correlation between the predicted and true
response variables is shown in Figure 2, A and B, where a
10 JTCVS Techniques c February 2024
constant distribution of predicted values can be seen across
all true values.

On analysis of the permutation-based feature importance
of each input variable, valve sheath size, BSA, and agewere
the strongest predictors of AV pressure gradient with an
average increase in MAE computed to be 0.6, 0.2, and
0.2 mmHg, respectively (Figure 3, A). For AVA predictions,
the best determinants were identified to be the valve sheath
size, LVEF, and mean aortic annulus diameter with an
average increase in MAE calculated to be 0.02 cm2 for
the first feature and 0.01 cm2 for the second and third vari-
ables (Figure 3, B). The fact that BSA and age were associ-
ated with pressure gradient is consistent with previous
studies investigating predictors of postoperative pressure
gradient.24,25 Considering the major predictors identified
from AVA predictions, the correlation between aortic
annulus diameter and postprocedural AVA is expected
because AVA and annulus measurements obtained from
preprocedural CT are key variables used to assess the
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severity of AS and anticipate TAVR outcomes.26 Addition-
ally, the association between LVEF and post-TAVR AVA
may be due to an indirect correlation between LVEF and
pre-TAVR AVA given how LVEF is often reduced in pa-
tients with severe AS.27

The main interesting result from analyzing feature
importance was that the valve sheath size was identified
as the strongest determinant for both postprocedural AV
pressure gradient and AVA (Figure 3, A and B). Studies
have shown that patients with femoral artery diameters
less than the valve sheath size have a higher risk of vascular
complications during transfemoral TAVR.28,29 Reduced
vessel diameters are usually due to heavy calcification of
the vasculature, requiring increased minimal vessel diame-
ters for valve sheath insertion.30 From the correlation coef-
ficients computed for all remaining input features after the
preprocessing step for addressing multicollinearity, it was
found that valve sheath size had the highest correlation
with tortuosity ratings for the iliac and femoral arteries,
which is consistent with the discussion provided in the re-
view article. Specifically, these coefficients were 0.210
and 0.164 for external iliac artery tortuosity and common
femoral artery tortuosity, respectively. Additionally, valve
sheath size was found to have a comparable correlation
with the sinus of Valsalva area (correlation
coefficient ¼ 0.147), which was identified to be one of
the main predictors of postoperative AVA. The sinus of Val-
salva area in turn had a moderate correlation with the
annular area (correlation coefficient ¼ 0.667). Therefore,
our investigation points toward a tight indirect relationship
between these features where the selection of smaller sheath
sizes was correlated with smaller vasculature as well as
annulus size, which is a risk factor for developing a higher
postoperative pressure gradient and smaller EOA.31

Although valve sheath delivery was found to be a dominant
predictor of post-TAVR pressure gradient and AVA, this
analysis also reveals the importance of considering all pre-
dictors (ie, STJ diameter or coronary ostia mean height) in
constructing an overall accurate function that can predict
the postoperative variables given the patient-specific car-
diac input parameters.

Limitations
Factors that may have contributed to the final error values

for pressure gradient and AVA predictions include the over-
all distribution of the dataset and the input features consid-
ered. In other words, the training set obtained after
preprocessing for developing the learning models had a
greater proportion of pressure gradient values near the
average value (76%) compared with data points with pres-
sure gradients less than 5 mm Hg or greater than 15 mm Hg
(24%). Likewise, a smaller fraction of the training set for
AVA predictions (33%) consisted of patients with post-
TAVR AVA less than 1.50 cm2 or greater than 0.75 cm2,
and the remaining data were between these 2 values
(67%). Having a learning algorithm train on a dataset
with an unequal distribution of output values may have re-
sulted in a model more representative of data that dominates
the training set. As a result, for both the pressure gradient
and AVA predictions, there was strong agreement between
the computed mean values for the true and predicted data-
sets, whereas the SDs differed significantly. For the pressure
gradient predictions performed on the testing data, mean
values were in close agreement (9.8 and 9.7 mm Hg for
the true and predicted sets, respectively), whereas a large
discrepancy between the SDs can be seen (4.2 and
1.9 mm Hg for the true and predicted sets). Likewise, the
same distribution appears for AVA predictions where the
mean values were computed to be 1.94 and 1.90 cm2 for
the true and predicted sets, and the resulting SD values
were 0.59 and 0.14 cm2, respectively. These results suggest
that the model is limited to interpolating data within a nar-
row pressure gradient or AVA range, which would explain
the high degree of scatter that can be noted in Figure 2, A
and B.
In terms of how the input features may have contributed

