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A B S T R A C T

Deep learning technology is widely used in the field of medical imaging. Among them, Con-
volutional Neural Networks (CNNs) are the most widely used, and the quality of the dataset is 
crucial for the training of CNN diagnostic models, as mislabeled data can easily affect the ac-
curacy of the diagnostic models. However, due to medical specialization, it is difficult for non- 
professional physicians to judge mislabeled medical image data. In this paper, we proposed a 
new framework named medical image dataset cleaning (MIDC), whose main contribution is to 
improve the quality of public datasets by automatically cleaning up mislabeled data. The main 
innovations of MIDC are: firstly, the framework innovatively utilizes multiple public datasets of 
the same disease, relying on different CNNs to automatically recognize images and remove 
mislabeled data to complete the data cleaning process. This process does not rely on annotations 
from professional physicians and does not require additional datasets with more reliable labels; 
Secondly, a novel grading rule is designed to divide the datasets into high-accuracy datasets and 
low-accuracy datasets, based on which the data cleaning process can be performed; Thirdly, a 
novel data cleaning module based on CNN is designed to identify and clean low-accuracy datasets 
by using high-accuracy datasets. In the experiments, the validity of the proposed framework was 
verified by using four kinds of datasets diabetic retinal, viral pneumonia, breast tumor, and skin 
cancer, with results showing an increase in the average diagnostic accuracy from 71.18 % to 
85.13 %, 82.50 %to 93.79 %, 85.59 %to 93.45 %, and 84.55 %to 94.21 %, respectively. The 
proposed data cleaning framework MIDC could better help physicians diagnose diseases based on 
the dataset with mislabeled data.

1. Introduction

With the continuous development of deep learning technology, its application in many fields such as image processing [1], natural 
language processing [2], industrial [3], fault detection [4], multimedia [5], and so on has achieved remarkable results. In the field of 
medical image processing [6], convolutional neural networks are trained on sample data with doctor diagnostic labels to obtain 
diagnostic models. Thus, the quality of the dataset is crucial for the model [7], including data amount and accurate labeling [8]. The 
large data amount provides sufficient feature information [9] and an accurate label ensures the model learns features more correctly 
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[10], whereas the presence of incorrect labels in the data leads to an unreliable model [11], which in turn affects the diagnostic results.
The concept of data cleaning was first introduced by Galhardas in 2000 to address problems and errors in data [12]. At first, this 

technique is used in the text data. Such as: Jason et al. [13] utilized Pandas for missing data processing and outlier recognition, 
improving data quality through feature encoding and standardization techniques to enhance the performance of machine learning 
models. Konstantinos et al. [14] proposed a multi-level electronic medical record (EMR) data cleaning method, which processes 
missing values in EMR through deletion and interpolation, and processes outliers in EMR through cluster analysis. All these methods 
are aimed at text data, while not suitable for image data. In recent years, researchers have gradually explored the use of deep learning 
for image data cleaning [15]. Currently, the research on data cleaning focuses on two directions: One is to deal with the data belonging 
to minority classes or with low-resolution of datasets, which are labeled correctly but affect the model training results due to its small 
amount or bad quality [16]. Studies in this direction include: In 2020, Zhang et al. [17] proposed the ImageDC data cleaning method 
based on the Twitter dataset. This method first calculates the average and standard deviation of the number of images in each category, 
and then sets category thresholds to identify and clean minority class data with quantities below the threshold. Then calculate the 
self-recognition rate of each category and set a recognition threshold to identify and clean low-resolution data below the threshold. The 
accuracy of 542 categories was ultimately improved from 64.17 % to 68.88 %. Liu et al. [18] used threshold method for data cleaning 
and used pre-training Xception to remove a few categories of data from the South China Sea marine fish dataset, improving the ac-
curacy of marine fish classification to 75.27 %. However, the cleaning effect of the above methods depends on the threshold setting, 
and different datasets require different thresholds. The selection of these parameters has a significant impact on the cleaning results. 
Meanwhile, the above methods are only applicable to a few categories of images and are not suitable for medical image datasets. 
Another method is to clear the mislabeled data of the dataset, which provides inaccurate feature information and leads to incorrect 
classification results when training the network on the dataset [19]. For example, Curtis et al. [20] proposed confidence learning, 
which iteratively cleans up mislabeled data by using a given dataset with accurate labels. But this data cleaning method is difficult to 
implement because it requires additional datasets with correct labels, which are often difficult to obtain. Based on cluster analysis, Li 
et al. [21] used VGG-NIN neural network to identify the outlier data as mislabeled data and cleared them. Outliers are data points that 
deviate significantly from other data, usually indicating label errors. By identifying these outliers and treating them as potential in-
stances of mislabeling, the early esophageal cancer dataset classification accuracy is improved to 85 %. This method can clear some 
mislabeled data, but as correctly labeled data may also be identified as outlier, it may miss useful data.

In the field of natural images, due to the abundant amount of data, the problem of datasets has not yet become prominent [22]. 
However, for the medical images, data cleaning is particularly important for the following reasons: (1) Since it’s difficult to obtain 
enough medical data with diagnostic information [23], the size of medical datasets is usually small [24], and even a small number of 
mislabeled data in it can introduce a large impact. (2) The process of labeling medical data is highly specialized, i.e., doctors with 
different levels of experience and sophistication can label a piece of data differently [25], whereas non-medical researchers are unable 
to identify the correct one. (3) In the field of medical diagnosis, there are usually multiple public datasets for a given disease [26]. For 
example, public datasets like APTOS [27], Messidor-2 [28], Eyepac [29], and STARE [30] are available for diabetic retinal diseases, 
Chest X-Ray Images [31], COVID-19 [32] are available for viral pneumonia, and us-data [33], BUSI [34], BreakHis [35] are available 
for breast tumors. Although these datasets are open, their performance on the same network are different due to the different accuracy 
of their data labels. For example, in the researches of Yue et al. [36] and Lahmar et al. [37], the accuracy of APTOS and Messidor-2 
diagnosis on ResNet50 differs by 27.44 %. In the researches of Li et al. [38] and Lahmar et al. [39], the accuracy of Chest X-Ray Images 
and COVID-19 diagnosis on ResNet50 differs by 5.08 %. In the researches of Masud et al. [40] and Moon et al. [41], the accuracy of 
us-data and BUSI diagnosis on ResNet50 differs by 13.55 %. This issue will affect the use of these datasets because researchers prefer to 

Fig. 1. MIDC functional structure diagram.
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use the better one rather than the poorer one [42]. While for poor dataset that contain majority of valid data, it makes more sense to 
improve its quality by cleaning the bad-data rather than giving up to use it [43].

