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Abstract

Network connectivity has been thoroughly investigated in several domains, including phys-

ics, neuroscience, and social sciences. This work tackles the possibility of characterizing

the topological properties of real-world networks from a quantum-inspired perspective.

Starting from the normalized Laplacian of a network, we use a well-defined procedure,

based on the dressing transformations, to derive a 1-dimensional Schrödinger-like equation

characterized by the same eigenvalues. We investigate the shape and properties of the

potential appearing in this equation in simulated small-world and scale-free network ensem-

bles, using measures of fractality. Besides, we employ the proposed framework to compare

real-world networks with the Erdős-Rényi, Watts-Strogatz and Barabási-Albert benchmark

models. Reconstructed potentials allow to assess to which extent real-world networks

approach these models, providing further insight on their formation mechanisms and con-

nectivity properties.

Introduction

Complex network models are an effective and versatile tool to describe the characteristics of

complex systems, consisting of a large number of elementary units interacting with each other,

and to study the phenomena underlying their dynamics of operation and evolution [1–4].

Nowadays, the science of complex networks allows the investigation of a large number of

aspects of the real world on a multiplicity of sectors and observation scales, ranging from e.g.

the interaction mechanisms of our genes, whose malfunction is at the root of the onset of sev-

eral diseases [5–7], to the competitive dynamics among companies, institutions or even coun-

tries in crucial socio-economic contexts such as the search for funding [8–10], the export

ecosystem [11, 12] or international rankings [13]. The use of a complex network makes it pos-

sible to examine, through a rigorous approach, the structure, efficiency and resilience of the

connections between the constituents in the system that it models, whether physical or concep-

tual. The main tool for analyzing these features is network connectivity, which refers to prop-

erties and patterns arising from the topological organization of nodes. Depending on the
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examined network, peculiar behaviors can occur. For example, in the brain network domain,

functional and structural connectivity patterns revealed through neuroimaging techniques

yield biomarkers of aging processes and associated pathological conditions [14–21]. Network

connectivity is also exploited in several domains, such as Ecology [22, 23], Geomorphology

[24], Social Network Science [25] and Systems Biology [26], to characterize a number of collec-

tive phenomena [27] and understand the underlying dynamics. In particular, seminal studies

have demonstrated how connectivity can be suitably described in terms of the spectral proper-

ties of a network such as the spectrum of its Laplacian [28–30].

In a recent work [31], we proposed a quantum-inspired definition of potential energy for

complex networks. Using a proper dressing transformation, we reconstructed the potential

energy of a network by identifying a Shrödinger-like equation whose spectrum coincides with

that of the graph normalized Laplacian. In particular, we demonstrated that such framework

detects the onset of collective phenomena such as the emergence of a giant component in the

Erdős-Rényi model (ER); besides, we showed that the intrinsic variability of a random network

ensemble at fixed connection probability can be measured in terms of the Higuchi fractality of

its representative ensemble potential [32].

In the present study, we investigate to which extent potential energy can be adopted to char-

acterize other established network models, specifically the small-world and scale-free ones.

Small-world topologies deserve particular attention, since they represent a broad class of net-

works, among which a relevant role is played by Watts-Strogatz models [33]. Besides, scale-

free networks [34] are interesting as well, since they have been suitably used in many real-

world applications [35–37]. Despite their simplistic nature, these models are able to capture

peculiar patterns and behaviors of real-world networks. Therefore, here we intend to provide a

comprehensive analysis of potential energy associated to these popular network models and

show how the proposed quantum-inspired approach yields further insight on their well-

known properties. Thus, one goal of this work is to extend our comprehension about the

behavior of potential energy when associated to random, small-world and scale-free networks.

Then, based on this knowledge, we focus on several real-world networks, characterized by dif-

ferent size and topology and generally featuring heterogeneous connectivity patterns, in order

to show how potentials can shed light on the differences among them. As we shall discuss in

the following, the proposed framework represents a useful tool to investigate connectivity and

unveil the underlying dynamics of real-world networks, providing a new method to compare

them with benchmark network models.