to the results, most of the variables investigated were pre-
procedural CT measurements of the patients’ cardiac anat-
omy and vasculature or patient history (ie, pre-TAVR AVA,
aortic root angulation, and aortic arch diameter) based on
Table E1. Few features were related to the procedural
method selected by the clinicians, such as valve sheath de-
livery, access site, and access method. Given the nature of
these input features, it can be noted how this study has
investigated predictors that indicate a potential predisposi-
tion toward presenting a higher residual pressure gradient
or smaller AVA post-TAVR. Therefore, the scatter observed
in Figure 2, A and B, demonstrate the correlation between
the true and predicted response variable may have been
due to a lack of intraprocedural variables from the dataset,
such as valve type (Sapien vs Evolut) and valve size.
Including procedural features, such as balloon- versus
self-expandable and other valve properties, may aid in con-
structing a learning model that accounts for how the proced-
ure itself contributed to the postoperative results. In
addition, the input features lacked information regarding
the invasive catheterization gradient during the time of
TAVR, which can be a key intraprocedural variable to
improve the model’s predictive performance by revealing
new insights into the discordance between invasive and
echocardiographic-derived transvalvular pressure gradi-
ents.32 Another major input feature lacking within the AI
model is the granularity surrounding the patient-specific
cardiac geometry, including left ventricular outflow tract
morphology and calcium distribution. This can be a useful
basis for future studies to improve the AI model by enabling
image processing-based analysis of visualized patient-
specific cardiac structures. Considering the limitations of
JTCVS Techniques c Volume 23, Number C 11
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the overall study, although the AI model was internally vali-
dated, an external validation cohort was not included to
assess the model’s robustness or generalizability toward
other patient populations. Therefore, future prospective
studies must be performed to gauge the model’s predictive
performance on different datasets.
CONCLUSIONS
Our study found that applying AI learning models to pre-

dict post-TAVR pressure gradient and AVA using preproce-
dural CT measurements resulted in MAE values of 3.0 mm
Hg and 0.45 cm2, respectively. The consistency of these re-
sults across all learning models implemented demonstrates
the robustness of the final constructed algorithm and overall
predictive ability toward estimating postoperative trans-
valvular pressure gradient and AVA. Therefore, an implica-
tion of these findings is that these learning models can be
used as an initial step toward optimizing preprocedural
planning for TAVR given patient-specific cardiac anatomic
features. Future studies can focus on building upon these AI
models to account for the nonlinear and complex relation-
ships among postoperative AV pressure gradient, AVA,
and patient outcomes.
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APPENDIX E1. PREPROCESSING STEPS
Preprocessing Step 1: Removal of Specific Input
Features

Some given features were filtered based on the percent-
age of missing data present as well as the relevance of pre-
dicting pressure gradient and AVA. Specifically, a feature
was removed if more than 20% of the data were missing
or involved unnecessary information, such as imaging pro-
tocol data (ie, scanner type, start/end phase, dose reduction
algorithm), current medications, or billing information.

Preprocessing Step 2: Numerical Features
The resulting variables were then separated into numeri-

cal (ie, height and diameter values of anatomic features) and
categorical (ie, calcium, stenosis, tortuosity, and dissection
severity) types. For the numerical features, the average
height and diameter were computed for the sinus of Val-
salva, AV, and STJ. In other words, the sinus of Valsalva
height measured at the right coronary cusp, left coronary
cusp, and noncoronary cusp and sinus of Valsalva diameter
measured at the right coronary cusp and left coronary cusp
were averaged to obtain the mean sinus of Valsalva height
and diameter, respectively. Likewise, the mean coronary
ostia height and mean diameter were computed for the
AV and STJ.