Aimed at above problems, a medical data cleaning framework MIDC is proposed to improve the quality of public medical datasets 
by cleaning mislabeled data, and by which more effective medical diagnose model can be given. The main contributions of the 
framework are as follows: (1) The framework innovatively uses multiple public datasets of the same disease to perform the data 
cleaning process, through which the datasets can be easily accessed and do not need extra datasets with more reliable labels. (2) We 
propose a novel grading rule to divide the datasets into high-accuracy datasets and low-accuracy datasets. And based on these results, 
data cleaning process can be performed. (3) A novel data cleaning module is designed to clean low-accuracy datasets by using high- 
accuracy datasets.

The rest of this paper is described as follows: Section 2 provides a detailed description of the proposed framework and materials; 
Section 3 presents the experiments and results of the validation framework; Section 4 analyzes the results of all the experiments; 
Section 5 summarizes the significance of this work and future improvement directions.

2. Framework and materials

The medical image dataset cleaning framework MIDC proposed in this paper is built on the basis of multiple public datasets that 
represent the same kind of diseases but have varying labeling qualities. The functional structure diagram of MIDC is shown in Fig. 1, 
which mainly includes the input part, data grading module, data cleaning module, and output part. The specific description is as 
follows: Firstly, we input two datasets of the same disease, Dataset 1 and Dataset 2; Secondly, based on the grading rules, the data 
grading module classifies the two datasets into dataset Dh with higher label accuracy and dataset Dl with lower label accuracy. Then Dh 
and Dl are put into the data cleaning module separately; Thirdly, the data cleaning module which are composed of CNN training block, 
diagnostic block and data cleaning block, cleans the Dl by using Dh to obtain a cleaned dataset Dlc with a higher labeling accuracy; 
Finally, Dlc is output. The pseudocode of the MIDC framework which demonstrates the design information is shown in Appendix A. And 
the flowchart of the MIDC framework is shown in Appendix B.

2.1. Input datasets

The input dataset of the MIDC framework should meet the following guidelines: (1) Since the framework uses high-accuracy 
datasets to clean low-accuracy datasets to better diagnose a specific disease, it must rely on at least two or more publicly available 
datasets. (2) The dataset should satisfy that there is a sufficient amount of data in the dataset and sufficient literature citing the dataset. 
The former ensures that the neural network can effectively train a diagnose model, and the latter serves as a criterion for evaluating the 
quality of the dataset.

Currently, with the wide application of deep learning in medical diagnosis, public datasets for many diseases meet the above 
requirements. In this paper, four kinds of diseases are selected for the study, including diabetic retinal, viral pneumonia, breast tumors 
and skin cancer. The category and number statistics for each dataset are shown in Table 1, and example images for each dataset are 
displayed in Fig. 2.

A. Diabetic retinal

The dataset in this category consists of retinal scan images used to detect diabetic retinopathy. Based on the physician’s diagnosis, 

Table 1 
The number of each category in different datasets.

Disease type Dataset Category Number Total

Diabetic retinal APTOS normal 1805 3662
diabetes 1857

Messidor-2 normal 1018 1786
diabetes 768

Viral pneumonia Chest X-Ray Images normal 1585 5860
pneumonia 4275

COVID-19 normal 1341 2905
pneumonia 1564

Breast tumors us-data benign 100 250
malignant 150

BUSI benign 437 647
malignant 210

Skin cancer ISIC 2020 benign 584 1168
malignant 584

MED NODE benign 400 680
malignant 280

*The examples of above datasets are show in Fig. 2: Fig. 2(a) for APTOS; Fig. 2(b) for Messidor-2; Fig. 2(c) for Chest X-Ray Images; Fig. 2(d) for 
COVID-19; Fig. 2(e) for us-data; Fig. 2(f) for BUSI; Fig. 2(g) for ISIC2020; Fig. 2(h) for MED NODE.
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these images are labeled as grade 0–4, reflecting the severity of diabetic retinopathy. The datasets used in this paper are: (1) APTOS 
[27], which is provided by Aravind Eye Hospital, India, containing 3662 images; (2) Messidor-2 [28], which is provided by ADCIS, 
containing 1786 images.

B. Viral pneumonia

The dataset in this category consists of chest x-ray images used to detect pneumonia. Based on the physician’s diagnosis, these 
images are labeled as normal and viral pneumonia. The datasets used in this paper are: (1) Chest X-Ray Images [31], retrospective cases 
from pediatric patients aged 1–5 years old from Guangzhou Women’s and Children’s Medical Center, containing 5860 images; (2) 
COVID-19 [32], provided by researchers from Qatar University and University of Dhaka, Bangladesh, containing 2905 images.

C. Breast tumors

The dataset in this category consists of ultrasound images of breast tumors used to detect breast cancer. The images are labeled as 
benign and malignant based on the physician’s diagnosis. The datasets used in this paper are: (1) us-data [33], from Mendeley, 
containing 250 images. (2) BUSI [34], from Al-Dhabyani et al. containing 647 images.

Fig. 2. Examples of images from the datasets belong to the four diseases.
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D. Skin cancer

This category of dataset includes dermatoscopic images used for detecting skin cancer. According to the doctor’s diagnosis, these 
images are marked as benign and malignant. The datasets used in this paper are: (1) ISIC 2020 [44], published by the International 
Skin Imaging Collaboration (ISIC), which includes 1168 images of benign and malignant skin lesions. (2) MED NODE [45], the images 
in this dataset are from the Department of Dermatology at Groningen University Medical Center in the Netherlands, with a total of 70 
malignant and 100 benign dermatoscopic images. Due to its small data size, we expand the dataset by rotating the images by 15◦, 45◦, 
and 90◦. The expanded datasets are shown in Table 1.

Fig. 2 represents example images for each category in each dataset: (1) For diabetic retinal, Fig. 2(a) and (b) is example of APTOS 
and Messidor-2 respectively, in which the left is normal image and the right is abnormal image; (2) For viral pneumonia, Fig. 2(c) and 
(d) is example of Chest X-Ray and COVID-19, in which the left is normal image and the right is viral pneumonia image; (3) For breast 
tumors, Fig. 2(e) and (f) is example of us-data and BUSI, in which the left is benign breast tumor image and the right is malignant breast 
tumor image; (4) For skin cancer, Fig. 2(g) and (h) is example of ISIC 2020 and MED NODE, in which the left is benign image and the 
right is malignant image.