The article is organized as follows: in the “Materials and methods” section, we provide a

short overview about the Laplacian of a network and the methodology adopted to recon-

struct the potential associated with its spectrum; besides, we briefly present the main charac-

teristics of small-world and scale free networks, especially considering the Watts-Strogatz

(WS) [33] and the Barabási-Albert (BA) models [34]. In the “Results and discussion” section,

we examine the application of potentials to small-world and scale free networks, then we per-

form a comparison of real-world networks with ensembles of artificial networks, based on

potentials. In the “Conclusion” section we highlight the perspectives of further developments

and investigations.

Materials and methods

In this work, we present a methodology designed to investigate the connectivity of a network

by means of a quantum-inspired potential energy (to be called “potential” in the following).

Our framework allows the comparison of real-world networks among each other, and their
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characterization with respect to a set of benchmark models. A comprehensive overview of this

pipeline is reported in Fig 1, while details on each step are discussed in the following.

From the graph spectrum to the graph potential

The definition of a graph G ¼ ðN ; EÞ involves a set N of N vertices (nodes) and a set E of

edges (links) connecting pairs of nodes [38]. A graph is generally represented with an adja-

cency matrix A, whose elements aij are not null if i and j are adjacent to each other, namely if a

link (i, j) between them exists; the strength of this connection can also be quantified by provid-

ing the link (i, j) with a weight wij. In this work, we consider binary (aij = 0, 1) and symmetric

(aij = aji) adjacency matrices which represent unweighted and undirected graphs. For the sake

of simplicity, we also consider aii = 0 for all nodes, thus excluding loops from the network.

The degree di measures the number of connections of the node i; in an undirected and

unweighted network, it is calculated as the sum of the i-th row (or the i-th column) of A. Con-

sidering the diagonal degree matrix D, defined by Dii = di, it is possible to introduce graph

Laplacian L = D − A and its normalized version L:

Lij ¼

1 if i ¼ j and di 6¼ 0

� 1ffiffiffiffiffi
didj
p if i; j adjacent

0 otherwise

8
>>>><

>>>>:

ð1Þ

For disconnected networks, i.e. networks where there exist two or more groups of nodes

that cannot be reached from each other by any path, both the Laplacian matrices L and L can

assume a block-diagonal form in which each block corresponds to a specific component. The

Laplacian reveals many interesting properties of a network such as the number and size of its

connected components and presence of peculiar structures [28, 39]. From now onward, we

will refer to the spectrum of the normalized Laplacian as the spectrum of the graph.

Fig 1. Evaluation of the similarity between a real-world network and different ensembles of artificial networks.

The similarity is measured as the average root-mean-square error (RMSE) of the real network potential with respect to

the potentials associated with the networks of each ensemble. Moreover, we compare these results with the RMSE

between the real network potential and the ensemble median potentials.

https://doi.org/10.1371/journal.pone.0254384.g001
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Let us sort the eigenvalues λi of the graph spectrum, which are defined in the interval [0, 2],

in increasing order so that:

0 ¼ l1 � l2 � � � � � lN � 2; ð2Þ

with each eigenvalue counted as many times as its degeneracy. These eigenvalues can be

related to the discrete energy levels of a 1−dimensional Schrödinger equation with a specific

potential. First of all, we focus on the shifted spectrum:

En ¼ ln � lN 2 ½� 2; 0�; ð3Þ

then, we construct a network potential V(x) such that the negative energy levels of the Schrö-

dinger equation

� @
2

xcðxÞ þ VðxÞcðxÞ ¼ EncðxÞ; with
Z

dx jcðxÞj2 ¼ 1; ð4Þ

coincide with the negative shifted eigenvalues En< 0. The potential V(x) is built in an iterative

process, described in detail in [31] and based on the dressing transformations [40–44]. The

workflow starts from the initial guess V = 0 and proceeds towards including at each step one

more normalized Laplacian eigenvalue as an energy level of the Schrödinger equation. The

differential equations used to update the potential at each step are solved by a fourth-order

Runge-Kutta (RK) method with step size h = 10−5, to guarantee high reconstruction accuracy.