Preprocessing Step 2: Categorical Features
The data were first encoded by replacing “no” and “yes”

or “unknown” with values of 0 or 1 for features, such as
gender or relating to cardiac history and risk factors. Cate-
gories for race (White/Caucasian, Asian, Black/African
American, Hawaii-Pacific, Multiracial, Other) were as-
signed values ranging from 0 to 6, respectively. The labels
“tricuspid,” “bicuspid,” and “bioprosthetic” for indicating
valve type were replaced with values 0, 1, and 2, respec-
tively. One aspect to note about the risk factor input features
is that the categories observed for history of smoking
include “never,” “former (>1 year),” and “current.” These
labels were encoded with values of 0, 1, and 2, respectively.
Categorical variables for intraprocedural variables included
access site and access method: access site options (femoral,
transapical, subclavian, axillary, carotid, transcaval, and
other) were imputed with values ranging from 0 to 6, and
access method options (percutaneous, cutdown, minithora-
cotomy, and other) were given values spanning 0 to 3. The
values “none,” “mild,” “moderate,” “severe,” and
“occluded” for grading the severity of calcium, stenosis,
tortuosity, and dissection for several access sites were as-
signed values of 0, 1, 2, 3, and 4, respectively. These access
sites included the common iliac, external iliac, internal
iliac, and common femoral arteries. For each access site,
the severity values given for the calcium, stenosis, tortuos-
ity, and dissection variables for the right and left compo-
nents were summed, resulting in severity values ranging

from 0 to 8 for stenosis and 0 to 6 for the remaining
parameters.

Preprocessing Step 3: Training-Validation-Testing
Split

The preprocedural and postprocedural data were then
split into training, validation, and testing sets with a ratio
of 3:1:1 to prevent data leakage that could occur during sub-
sequent preprocessing steps.

Preprocessing Step 4: Addressing Outliers
After this data split step, outliers within each input nu-

merical feature were eliminated by first computing the
z-score values for the data provided for each variable and
then removing any resulting values that lie outside 5 SDs
from the mean. This step was performed twice for each
data set to ensure the removal of all outlier CTmeasurement
values. Outliers within the AVA and pressure gradient
values for each dataset were removed by simply applying
the interquartile range (IQR) method. The IQR method
identifies data points as outliers if they fall within regions
defined as � (minimum value – IQR) or � (maximum
value þ IQR). Applying this step resulted in the removal
of patients with pressure gradients greater than 22 mm Hg
and AVAvalues greater than 3.58 cm2 or less than 0.30 cm2.

Preprocessing Step 5: Addressing Missing Data
After eliminating outliers from the input and response

variables for each dataset, any patients with no pressure
gradient or AVA value recorded were removed, and any
missing data for a given numerical input feature were
imputed in a round-robin fashion using a Bayesian Ridge al-
gorithm. This regression method develops a linear regres-
sion model by analyzing the probability distribution of the
values for a specific feature as a function of the remaining
input features. In addition, feature scaling was applied to
all numerical features to ensure consistency in mean and
SD values (mean ¼ 0, SD ¼ 1). On the other hand, missing
values for each categorical variable were imputed with the
most frequent values occurring for that feature.

Preprocessing Step 6: Eliminating Multicollinearity
The last preprocessing step applied to each dataset for the

input features addressed the issue of multicollinearity
where some input variables demonstrated high correlation.
A Pearson correlation matrix was computed for the numeric
variables, and variables corresponding to correlation values
with magnitudes greater than or equal to 0.80 were
removed. Likewise, a Kendall correlation matrix was used
to remove highly correlated categorical variables. A Pear-
son correlation matrix was also calculated to quantify the
correlation strength between the input features and the
response variables. Any input features corresponding to cor-
relation values with magnitudes less than or equal to 0.01
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were eliminated because these values indicate very low cor-
relation and therefore low predictive ability of the variables
considered.