2.2. Data grading module

In the framework, two different public datasets are input to the data grading module, which divides them into high-accuracy 
dataset Dh and low-accuracy dataset Dl. The rules of data grading are based on two guidelines: (1) Citation guideline, according to 
which we first collect literature based on these datasets in recent years and then distinguish the quality of these datasets by comparing 
their different performances; (2) Experiment guideline, according to which we first use these datasets to train the common neural 
networks and then distinguish the quality of these datasets by comparing their experimental results.

2.3. Data cleaning module

For the obtained two levels of dataset Dh and Dl, the data cleaning module uses the high-accuracy dataset Dh as the baseline to clean 
the low-accuracy dataset Dl, thereby improving the quality of its data labels. The structure of the data cleaning module is shown in 
Fig. 1: Firstly, the high-accuracy dataset Dh are put into CNN training block, which trains the CNN networks on Dh to obtain the di-
agnose models; Secondly, together with the low-accuracy dataset Dl, these diagnostic models are put into the diagnostic block to obtain 
the diagnostic results of Dl; Thirdly, these diagnostic results, along with the original label of Dl, are put into the data cleaning block, 
which cleans the dataset Dl based on them to obtain a dataset Dlc with a higher labeling accuracy. The pseudocode of the data cleaning 
module which demonstrate the design information is shown in Appendix C, and the detailed introduction of diagnostic block and data 
cleaning blocks are as follows:

A. Diagnostic block

In the diagnostic block, the diagnose model are used to diagnose Dl data to obtain the diagnostic results of Dl. In this paper, two 
kinds of diagnose methods are designed: multi-training and multi-network to diagnose Dl data, as shown in Fig. 3(a) and (b).

Fig. 3(a) shows the multi-training method: firstly, we train the diagnose model n times based on Dh to get n diagnose models; 

Fig. 3. Two methods of diagnose include (a) multi-training, (b) multi-network.

S. Yi and Z. Chen                                                                                                                                                                                                      Heliyon 10 (2024) e38910 

5 



secondly, dataset Dl are put into these models respectively to get n diagnose results y(i)(i = 1,2,……,n); thirdly, based on these di-
agnose results, the weighted averaging result ymt is calculated by equation (1). The core idea is that through repeated training, the 
network will gradually adjust its parameters to improve its overall generalization ability. 

ymt =

∑n

i=1
wiy(i)

∑n

i=1
wi

(1) 

Where y(i) represents diagnostic result of each time, and wi represents the weight assigned to each y(i). And y(i) is calculated according 
to equation (2) [46], which takes a binary task as an example: 

y(i)= p0 × c0 + p1 × c1; c = 0, 1 (2) 

Where c represents the classification of the prediction label. As there are two classes in such task, we can set c = 0,1. c0 represents the 
prediction label as class 0, c1 represents the prediction label as class 1, p0 represents the probability of c0, and p1 represents the 
probability of c1.

Fig. 3(b) shows the multi-network method: firstly, we put dataset Dh into k different networks to get k diagnose models; secondly, 
dataset Dl are put into these models respectively to get k diagnose results y(i)(i = 1,2,……,k); thirdly, based on these diagnose results, 
the weighted averaging result ymn is calculated by equation (3). The core idea is that each network has its own unique architecture and 
parameter settings. This approach aims to improve the overall diagnostic performance through diversity. 

ymn =

∑k

i=1
wiy(i)

∑k

i=1
wi

(3) 

Based on ymt and ymn, the final diagnostic result ydr are obtained by equation (4). 

ydr ={ymt or ymn} (4) 

B. Data cleaning block

In order to clean the dataset Dl to obtain the dataset Dlc with higher labeling accuracy, the data cleaning block performs data 
cleaning process as shown in Fig. 4, which is mainly consists of 3 steps: Step 1, compare, by comparing the original and diagnostic 
labels of each image, we can identify the image that is inconsistent with the original and diagnostic labels; Step 2, marking error data, 
due to the inconsistencies between the original labels and diagnostic labels, these images are considered suspicious and their original 
labels are considered unreliable, thus they are marked as error data; Step 3, delete error data, because these error data can affect the 
accuracy of diagnose model, we delete them. Then the remained data is the dataset Dlc with higher accuracy.

Fig. 4. Data cleaning block diagram.
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3. Experiments

3.1. Experimental setup

This paper employs Pycharm as the compiler, programming language Python, experimental framework Keras and Tensorflow, and 
hardware environment 11th Gen Intel (R) Core (TM) i7-11700K CPU@3.60GHz The graphics card is NVIDIA GeForce RTX 3060, 
operating on a 64-bit Windows system. For classification experiments, we divided the entire dataset into an 80:20 training set and a 
testing set. Set the number of bootstrap iterations to 60. The Adam optimizer was employed for parameter updates in the context of 
spark_categorical_crosstropy as the loss function. Specific hyperparameters are configured with a learning rate of 0.001, 200 epochs, 
and a batch size of 16.

3.2. Evaluation indicators

The performance of the data cleaning framework is assessed using diverse performance indicators. For classification experiments, 
for better comparison, we evaluate the performance of the proposed classification network using accuracy, recall, precision, and F1 
value [47]. Accuracy provides the proportion of the model’s overall correct predictions, as shown in equation (5). While recall and 
precision measure the model’s ability to identify positive classes and avoid misidentifying negative classes as positive classes, 
respectively, as shown in equation (6) and equation (7). The F1 value is the harmonic mean of precision and recall, as shown in 
equation (8). The formula for each indicator is as follows: 

Accuracy=
TP + TN

TP + TN + FP + FN
(5) 

Recall=
TP

TP + FN
(6) 

Precision=
TP

TP + FP
(7) 

F1=
2 × Precision × Recall

Precision + Recall
(8) 

Table 2 
Results of references for four kinds of disease datasets.