It is worth noting that the potentials retrieved with this procedure are even by construction.

The reconstruction process provides also the possibility to determine the eigenfunctions

of the Schrödinger equation. It would be interesting to find general quantitative relations

between their properties and the features of the diffusion modes on the network, to which

the Laplacian eigenvectors are physically related. Such an investigation will be the objective of

future research.

Small-world and scale-free networks

In many cases, real-world networks show an interesting behavior: they seem to be character-

ized by high clustering and low diameter, two properties which highlight the local robustness

of the network and the efficiency for long-distance interactions, respectively. The coexistence

of both these features in a network is generally known as the small-world effect. If a network

with cardinality N displays such behavior, the average distance between two randomly chosen

nodes scales as ln N [2, 38]. The Watts and Strogatz model (WS) [33] has been introduced to

provide an accurate description of real networks, that interpolates between those given by reg-

ular lattices, featuring a high clustering coefficient, and random networks, characterized by a

low diameter.

The WS model depends on three parameters, namely the network size N, the average degree

c and the rewiring probability prew. The starting point to construct a WS network is a regular

lattice of N nodes (e.g. a ring), where each node is connected to its neighbors up to a range r;
therefore the average degree of this initial configuration is c = 2r. Then, each link is rewired to

a randomly chosen node with probability prew. For small prew, the network keeps the initial

high clustering but the rewiring procedure creates long-range links that drastically decrease

the average distance between nodes, yielding the small-world behavior. For prew! 1, all links

are rewired with high probability and the network turns into a random one.

Among small-world networks, scale-free networks deserve a particular mention. The inter-

est for these networks is twofold: on the one hand, scale-free networks provide a better under-

standing of the dynamics underlying a particular class of small-world networks; on the other
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hand, the behavior of important real-world networks is demonstrated to be scale-free more

than a general small-world. The most popular model for simulating scale-free networks is the

Barabási-Albert (BA) model [34].

The BA model was initially introduced to bridge the gap between random and real net-

works. Actually, both the Erdős-Rényi and Watts-Strogatz models yield networks in which the

degree distribution is peaked around the average degree, with fluctuations of the order
ffiffiffiffi
N
p

,

where N represents the number of network nodes. On the other hand, real world networks

are typically characterized by power-law deegree distributions, hence featuring very large fluc-

tuations in the degree of their nodes. Barabási and Albert managed to retrieve this feature in

their model by a progressive construction of the network, based on preferential attachment: a

new node is added to the network, forming a fixed number m of new connections; the proba-

bility for pre-existing nodes to connect to the new one is proportional to their degree. This

formation mechanism is able to explain the dynamics behind many real-world network

organizations.

Measure of fractality

To quantify the variability of the potentials reconstructed from different networks sampled out

of a given ensemble, we introduce an ensemble potential, that will be defined in detail in the fol-

lowing section, and characterize its fractal properties. The results in Ref. [31] show that the

ensemble potential associated to ER network models with different connection probabilities p
has a pronounced fractal behavior close to the critical value pc = 1/(N − 1). In the network

ensembles we consider in this paper, there is no expected phase transition; however, we are

interested in determining a possible increase of fractality when the average degree becomes

closer to 1, corresponding to the value at the ER phase transition. As a fractality measure, we

use the Higuchi Fractal Dimension [32]. Given a sequence of values {V1, V2, . . ., Vf} (in our

case, the values of the ensemble potential), it is possible to extract the subset:

fVi;Viþk; . . . ;Viþnkg; ð5Þ

where i = 1, 2, . . ., k and n is the number of intervals of fixed width k contained in the range [i,
f]. Then, we consider the quantities:

LiðkÞ ¼
f � 1

n

Xn

j¼1

jViþjk � Viþðj� 1Þkj; ð6Þ

representing the normalized measures of the mean distance between neighboring values in the

subset (5). Thus, averaging over all the possible initial points i, we obtain

hLðkÞi ¼
1

k

Xk

i¼1

LiðkÞ ð7Þ

Finally, if hL(k)i � k−D, D is the Higuchi Fractal Dimension (HFD) of the series {V1, V2, . . .,

Vf}. Since this dependence generally holds within a given range of k, we investigate it and com-

pute D in the interval 2� k� 800.