HYPERPARAMETER FINE-TUNING:
REGRESSION

A detailed, technical description of how to implement
each of the models listed below using Python can be found
in the scikit-sklearn documentation.E1

Elastic Net Regression
The main model variables focused on included the regu-

larization parameter “alpha” and the l1 ratio.E2 The values
of interest for the parameter alpha were defined to be
0.01, 0.05, 0.1, 0.5, and values ranging from 1 to 3. The
l1 ratio variable was then assigned values ranging from
0.0 and 1.0.

Support Vector Regression
The hyperparameters that were varied for SVRE3

included the kernel type, the regularization parameter
“C,” and the maximum acceptable error “epsilon.” Linear,
polynomial, radial basis function, and sigmoid kernels
were tested. The parameter “C” was allowed to range
from 0.1 to 5.0, and “epsilon” ranged from 0.01 to 6.0.

Random Forest Regression
The varied model hyperparameters included maximum

depth for regulating the growth of the decision tree, mini-
mum number of samples required to perform a split at
each node, minimum number of samples remaining in
each leaf node, and maximum number of features used to
determine the best split.E4 The values tested for the
maximum depth were 2, 3, 5, 10, and 15, whereas values
of 2, 10, 15, 20, 25, and 30 were for maximum samples
per split. The values investigated for the minimum samples
per leaf parameter included 1, 3, 5, 10, and 15. Different
methods were then applied to calculate the maximum num-
ber of features. These methods included setting the hyper-
parameter to the total number of input features from the
preprocedural dataset and computing the square root as
well as the logarithm (base 2) of the number of input fea-
tures. Because this method is an ensemble method, multiple
estimators were built where individual predictions were
averaged to form a final robust random forest regression
model. The number of estimators was allowed to vary be-
tween 3 and 20 to ensure convergence of the training and
validation results.

Gradient Boosting Regression
The gradient boosting methodE5,E6 involved the same

hyperparameters as the random forest regressor because
its function includes a decision tree, the same range of

values was investigated for each hyperparameter. The
number of estimators constructed with this ensemble
method ranged from 3 to 20 to ensure agreement
between the model’s predictive performance for the
training and validation sets. Additional features of this
algorithm to note are the hyperparameter for specifying
the loss function and the “alpha-quantile” value. During
the training process, the loss function was set to
“quantile,” and estimators were built at “alpha-quantile”
values of 0.05, 0.50, and 0.95. Implementing this step
allowed for prediction intervals to be constructed since
the 5th and 95th percentile predictions were outputted
along with the actual predicted values at the 50th
percentile.

Multilayer Perceptron Regression
For the ANN algorithm,E7 the learning rate was first set to

0.001. The hyperparameters that were fine-tuned for the
ANN algorithm include the number of neurons within the
input layer (“hidden layer size”) and the regularization
term “alpha.” For finding the optimal set of hyperpara-
meters, the hidden layer size was defined as an array with
sample values ranging from 300 to 500, and the array for
“alpha” was set to values between 20 and 200. The combi-
nation of hidden layer size and “alpha” values that yielded
the lowestMAE computed for the validation set was defined
to be the optimal set of hyperparameters. After this fine-
tuning process, the ANN for pressure gradient predictions
was trained with a structure defined as an input layer with
49 neurons where each input neuron corresponds to an input
feature, a single hidden layer with 425 neurons, and 1 output
neuron for the pressure gradient estimation, yielding a total
of 474. Likewise, for AVA predictions, the ANN structure
was set as an input layer with 47 neurons, a single hidden
layer with 375 neurons, and 1 output neuron for the pre-
dicted AVA, resulting in 423 neurons. The regularization
hyperparameter “alpha” was set to a value of 50 and 20
for pressure gradient and AVA predictions, respectively, to
prevent overfitting.
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TABLE E1. Preprocedural, intraprocedural, and postprocedural variables extracted from dataset after preprocessing

Input variables (pressure gradient) Input variables (AVA) Output/response variables

Mean diameter aortic annulus Mean diameter aortic annulus AV pressure gradient

Ascending aorta diameter 40 mm above annulus Ascending aorta diameter 40 mm above annulus AVA

Aortic root angulation Aortic root angulation

Aortic arch diameter Aortic arch diameter

Mean diameter right common iliac artery Thoracic aorta diameter at level of isthmus