Disease type Network Datasets

APTOS accuracy(%) Messidor-2accuracy(%)

Diabetic retinal ResNet50 a98.27 [36],96.66 [49] 70.83 [37],78.21 [50]
VGG16 92.91 [36] 81.59 [37],79.32 [50]
VGG19 93.00 [49] 79.46 [37]
InceptionV3 94.46 [36] 72.79 [37],74.09 [50]
InceptionResNetV2 97.54 [48] 72.87 [37]
Xception 97.81 [48] 78.77 [50]
MobileNetV2 97.68 [48],93.17 [49] 83.81 [37]
average 95.72 77.17

Viral pneumonia – Datasets
Chest X-Ray Images accuracy(%) COVID-19 accuracy(%)

VGG16 97.80 [51],98.11 [52] 83.71 [52],85.26 [39]
ResNet18 98.47 [51],98.11 [52] 83.14 [52],88.42 [39]
ResNet50 97.71 [38] 92.63 [39]
DenseNet161 96.79 [38],98.97 [52] 83.52 [52]
average 97.99 86.11

Breast tumors – Datasets
us-data accuracy(%) BUSI accuracy(%)

VGG16 100 [40] 82.80 [54],88.72 [41]
ResNet18 99.50 [53],100 [40] 86.65 [41]
ResNet50 99.00 [53],99.60 [40] 88.85 [54],86.05 [41]
ResNet101 99.00 [53] 86.05 [41]
average 99.52 86.52

Skin cancer – Datasets
ISIC 2020 accuracy(%) MED NODE accuracy(%)

AlexNet 95.72 [55],93.10 [56] 82.00 [57],78.11 [58]
GoogleNet 91.01 [55] 88.00 [58]
ResNet101 96.15 [55],95.50 [56] 85.00 [57],84.00 [58]
average 94.30 83.42

a 98.27 [36]: represents the accuracy of 98.27 % from Ref. [36]; other expressions are similar to this.
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Among them, TP (True Positive), representing true positive; FN (False Negative), denoting false negative; TN (True Negative), 
signifying true negative; and FP (False Positive), indicating false positive.

3.3. Results

To showcase the validity of the proposed data cleaning framework MIDC, experiments are conducted on the diagnosis of four kinds 
of diseases. The experiment is divided into two stages: (1) Data grading experiment: two datasets of the same diseases are divided into 
high-accuracy Dh and low-accuracy Dl through data grading for data cleaning experiments. The effectiveness of the classification 
results are demonstrated through internal and external validation experiments; (2) Data cleaning experiment: using MIDC to clean the 
Dl dataset to obtain the cleaned dataset Dlc, and conducting diagnostic experiments on four kinds of diseases based on Dlc to obtain the 
results of data cleaning. The effectiveness of data cleaning is demonstrated through comparative analysis.

3.3.1. Data grading experiment
The experiment is performed on the four kinds of diseases mentioned in section 2.1, and each type of disease corresponds to two 

datasets (Table 1). For these datasets, graded processing is required. The experiment is constructed by three steps. Step 1: Literature 
organization; Step 2: Experimental validation; Step 3: Results confirming based on grading rulers.

Step 1: Based on the dataset described in section 2.1, we have chosen the literature on the use of these datasets in recent years, 
which have high citation rates and journal impact factors, with high credibility. The arranged results are shown in Table 2.

It can be seen from Table 2 that in the two datasets for diagnosis of diabetes retinal disease, the average accuracy of APTOS dataset 
based on each classic network in the references listed in Table 2 is 95.72 %, and that of Messidor-2 is 77.17 %, the differ of them is 
18.55 %. For diagnosing viral pneumonia, the average accuracy of Chest X-Ray Images is 97.99 %, and the average accuracy of COVID- 
19 is 86.11 %, the differ is 11.88 %. For the diagnosis of breast tumors, the average accuracy of us-data is 99.52 %, and the average 
accuracy value of BUSI is 86.52 %, the differ is 13.00 %. For the diagnosis of skin cancer, the average accuracy of ISIC 2020 is 94.30 %, 
and the average accuracy value of MED NODE is 83.42 %, the differ is 10.88 %. Therefore, it can be preliminarily determined that the 
quality of APTOS, Chest X-Ray Images, us-data, and ISIC 2020 datasets is better, because of their accuracy of dataset label is higher, 
and therefore they can be set as Dh datasets. The quality of Messidor-2, COVID-19, BUSI, and MED NODE datasets is poor, which means 
the accuracy of their dataset label is low. Therefore, they can be set as Dl datasets.

We further demonstrate the difference in average accuracy between two datasets of the same kind through Fig. 5. The horizontal 
axis depicts the type of disease, while the vertical axis showcases the average diagnostic accuracy of the datasets. And based on Fig. 5
the same conclusion as Table 2 can be drawn.

Step 2: Based on Dh and Dl obtained in step 1 and by using the same experimental settings as the literature listed in Table 2, 
experimental validation process is performed to verify the quality of them. Since the experiments are conducted to compare with 
existing references, in order to ensure comparability of the results, we use the same network and dataset as those used in existing 
references for the comparative experiment. The experiments include internal validation and external validation: (1) The internal 
validation experiment includes the experiment of Dh and Dl. The internal validation experiment of Dh means both training process 
for diagnose model and test process for diagnose result are performed on Dh, and that of Dl means these processes are both per-
formed on Dl. (2) In the external validation experiment, Dh are set as training set to be trained to obtain the diagnose model, and Dl 
are set as test data to be put into this diagnose model for the diagnostic result. Table 3 shows the experimental results for the four 
disease datasets.

From Table 3, it can be seen that for the internal experiments: our experimental results are consistent with the conclusions of step1, 
which means that the Dh dataset is more accurate, the average accuracies of APTOS, Chest X-Ray Images, us-data, and ISIC 2020 are 
95.20 %, 96.56 %, 99.91 %, and 93.33 %, respectively. And the Dl dataset is less accurate, with a lower accuracy of Messidor-2, COVID- 
19, BUSI, and MED NODE values of 71.18 %, 82.50 %, 85.58 %, and 84.55 %, respectively. For the external experiments, in which the 

Fig. 5. Difference in average accuracy between the four disease datasets.
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diagnostic models are trained on Dh and diagnose process are performed on Dl, the average accuracies of above four diseases are 80.74 
%, 92.07 %, 87.63 %, and 87.64 %, respectively, which are higher than those obtained from the internal validation of Dl. This shows 
that, firstly, the network model trained based on Dh is not only better but also has good generalization, indicating that the data quality 
of Dh is better; secondly, based on the same test set Dl, the model trained with Dh is better than the model trained with Dl, indicating the 
quality of Dh is better than Dl, i.e. data labels of Dh are more accurate. Except for the literature, the above experiments further 
demonstrated that the quality of Dh is superior to Dl.

Step3: Based on the grading principle described in section 2.2, we can confirm the grading results: (1) The results of step1 (Table 2) 
indicate that the accuracy rate of Dh dataset is higher than that of Dl dataset in the reference; (2) The results of step2 (Table 3) 
indicate that the data quality of Dh dataset is better than that of Dl dataset in the validation experiments. In summary, it can be 
confirmed that the grading results of Dh and Dl are reasonable and valid.

3.3.2. Data cleaning experiments
Based on the Dh and Dl obtained from above section, data cleaning experiments are performed according to our MIDC framework. In 

Table 3 
Experimental results for the four disease datasets.