Results and discussion

Watts-Strogatz networks

In this section we show the results obtained by investigating the small world WS model using

the network potential approach. In particular, we consider ensembles of WS network
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realizations with a fixed number of nodes (N = 500) and examine how the reconstructed

potentials are affected by changes in the average degree c and rewiring probability prew. As the

reconstructed potentials are even by construction, their profile will be analyzed in the follow-

ing by focusing on the positive arguments. Fig 2 displays the structure of WS networks with

average degree c = 4, for different values of the rewiring probability, together with the associ-

ated graph spectrum and reconstructed potential; the analogous outcomes for WS networks

with lower (c = 2) and higher (c = 50) average degree are reported in S1 Appendix.

As the WS network realizations are constructed through a pipeline which is not entirely

deterministic, it is worth focusing on an ensemble potential which is representative of the

whole cohort of graphs generated using the WS model at fixed average degree c and connec-

tion probability prew. Following the approach developed in [31], we define the WS ensemble
potential Vm for a given parameter configuration (c, prew) as the pointwise median computed

over the set of potentials associated with single-network realizations. Fig 3 shows the profile of

the WS ensemble potential, representative of 100 networks generated using the same (c, prew)

values, for different configurations of such parameters. Furthermore, to facilitate the compari-

son between the WS ensemble potential and its counterpart in the ER case [31], information

on the average degree c is reported in Fig 3 in terms of the equivalent connection probability

p = c/(N − 1) in an ER model.

Furthermore, to assess the intrinsic variability among the network topologies in the WS

ensembles, we compute the HFD of the ensemble potential Vm over 100 WS graphs with the

same c and prew. Fig 4 reports the fractal dimension of the WS ensemble potential as a function

of the average degree c (actually, using the equivalent connection probability p), for low (0.1)

and high (0.9) values of prew. Both cases show a substantially stable plateau for connection

probabilities larger than 0.1. For connection probabilities approaching 0, fractality increases

towards HFD’1.43 when prew = 0.1 and HFD’1.26 for prew = 0.9. Unlike the ER ensemble

case [31], in which the HFD of ensemble potentials is characterized by a sharp peak around

Fig 2. WS models with N = 500 nodes and the related reconstructed potentials. The figure shows how topological

variability (upper panel), induced in a WS model with c = 4 by changing the rewiring probability, is captured by the

reconstructed potentials (lower panel). Potentials (red) are superimposed to the network spectrum (pale blue). Notice

that the potentials are even by construction.

https://doi.org/10.1371/journal.pone.0254384.g002
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the critical connection probability p = 1/(N − 1), surrounded by values very close to 1, here we

do not observe a peak with these features in the HFD. This result is related to the fact that all

the considered WS networks are supercritical by construction, since their average degree c
(representing the number of neighbors of a node in the initial ring topology) has to be even

and thus never reaches the critical value hki = 1. However, the aforementioned rapid increase

of the HFD in Fig 4 occurs as the average degree c becomes closer to the value corresponding

to the ER phase transition, indicating a remnant of criticality.

It is worth noting that the onset of the small-world behavior follows from a second order

phase transition at prew = 0 [45]. On the other hand, when prew is far from zero, it is possible

to recover in the WS model the behavior of random networks with the same average degree

(hki = c). For a direct comparison, we investigate the discrepancies between WS and ER mod-

els in configurations characterized by the same average degree c (or, equivalently, the same

connection probability p = c/(N − 1)). In fact, according to the meaning of rewiring, one

should expect that the higher prew, the more the randomness injected in the model. Fig 5 dis-

plays the comparison between the ensemble potentials of WS networks with average degree