Mean diameter right common femoral artery Thoracic aorta diameter at level of diaphragm

Mean diameter right external iliac artery Mean diameter right common iliac artery

BSA Mean diameter left common iliac artery

Age Mean diameter right common femoral artery

Pre-TAVR AVA Mean diameter right external iliac artery

Pre-TAVR AV pressure gradient LVEF

LVEF BSA

Valve sheath delivery Age

Area sinus of Valsalva Pre-TAVR AVA

Sinus of Valsalva mean height Valve sheath delivery

Coronary ostia height mean AV Sinus of Valsalva mean height

STJ diameter mean thoracic aorta measurements Area sinus of Valsalva

Gender Coronary ostia height mean AV

Race STJ diameter mean thoracic aorta measurements

Commissural calcification Gender

Aortic annulus calcification Race

Aorto-mitral curtain calcification Commissural calcification

Aneurysm present in abdominal aorta Aortic annulus calcification

Dissection right common femoral artery Aorto-mitral curtain calcification

History of hypertension risk factors Dissection right common femoral artery

History of hyperlipidemia risk factors History of Hypertension Risk Factors

Family history of coronary artery disease risk factors History of hyperlipidemia risk factors

History of diabetes risk factors Family history of coronary artery disease risk factors

History of smoking risk factors Menopause risk factors

Family history of sudden cardiac death risk factors History of diabetes risk factors

Myocardial infarction cardiac history History of smoking risk factors

Moderate/severe valvular disease cardiac history Family history of sudden cardiac death risk factors

History of peripheral artery disease cardiac history Myocardial infarction cardiac history

Nonischemic cardiomyopathy cardiac history History of peripheral artery disease cardiac history

Chest pain symptoms Congenital heart disease cardiac history

Dyspnea symptoms Nonischemic cardiomyopathy cardiac history

Heart failure Chest pain symptoms

Transcatheter valve therapy access site Transcatheter valve therapy access site

Calcium common iliac artery Stenosis common iliac artery

Tortuosity common iliac artery Calcium common iliac artery

Dissection common iliac artery Stenosis external iliac artery

Stenosis external iliac artery Calcium external iliac artery

Calcium external iliac artery Tortuosity external iliac artery

Tortuosity external iliac artery Dissection external iliac artery

(Continued)
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TABLE E1. Continued

Input variables (pressure gradient) Input variables (AVA) Output/response variables

Dissection external iliac artery Stenosis common femoral artery

Stenosis common femoral artery Calcium common femoral artery

Calcium common femoral artery Stenosis internal iliac artery

Tortuosity common femoral artery

Stenosis internal iliac artery

AVA, Aortic valve area; AV, aortic valve; BSA, body surface area; TAVR, transcatheter aortic valve replacement; LVEF, left ventricular ejection fraction; STJ, sinotubular junction.

TABLE E2. Best estimators identified for each learning algorithm applied for predicting pressure gradient and aortic valve area

Best estimator – predicting pressure gradient Best estimator – predicting AVA

SVR C ¼ 0.1, epsilon ¼ 2.0,

kernel ¼ linear

C ¼ 0.5, epsilon ¼ 0.2

Elastic net regression alpha ¼ 0.1, l1 ratio ¼ 0.2 alpha ¼ 0.05, l1 ratio ¼ 0.3

MLP regression hidden layer size ¼ 425, alpha ¼ 50 hidden layer sizes ¼ 375, alpha ¼ 20

Random forest regression max depth ¼ 5,

min samples split ¼ 20,

min samples leaf ¼ 1,

max features ¼ auto

max depth ¼ 2,

min samples split ¼ 2,

min samples leaf ¼ 1,

max features ¼ auto

Gradient boosting regression alpha ¼ 0.5, max depth ¼ 15,

min samples split ¼ 30,

min samples leaf ¼ 1,

max features ¼ sqrt

alpha ¼ 0.5, max depth ¼ 10,

min samples split ¼ 20,

min samples leaf ¼ 1,

max features ¼ sqrt,

AVA, Aortic valve area; SVR, support vector regression; MLP, multilayer perceptron.
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