Disease type Network Internal validation External Validation

Dh accuracy(%) Dl accuracy(%) Dl accuracy(%)

Diabetic retinal (Dh: APTOS 
Dl: Messidor-2)

ResNet50 98.22 66.80 73.84
VGG16 91.02 71.25 81.90
VGG19 93.99 69.63 80.40
InceptionV3 93.53 70.44 81.90
InceptionResNetV2 96.04 70.44 79.23
Xception 97.40 72.07 81.73
MobileNetV2 96.18 77.63 86.21
average 95.20 71.18 80.74

Viral pneumonia (Dh: Chest X-Ray Images 
Dl: COVID-19)

VGG16 96.50 82.67 91.33
ResNet18 97.09 81.81 92.18
ResNet50 96.58 83.79 92.64
DenseNet161 96.07 81.73 92.13
average 96.56 82.50 92.07

Breast tumors (Dh: us-data 
Dl: BUSI)

VGG16 99.65 82.36 85.55
ResNet18 100 86.15 87.22
ResNet50 100 86.92 88.88
ResNet101 100 86.92 88.88
average 99.91 85.58 87.63

Skin cancer (Dh: ISIC 2020 
Dl: MED NODE)

AlexNet 94.07 85.50 88.88
GoogleNet 91.11 82.40 84.44
ResNet101 94.81 85.75 89.62
average 93.33 84.55 87.64

Table 4 
Statistics on changes in the amount of datasets.

Disease type pre-cleaning(Dl) post-cleaning(Dlc)

Dlc1(method 1) Dlc2(method 2)

Diabetic retinal (Dl:Messidor-2) 1786 ResNet50 1165 1317
VGG16 1188
VGG19 1181
InceptionV3 1171
InceptionResNetV2 1185
Xception 1188
MobileNetV2 1199

Viral pneumonia (Dl:COVID-19) 2950 VGG16 2350 2478
ResNet18 2338
ResNet50 2369
DenseNet161 2350

Breast tumors (Dl:BUSI) 647 VGG16 396 502
ResNet18 401
ResNet50 411
ResNet101 411

Skin cancer (Dl: MED NODE) 680 AlexNet 457 483
GoogleNet 465
ResNet101 470

* method 1:multi-training; method 2:multi-network.
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the experiments, two diagnose methods, multi-training and multi-network methods are applied respectively. After data cleaning, the 
error data of Dl are deleted and the change of its data amount are shown in Table 4.

In Table 4, Dlc1 is the cleaned dataset obtained by using method 1 and Dlc2 is obtained by using method 2. From the table, it can be 
seen that (1) Dlc1 and Dlc2 are both lower than Dl, which means the size of Dl has decreased during data cleaning procedure; (2) Dlc1 is 
lower than Dlc2, which means that the amount of data cleaned by method2 is lower than that of method1. Taking Messidor-2 as an 
example: the amount of data cleaned by multi-training based on MobileNetV2 network changed from 1786 to 1199, i.e., 587 error data 
are cleaned, while 469 error data are cleaned by the multi-network method. Fig. 6 shows the proportion of error data being deleted and 
correct data being remained in the datasets of four diseases.

Combining Figs. 5 and 6, it is evident that for the Messidor-2 dataset, based on which the accuracy is 18.55 % lower than that of 
APTOS, has 469 error data, which is about 26.26 % of the total; for COVID-19 dataset, the accuracy is 11.88 % lower than that of Chest 
X-Ray Images, the error data is 472,which is about 16.00 % of the total; for BUSI dataset, the accuracy is 13.00 % lower than that of us- 
data, the error data is 145, which is about 23.50 % of the total number, and for MED NODE dataset, the accuracy is 10.88 % lower than 
that of ISIC 2020, the error data is 197, which is about 28.97 % of the total number. According to the above statement we can see that 
the percentage of error data in Dl is in proportion to its differ value compared to Dh in terms of accuracy.

By putting the cleaned data Dlc1 and Dlc2 into the networks presented in Table 2 respectively, the diagnose results of cleaned dataset 
are obtained. Table 5 presents the different diagnostic results of Dlc1 and Dlc2.

As can be seen from Tables 5 and in all networks, the results based on Dlc2 are higher than those based on Dlc1 dataset, which means 
that cleaning with multi-network is better than cleaning with multi-training. In Messidor-2, the accuracy of ResNet50 network based 
on Dlc2 is 81.53 %, while the accuracy based on Dlc1 dataset is 79.23 %. In COVID-19, the accuracy of VGG16 network based on Dlc2 
dataset is 93.68 %, while that of Dlc1 dataset is 91.36 %. In BUSI, the accuracy of the VGG16 network based on the Dlc2 dataset is 89.86 
%, while that of Dlc1 dataset is 86.92 %. In MED NODE, the accuracy of the AlexNet network based on the Dlc2 dataset is 94.07 %, while 
that of Dlc1 dataset is 91.11 %.

To present the efficiency of our data cleaning framework, Table 6 compares the diagnostic results before and after data cleaning, as 
well as the diagnostic results of these datasets in the references. Where the test set used for all experiments is Dl, but their training sets 
used for the training of diagnostic models are different.

From Table 6, we can see: (1) Based on the datasets without data cleaning, i.e.,Dl and Dh, the accuracy rate of the model trained on 
Dh is higher than that of Dl; (2) Based on the datasets being cleaned by MIDC framework, i.e.,Dlc1 and Dlc2, both the accuracy rates of the 
model trained on them are higher than that of Dl and Dh; (3) The accuracy rate of the model trained on Dlc2 is higher than that of Dlc1. 
(4) The accuracy after cleaning is higher than the average accuracy of the reference literature. Take diabetic retinal as an example, the 
average reference accuracy on Dl is 77.17 %, the average diagnostic accuracy of the model trained on Dl is 71.18 %, the average 
diagnostic accuracy of the model trained on Dh is 80.74 %, the average diagnostic accuracy of the model trained on Dlc1 is 83.26 %, 
while that of Dlc2 reaches 85.13 %.

In order to more directly show the change of accuracy before and after cleaning, we show the experimental results of the four types 
of datasets through Fig. 7, and it can be seen that for four kinds of datasets there is a relatively large increase in the accuracy after 
cleaning.

To further illustrate the performance of our method, the confusion matrix results before and after cleaning shown in Fig. 8.
As can be seen in Fig. 8, columns (a)–(d) represents different training datasets, which are (a) Dl training, (b) Dh training, (c) Dlc-1 

training, and (d) Dlc-2 training. Lines A-D represents datasets of different disease types, which are A. Diabetic retinal dataset (Messidor- 
2), B. Viral pneumonia dataset (COVID-19), C. Breast tumors dataset (BUSI), and D. Skin cancer (MED NODE). For all four datasets the 
number of correctly classified images is better than that of before cleaning. Take diabetic retinal Messidor-2 dataset as an example, the 
number of correctly classified images of the model trained on Dl is 235, the number of correctly classified images of the model trained 
on Dh is 289, the number of correctly classified images of the model trained on Dlc1 is 298, while that of Dlc2 reaches 305.