Fig 3. WS ensemble potential at different (c, prew) parameter configurations. Ensemble potentials Vm computed

over 100 WS networks with N = 500 nodes and rewiring probabilities prew = 0.1 (left) and 0.9 (right). To facilitate

comparison with the analogous ensemble potentials in the ER network model [31], plots are labeled using the

equivalent connection probability p, related with the average degree c as p = c/(N −1).

https://doi.org/10.1371/journal.pone.0254384.g003

Fig 4. HFD of WS ensemble potentials. Higuchi fractal dimension (HFD) of the ensemble potential Vm over 100 graphs with N = 500 nodes and

average degree c, resulting from a WS model with rewiring probability prew = 0.1 (left) and 0.9 (right), as a function of the equivalent connection

probability p = c/(N − 1).

https://doi.org/10.1371/journal.pone.0254384.g004
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c = 2, 10, 50, 440, and the ones of ER networks with corresponding connection probabilities

p = 0.004, 0.02, 0.1, 0.9.

As expected, WS ensemble potentials of networks with prew = 0.9 tend to better reproduce

the behavior of their ER counterparts than in the low-prew case. Interestingly, we notice a dis-

crepancy between WS and ER ensemble potentials at intermediate values of the average degree

c. On the other hand, in the case c = 2, WS and ER networks are both characterized by a large

component with sparse connections, a configuration corresponding to a small clustering coef-

ficient. In the case c = 440, instead, both networks correspond to almost complete graphs,

whose dense connections yield large clustering coefficients and relevant small-world effect.

Barabási-Albert networks

Among the small-world networks, we consider for further insight the potentials associated

with the particular case of scale-free networks, obtained through the BA formation mecha-

nism. The only parameter of this model is the number m of pre-existing nodes to which a

newly-added node is connected. The construction of a BA network generates in the limit N!
1 a degree distribution characterized by a k−3 behavior for large k [2, 34], which determines a

finite average degree, equal to 2m, but a divergent variance. Notice that, for finite-size BA net-

works, the estimate hki = 2m is valid only if m� N. In the following, we shall focus on BA

models with N = 500 nodes and m 2 [1, 400]. Since for m = 1 the average degree hki = 2 is

larger than 1, all the networks are supercritical, as in the WS case; some examples of BA net-

works and their respective reconstructed potentials are shown in Fig 6.

Fig 5. WS and ER ensemble potentials. Direct comparison of ensemble potentials Vm reconstructed from 100

realizations of WS and ER networks with the same average degree c. Remarkable discrepancies between the two

models emerge at intermediate values of c, provided that the rewiring probability of the WS construction is sufficiently

small.

https://doi.org/10.1371/journal.pone.0254384.g005
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The profiles of the ensemble potentials, computed over 100 BA network realizations at

fixed m, are displayed in Fig 7. Though we did not expect to observe criticality, we detect more

evident ruggedness of the potential as the limit value m = 1 is approached. Increasing m, the

curves become smoother, resembling the supercritical ensemble potentials of the ER case [31].

However, for m beyond 50, the periodic oscillations on top of the BA ensemble potential pla-

teau became more and more relevant, marking a significant deviation from the behavior of ER

random networks.

The qualitative observation that ruggedness increases by approaching criticality from above

is confirmed by the Higuchi fractal dimension computed for the analyzed BA network ensem-

bles, whose profile as a function of m is displayed in Fig 8. The HFD reaches values between

1.25 and 1.30 for m = 1 and 2, and rapidly decreases at larger m: the value at m = 50 is around

1.02. This behavior closely resembles the one observed in the case of WS networks, confirming

Fig 6. BA models with N = 500 nodes and the related reconstructed potentials. The figure shows in the upper panel

three examples of BA networks (m = 1, 10, 400) while in the lower panel the reconstructed potentials (red) are

superimposed to the corresponding graph spectrum (green).

https://doi.org/10.1371/journal.pone.0254384.g006

Fig 7. BA ensemble potential for different m values. Ensemble potentials Vm computed over 100 BA networks with

N = 500 nodes and m connections made by each new node to the existing ones in the graph construction procedure.