3.3.3. Comparison experiment with existing method
This experiment compares the proposed framework and existing method to further validate the performance of the MIDC 

framework. Currently, only Li et al. [21] perform data cleaning based on medical images, and since the early esophageal cancer dataset 
they use is private, we can only make a rough comparison by applying their method to the public dataset. We compare the amount and 

Fig. 6. Percentage of the error data to the total.
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the accuracy of datasets obtained after cleaning in two methods. To ensure comparable results, we used the same networks and 
datasets as described above section, the experimental results are shown in Table 7.

From Table 7, we can see: (1) For the amount of cleaned datasets, the amount of datasets cleaned by Ref. [21] are all less than the 
amount of datasets cleaned by the MIDC framework. (2) For the accuracy of the cleaned datasets, the accuracy of the datasets cleaned 
by the MIDC framework are all higher than the accuracy of the datasets cleaned by Ref. [21]. Take diabetic retinal as an example, the 
amount of the datasets cleaned by the MIDC framework is 1317, the amount of the datasets cleaned by Ref. [21] is 935. the average 
accuracy of the datasets cleaned by the MIDC framework is 85.13 %, the average accuracy of the datasets cleaned by Ref. [21] is 77.57 
%.

4. Discussion

To illustrate the effectiveness of the proposed medical image dataset cleaning framework MIDC, we conduct experiments on four 
diseases, which are diabetic retina, viral pneumonia, breast tumors, and skin cancer. The experiments includes three stages: data 

Table 5 
Experimental results based on Dlc1 and Dlc2 with different networks.

Dataset Network Dlc1 Dlc2

Accuracy (%) Recall (%) Precision (%) F1 (%) Accuracy (%) Recall (%) Precision (%) F1 (%)

Messidor-2 ResNet50 79.23 79.23 78.92 78.95 81.53 81.53 82.21 81.79
VGG16 83.68 83.68 86.90 85.08 85.25 85.25 85.71 85.34
VGG19 82.26 82.26 81.94 82.10 84.33 84.33 84.74 84.42
InceptionV3 80.85 80.85 80.49 80.66 83.55 83.55 83.22 83.34
InceptionResNetV2 83.07 83.07 82.93 82.81 85.10 85.10 85.10 85.10
Xception 83.68 83.68 85.78 84.62 84.39 84.39 84.39 84.39
MobileNetV2 90.07 90.07 89.60 89.72 91.73 91.73 91.73 91.73

COVID-19 VGG16 91.36 91.36 91.67 91.40 93.68 93.68 93.69 93.68
ResNet18 90.94 90.94 91.78 91.02 93.89 93.89 93.98 93.90
ResNet50 91.61 91.61 91.65 91.61 93.68 93.68 93.75 93.69
DenseNet161 90.31 90.31 90.82 90.37 93.89 93.89 93.97 93.88

BUSI VGG16 86.92 86.92 87.01 86.96 89.86 89.86 89.85 89.85
ResNet18 91.42 91.42 91.50 91.44 93.05 93.05 93.06 93.05
ResNet50 92.00 92.00 92.27 92.02 95.45 95.45 99.09 96.91
ResNet101 92.00 92.00 92.27 92.27 95.45 95.45 99.09 96.91

MED NODE AlexNet 91.11 91.11 91.66 91.05 94.07 94.07 94.09 94.06
GoogleNet 90.37 90.37 90.53 90.37 93.75 93.75 93.88 93.75
ResNet101 91.85 91.85 92.03 91.81 94.81 94.81 94.87 94.06

Table 6 
Experimental results before and after cleaning.

Disease type Network Average references accuracy(%) Pre-cleaning dataset 
training accuracy(%)

Post-cleaning dataset 
training accuracy(%)

Dl Dl Dh Dlc1 Dlc2

Diabetic retinal (Dh: APTOS 
Dl: Messidor-2)

ResNet50 74.52 66.80 73.84 79.23 81.53
VGG16 80.46 71.25 81.90 83.68 85.25
VGG19 79.46 69.63 80.40 82.26 84.33
InceptionV3 73.44 70.44 81.90 80.85 83.55
InceptionResNetV2 72.87 70.44 79.23 83.07 85.10
Xception 78.77 72.07 81.73 83.68 84.39
MobileNetV2 83.81 77.63 86.21 90.07 91.73
average 77.17 71.18 80.74 83.26 85.13

Viral pneumonia (Dh: Chest X-Ray Images 
Dl: COVID-19)

VGG16 84.49 82.67 91.33 91.36 93.68
ResNet18 85.78 81.81 92.18 90.94 93.89
ResNet50 92.63 83.79 92.64 91.61 93.68
DenseNet161 83.52 81.73 92.13 90.31 93.89
average 86.11 82.50 92.07 91.06 93.79

Breast tumors (Dh: us-data 
Dl: BUSI)

VGG16 85.76 82.36 85.55 86.92 89.86
ResNet18 86.65 86.15 87.22 91.42 93.05
ResNet50 87.45 86.92 88.88 92.00 95.45
ResNet101 86.05 86.92 88.88 92.00 95.45
average 86.52 85.59 87.63 90.59 93.45

Skin cancer (Dh: ISIC 2020 
Dl: MED NODE)

AlexNet 80.06 85.50 88.88 91.11 94.07
GoogleNet 88.00 82.40 84.44 90.37 93.75
ResNet101 84.50 85.75 89.62 91.85 94.81
average 83.42 84.55 87.64 91.11 94.21
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grading experiments, data cleaning experiments, and comparison experiment with existing method.
In the data grading experiments, the two datasets of each disease are divided into high-accuracy dataset Dh and low-accuracy 

dataset Dl according to the designed rules of data grading. Table 2 lists the results of references in recent years for the datasets of 
these disease, and according to the different accuracy of these datasets, they are divided into Dh and Dl. To further verify the quality of 
Dh and Dl, validation experiments are performed. The experimental results are shown in Table 3, which demonstrated that the 
diagnostic result of Dh is more accurate than that of Dl.