The figure shows how potentials vary according to the parameter m ranging from 1 to 400, with the left (right) panel

reporting the cases of smaller (larger) m.

https://doi.org/10.1371/journal.pone.0254384.g007
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that, even for network ensembles that are supercritical by construction, fractality increases as

the average degree becomes closer to 1, while it approaches 1 for denser networks.

Following a path started in Ref. [31], we used generative models of artificial networks as

benchmarks, to show that the findings derived from the reconstructed potential formalism are

consistent with well-established results. Such an operation constitutes a test of the reliability of

our approach in detecting network properties, in particular the nontrivial ones, such as the

presence of a phase transition (in the case of ER networks discussed in [31]) or the remnants

of criticality (in the cases of WS and BA networks discussed above). These results motivate us

to employ the reconstructed potentials to unveil the features of real networks.

Real world networks

The reconstructed potential formalism, used in the previous sections to characterize ensembles

of artificial networks, will be now applied to the description of real-world complex systems. In

particular, we will compare the potentials associated to real-world unweighted and undirected

networks with benchmark potentials derived from test ensembles of artificial networks. The

data analyzed in this section are taken from public databases [46, 47] and belong to different

domains: animal relationships (free-ranging grey kangaroos [48] and Grévy’s zebras [49]),

human interactions (collaborations between Jazz musicians [50] and contacts between sus-

pected terrorists implicated in the Madrid train bombing of 2004 [51]), infrastructures (the

European road network [52] and the US power grid [33]) and scientific co-authorship (papers

on Astrophysics and High-Energy Physics [53]). The relevant features of these networks are

reported in Table 1.

Fig 9 shows the structure and topologies of the aforementioned real-world networks,

while the shifted spectral distribution of their normalized Laplacians are displayed in Fig 10.

Finally, the profile of the real-world network potentials, reconstructed from such graph spec-

tra, are reported in Fig 11, where all the plots are presented using the same range to facilitate

comparison.

At a first glance, it can be observed that the potentials related to animal and human interac-

tions show an increasing trend in the considered range, while those associated to infrastruc-

tures and co-authorship are characterized by oscillations of various amplitudes and do not

Fig 8. HFD of BA ensemble potentials. Higuchi fractal dimension (HFD) of the ensemble potential Vm over 100

graphs with N = 500 nodes, resulting from a BA model, as a function of the parameter m.

https://doi.org/10.1371/journal.pone.0254384.g008
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Table 1. Relevant features of the real-world networks of different domains used to develop a similarity criterion based on the method of reconstructed potentials. N,

L and Nc denote the number of nodes, edges and connected components, respectively; LCC stands for Largest Connected Component; hki is the average degree of the net-

work; the fill is defined as the ratio between the number of edges L and the total number of possible edges (N(N − 1)/2 in an undirected network without loops). All data on

these networks are available at [46, 47].

Network Properties

Name Domain N L Nc Size of LCC hki Fill

Kangaroo Animal 17 91 1 17 10.71 0.67

Zebra Animal 27 111 2 23 8.22 0.32

Jazz Human interactions 198 2742 1 198 27.70 0.14

Train bombing Human interactions 64 243 1 64 7.59 0.12

EU roads Infrastructure 1174 1417 26 1039 2.41 2.06 � 10−3

US power grid Infrastructure 4941 6594 1 4941 2.67 5.40 � 10−4

Astro Co-authorship 18772 198110 290 17903 21.10 1.12 � 10−3

HeP Co-authorship 12008 118521 278 11204 19.74 1.64 � 10−3

https://doi.org/10.1371/journal.pone.0254384.t001

Fig 9. Real-world network graphs. Graph representation of the real-world networks reported in Table 1.

https://doi.org/10.1371/journal.pone.0254384.g009
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increase appreciably. Such differences can be related to the structure of the graph spectra. In

particular, the potentials with almost no increase are associated to networks whose shifted

graph spectra tend to densely fill the interval [−2,0]. Although the considered infrastructure

and co-authorship networks share such property, their spectral distributions are qualitatively

different: for the former, the eigenvalue density is higher close to the extreme values of the

band, while for the latter the eigenvalues close to the extremes are more sparse, being their

spectral distribution peaked around −1. This difference reflects in wider and more regular

oscillations in the case of co-authorship networks, while the potentials of infrastructures

appear more similar to the ones obtained for random networks at slightly supercritical connec-

tion probabilities [31]. Actually, the EU roads and US power grid networks are characterized

by average degrees 2.41 and 2.67, respectively, while the values for co-authorship networks are

larger by one order of magnitude.