Based on Dh and Dl, the data cleaning experiments are performed to testify the efficiency of the proposed MIDC. According the 
framework, which clean the low-accuracy dataset Dl by high-accuracy dataset Dh, a cleaned dataset Dlc are obtained. As two diagnostic 
methods, multi-training and multi-network, are designed in the framework, two kinds of cleaned datasets are obtained, Dlc1 and Dlc2. 
Based on the experimental results, following conclusion can be drawn: (1) After data cleaning, the change of Dl data amount is shown 
in Table 4, which shows the error data in Dl is deleted and the number of deleted data by multi-training method is higher than that of 
multi-network method. (2) Table 5 presents the experimental results based on Dlc1 and Dlc2 with different networks. In the table we can 
see that the accuracy of diagnostic results on Dlc2 is higher than that of Dlc1, which means the quality of Dlc2 is better than Dlc1, i.e., 
multi-network method performs better than multi-training method. The reason for different performance is that in the multi-training 
methods, the same network has limitations in extracting features, which leads to the same features being extracted even in multiple 
training. While for multi-network method, different networks can extract different features that make up the defects of multi-training 
method. (3) In Table 6, the diagnostic results before and after data cleaning are compared. In the table, the diagnostic results based on 
the datasets being cleaned is better than that of dataset without data cleaning, which testified the efficiency of our MIDC framework.

In the comparison experiment, by comparing with the existing method, the performance of the proposed MIDC framework is 
further validated. Table 7 lists the results of accuracy and amount of datasets obtained after cleaning in two methods. From Tables 7
and it can be seen that the amount of data cleaned by the comparison method is less than the amount of data cleaned by the MIDC 
framework, and over-cleaning of the dataset also leads to a decrease in accuracy. The proposed MIDC framework directly selects the 
data based on the labels of the data rather than relying only on the distribution of the data features, which reduces the risk of the 
correct data being misclassified as outliers. From Tables 7 and it can be seen that the results of the proposed framework are all better 
than the results of the comparison method.

5. Conclusion

In this paper, we propose a medical image dataset cleaning framework MIDC based on deep learning. This framework uses high- 
accuracy datasets to clean low-accuracy datasets. In the experiments, we use four couples of datasets that belonging four kinds of 
diseases respectively to demonstrate the effectiveness of the proposed framework. Among them, for the APTOS dataset of diabetic 
retinal, the average accuracy after cleaning increased from 71.18 % to 85.13 %. For the Chest X-Ray Images dataset of virtual 
pneumonia, the average accuracy after cleaning increased from 82.50 % to 93.79 %. For the BUSI dataset of breast tumors, the average 
accuracy after cleaning increased from 85.59 % to 93.45 %. For the MED NODE dataset of skin cancer, the average accuracy after 
cleaning increased from 84.55 % to 94.21 %. The experimental results indicate that the classification accuracy is significantly 
improved after data cleaning compared to before cleaning.

The proposed MIDC framework in this paper automates the cleaning of medical image data to improve the quality of public 
datasets. This process does not rely on annotations from professional doctors, nor does it require additional datasets with more reliable 
labels. By introducing the MIDC framework, the beneficiaries include: (1) Professional physicians, for reliable computer-aided 

Fig. 7. Change in accuracy before and after cleaning.
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diagnosis results can better assist them in making diagnoses and reduce misdiagnosis rates. (2) Biomedical engineers, higher quality 
data enables more reliable research results and innovation in diagnostic techniques. (3) Patients, more accurate and early diagnosis 
leads to better prognosis and more timely intervention.

However, there are still some limitations to this work, as it currently only cleans datasets for four diseases and cannot cover all 
clinical application scenarios. The existing cleaning algorithms still need to be optimized to improve higher accuracy. In future work, 
we will gradually address the limitations of this work. Firstly, we will optimize the data grading module and data cleaning module, and 
introduce more advanced deep learning algorithms; Secondly, we will integrate more datasets and disease types to further validate the 
generalization ability of the framework; Then, we plan to explore the integration of advanced image compression techniques into the 
framework to further optimize the data processing flow; Finally, improve the real-time application and applicability of the framework 
in practical clinical environments.

Ethics declarations

Review and/or approval by an ethics committee was not needed for this study because the data used in this study were all publicly 
available datasets.

Data availability statement

The datasets supporting this study are derived from available to the public. (1) Diabetic retinal: APTOS-https://doi.org/10.5455/ 

Fig. 8. Confusion matrices before and after cleaning. Columns (a)–(d): (a) Dl training, (b) Dh training, (c) Dlc-1 training, (d) Dlc-2 training. Lines A–D: 
A. Diabetic retinal dataset (Messidor-2), B. Viral pneumonia dataset (COVID-19), C. Breast tumors dataset (BUSI), D. Skin cancer (MED NODE).
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Table 7 
Comparison experimental results with existing method.

Dataset Network Dlc- [21] Dlc-MIDC

Accuracy (%) Recall (%) Precision (%) F1 (%) amount Accuracy (%) Recall (%) Precision (%) F1 (%) amount

Messidor-2 (original amount: 1786) ResNet50 72.72 72.72 72.28 72.33 935 81.53 81.53 82.21 81.79 1317
VGG16 79.14 79.14 79.23 79.18 85.25 85.25 85.71 85.34
VGG19 78.07 78.07 78.17 78.12 84.33 84.33 84.74 84.42
InceptionV3 77.00 77.00 77.32 76.48 83.55 83.55 83.22 83.34
InceptionResNetV2 74.86 74.86 74.50 74.50 85.10 85.10 85.10 85.10
Xception 77.54 77.54 77.30 77.18 84.39 84.39 84.39 84.39
MobileNetV2 83.68 83.68 86.90 85.08 91.73 91.73 91.73 91.73
average 77.57 77.57 77.96 77.55 85.13 85.13 85.30 85.16

COVID-19 (original amount: 2950) VGG16 92.58 92.58 92.86 92.60 2090 93.68 93.68 93.69 93.68 2478
ResNet18 90.67 90.67 90.89 90.67 93.89 93.89 93.98 93.90
ResNet50 91.38 91.38 91.47 91.40 93.68 93.68 93.75 93.69
DenseNet161 91.38 91.38 91.47 91.40 93.89 93.89 93.97 93.88
average 91.50 91.50 91.67 91.52 93.79 93.79 93.85 93.79

BUSI (original amount: 647) VGG16 83.72 83.72 79.60 79.72 389 89.86 89.86 89.85 89.85 502
ResNet18 90.94 90.94 91.78 91.02 93.05 93.05 93.06 93.05
ResNet50 93.02 93.02 93.53 91.66 95.45 95.45 99.09 96.91
ResNet101 93.02 93.02 93.53 91.66 95.45 95.45 99.09 96.91
average 90.18 90.18 89.61 88.52 93.45 93.45 95.28 94.18