For the considered networks describing animal and human interactions, characterized by

increasing potentials, the graph spectra consist of an emergent upper band and few smaller iso-

lated eigenvalues. Qualitatively, the low-energy parts of such potentials feature as many wells

as the number of such isolated eigenvalues, including degeneracies [31]. For example, in the

case of the zebra network, the eigenvalues λ1 = λ2 = 0 (doubly degenerate, since the network

has two components), λ2 = 0.126 and λ3 = 0.317 correspond to four potential wells, two of

Fig 10. Real-world network spectral distributions. Distributions of graph eigenvalues, shifted to the interval [−2,0],

related to the real-world networks reported in Table 1.

https://doi.org/10.1371/journal.pone.0254384.g010
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which are visible in Fig 11, while the remaining two are on the negative x axis in symmetric

positions.

After discussing the properties of the real-world networks and reconstructed potentials

under investigation, let us focus on the benchmark ensembles to which they will be compared.

First, we compute the average degree kreal of the real network we are considering, and derive

the reconstructed potential from its normalized Laplacian spectrum. Then, we generate

ensembles of artificial networks characterized by the same number of nodes and roughly the

same average degree kreal as the real one, according to the following rules:

• An ensemble of 100 ER networks is generated with connection probability p = kreal/(N − 1).

• Three ensembles of 100 WS networks each, respectively characterized by low (prew = 0.1),

medium (prew = 0.5) and high (prew = 0.9) rewiring probability, are generated with average

degree c corresponding to the closest even integer to kreal.

• An ensemble of 100 BA networks is generated, with the number of connections m made by

each newly-added node coinciding with the closest integer to kreal/2.

We derive the ensemble potential for each of the aforementioned sets. We do not perform

comparison between the animal behavior networks and the BA ensemble, since these are high-

fill networks, with no proper sign of preferential attachment, for which there is no analytic esti-

mate of the average degree in terms of m.

The quantitative comparison between the real-world networks and the 5 reference ensem-

bles is made by regarding each reconstructed potential associated with a single-network

Fig 11. Real-world network potentials. Potentials reconstructed from the graph spectra of the real-world networks

reported in Table 1, paired according to their domain.

https://doi.org/10.1371/journal.pone.0254384.g011
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realizations in a given artificial ensemble as a tentative fit of the corresponding real-world net-

work potential. Specifically, the discrepancy between benchmark and real-world potentials is

quantified as the related root-mean-square error (RMSE), which constitutes a measure of the

affinity between the networks. The results of such comparison, for all the benchmark ensem-

bles under investigation, are shown in Table 2.

As regards the smallest networks (Kangaroo, Zebra, Jazz, Train Bombing), the RMSE values

are very similar to each other, and in many cases network ensembles with the same number of

nodes and average degree provide results equal within the error bars. However, the human

interaction network potentials are evidently closer to the potentials of WS ensembles, specifi-

cally those with prew = 0.5 for the Jazz network and both those with prew = 0.1 and 0.5 for the

Train bombing one. The situation changes in the case of larger networks: for the co-authorship

domain, the potentials of WS networks with small rewiring probability are by far the closest to

both real networks, while the infrastructure network potentials are apparently best approxi-

mated by the potentials of both the ER ensemble and the WS ensemble with prew = 0.1. In the

latter case, the BA ensemble provides the worst approximation, possibly indicating that prefer-

ential attachment is barely relevant in networks in which long-distance connections should be

guaranteed, but geographical and economical considerations do not favor the existence of

hubs, as opposed, e.g., to the case of air transport.