MED NODE (original amount: 680) AlexNet 87.50 87.50 88.80 88.15 358 94.07 94.07 94.09 94.06 483
GoogleNet 81.90 81.90 82.25 81.95 93.75 93.75 93.88 93.75
ResNet101 87.50 87.50 87.54 87.50 94.81 94.81 94.87 94.06
average 85.63 85.63 86.20 85.87 94.21 94.21 94.28 93.96

* Dlc- [21] represents the Dl dataset cleaned by the method of [21]; Dlc-MIDC represents the Dl dataset cleaned by the method of MIDC.
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aim.2019.27.327-332, Messidor-2-https://doi.org/10.5566/ias.1155. (2) Viral pneumonia: Chest X-Ray Images-https://doi.org/10. 
17632/m4s2jn3csb.1, COVID-19-https://doi.org/10.1109/ACCESS.2020.3010287. (3) Breast tumors: us-data-https://doi.org/10. 
17632/wmy84gzngw.1, BUSI-https://doi.org/10.1016/j.dib.2019.104863. (4) Skin cancer: ISIC 2020-https://doi.org/10.1038/ 
s41597-021-00815-z, MED NODE-https://doi.org/10.1016/j.eswa.2015.04.034. We have provided data links in the manuscript.
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Appendix A 

Algorithm 1. MIDC Framework for Dataset Cleaning

Input: Two datasets of the same disease - Dataset1 and Dataset2 
Output: Cleaned dataset Dlc

1: Load Datasets 
obtain Dataset1 and Dataset2 through specific guidelines 

2: Data Grading Module 
Dh, Dl = data_grading_rules(Dataset1, Dataset2) 

3: Data Cleaning Module 
diagnose_model = train_cnn(Dh) 
diagnostic_results = compare(diagnose_model, Dl) 
Dlc = clean_dataset(Dl, diagnostic_results) 

4: Output Cleaned Dataset 
Output Dlc
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Appendix B 

Appendix C 

Algorithm 2. Data cleaning module

Input: Two datasets of the same disease - Dh and Dl 
Output: Cleaned dataset Dlc

1: obtain Dh and Dl through data grading module 
2: training CNN with Dh: diagnose_model = train_cnn(Dh) 
3: utilize diagnose_model to diagnose Dl through Eq. (2)
4: calculate the weighted averaging result using Eq. (1) or Eq. (3)
5: the final diagnostic result are obtained by Eq. (4)
6: for i in range(len(original_labels)): 
7: if original_labels[i] ! = final_diagnostic_labels[i]: 
8: delete images[i] 
9: continue 
10: end if 
11: end for 12: Dlc = cleaned_images.append(images[i]) 
13: Return Dlc
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[24] M.D.P. Raj Vincent, M. Aamir, J. Röglin, Improving classification results on a small medical dataset using a GAN; an outlook for dealing with rare disease 
datasets, Front. Comput. Sci. (2022), https://doi.org/10.3389/fcomp.2022.858874 (n.d.).

[25] A. Guo, P. Wang, The current state of doctors’ communication skills in mainland China from the perspective of doctors’ self-evaluation and patients’ evaluation: 
a cross-sectional study, Patient Educ. Counsel. 104 (7) (2021) 1674–1680, https://doi.org/10.1016/j.pec.2020.12.013.

[26] L. Oakden-Rayner, Exploring large-scale public medical image datasets, Acad. Radiol. 27 (1) (2020) 106–112, https://doi.org/10.1016/j.acra.2019.10.006.
[27] N.E.M. Khalifa, M. Loey, M.H.N. Taha, H.N.E.T. Mohamed, Deep transfer learning models for medical diabetic retinopathy detection, Acta Inf. Med. : AIM : 

journal of the Society for Medical Informatics of Bosnia & Herzegovina : casopis Drustva za medicinsku informatiku BiH 27 (5) (2019) 327–332, https://doi.org/ 
10.5455/aim.2019.27.327-332.

[28] E. Decencière, X. Zhang, G. Cazuguel, B. Laÿ, B. Cochener, C. Trone, J.C. Klein, Feedback on a publicly distributed image database: the Messidor database, Image 
Anal. Stereol. 33 (3) (2014) 231–234, https://doi.org/10.5566/ias.1155.

[29] J. Cuadros, G. Bresnick, EyePACS: an adaptable telemedicine system for diabetic retinopathy screening, J. Diabetes Sci. Technol. 3 (3) (2009) 509–516, https:// 
doi.org/10.1177/193229680900300315.

[30] K.M. Almustafa, A.K. Sharma, S. Bhardwaj, STARC: deep learning Algorithms’ modelling for STructured analysis of retina classification, Biomed. Signal Process 
Control 80 (2023) 104357, https://doi.org/10.1016/j.bspc.2022.104357.

[31] Md Alamin Talukder, Chest X-Ray Image, Mendeley Data, V1, 2023, https://doi.org/10.17632/m4s2jn3csb.1.
[32] M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, M.T. Islam, Can AI help in screening viral and COVID-19 pneumonia? IEEE 

Access 8 (2020) 132665–132676, https://doi.org/10.1109/ACCESS.2020.3010287.
[33] Paulo Sergio Rodrigues, Breast Ultrasound Image, Mendeley Data, V1, 2018, https://doi.org/10.17632/wmy84gzngw.1. https://data.mendeley.com/datasets/ 

wmy84gzngw/1.
[34] W. Al-Dhabyani, M. Gomaa, H. Khaled, A. Fahmy, Dataset of breast ultrasound images, Data Brief 28 (2019) 104863, https://doi.org/10.1016/j. 

dib.2019.104863.
[35] Y. Benhammou, B. Achchab, F. Herrera, S. Tabik, BreakHis based breast cancer automatic diagnosis using deep learning: taxonomy, survey and insights, 

Neurocomputing 375 (2020) 9–24, https://doi.org/10.1016/j.neucom.2019.09.044.
[36] G. Yue, Y. Li, T. Zhou, X. Zhou, Y. Liu, T. Wang, Attention-driven cascaded network for diabetic retinopathy grading from fundus images, Biomed. Signal Process 

Control 80 (2023), https://doi.org/10.1016/j.bspc.2022.104370.
[37] C. Lahmar, A. Idri, On the value of deep learning for diagnosing diabetic retinopathy, Health Technol. 12 (1) (2022) 89–105, https://doi.org/10.1007/s12553- 

021-00606-x.
[38] H. Li, N. Zeng, P. Wu, K. Clawson, Cov-Net: a computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision, Expert 

Syst. Appl. 207 (2022), https://doi.org/10.1016/j.eswa.2022.118029.
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