Another direct method to compare real-world and benchmark networks is provided by the

RMSE between the real network potentials and the ensemble potentials associated with each

set of artificial networks, computed by means of the pointwise median over potentials of sin-

gle-network realizations. Results of this comparison are shown in brackets in Table 2. This

approach has the advantage of comparing the spectrum of a network with a single representa-

tive of the spectral distribution of the ensembles, though it does not provide an estimate of the

error in a natural way. The results essentially satisfy a similar hierarchy as that determined

Table 2. Comparison between the reconstructed potentials of real and synthetic networks. For each real network, we consider five different ensembles of synthetic net-

works with approximately the same average degree, sampling 100 realizations of each ensemble. We construct a distribution of RMSE between the potentials associated to

the real network and to each syntetic network. Mean and standard deviation of each distribution are reported in the table, with network models closest to the real ones

highlighted in boldface. The number in brackets represents the RMSE between the real network potential and the ensemble median potential.

Network RMSE with benchmark networks

ER WS, prew = 0.1 WS, prew = 0.5 WS, prew = 0.9 BA

Kangaroo 0.143±0.022 0.129 ± 0.023 0.146±0.022 0.142±0.025 −
(0.110) (0.098) (0.119) (0.116) −

Zebra 0.470±0.029 0.429 ± 0.018 0.459±0.029 0.476±0.030 −
(0.456) (0.417) (0.444) (0.464) −

Jazz 0.472±0.008 0.477±0.007 0.412 ± 0.006 0.476±0.006 0.454±0.007

(0.472) (0.475) (0.411) (0.475) (0.453)

Train bombing 0.253±0.018 0.200 ± 0.024 0.211±0.016 0.243±0.010 0.243±0.012

(0.236) (0.183) (0.193) (0.230) (0.229)

EU roads 0.064 ± 0.007 0.068±0.009 0.105±0.023 0.125±0.024 0.374±0.028

(0.052) (0.047) (0.048) (0.048) (0.232)

US power grid 0.036±0.004 0.031 ± 0.004 0.053±0.014 0.063±0.019 0.370±0.027

(0.025) (0.020) (0.021) (0.022) (0.222)

Astro 1.122±0.001 0.735 ± 0.004 0.977±0.003 1.138±0.001 1.148±0.001

(1.122) (0.735) (0.977) (1.138) (1.148)

HeP 1.105±0.001 0.732 ± 0.004 0.959±0.003 1.110±0.001 1.120±0.001

(1.105) (0.732) (0.959) (1.110) (1.120)

https://doi.org/10.1371/journal.pone.0254384.t002
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through the mediated comparison with the potentials of each network in the ensembles;

numerical differences are found only in the case of large ensemble variability, e.g. close to the

ER critical point. On the other hand, as shown in the last lines of Table 2, the results obtained

for the largest networks are identical to the averages computed with the first method.

Conclusion

We applied the reconstructed potential framework to analyze two classes of artificial networks,

belonging to the Watts-Strogatz and Barabási-Albert ensembles, that are generally more suit-

able to incorporate the features of real-world networks than the fully random (Erdős-Rényi)

ones. By analyzing the ensemble potentials for different values of the model parameters, we

found that their fractality, quantified by the Higuchi fractal dimension, takes larger values as

the average degree becomes closer to the value corresponding to the ER phase transition,

though it cannot be reached by construction. We concluded our analysis by testing the possi-

bility to quantify spectral similarity between networks through the reconstructed potentials.

As a case study, we compared the potentials associated to a given real-world network and dif-

ferent ensembles of artificial networks, sharing with the real one the number of nodes and the

average degree. Summarizing the main findings, the formalism of reconstructed potentials

allowed to identify in a quantitative way a remnant of criticality in artificial networks, and pro-

vided the basis to define an instrument of comparison among networks. In particular, the

comparison with benchmark ensembles of artificial networks unveiled hidden features and

similarities of real-world networks.

The representation of the Laplacian by means of a quantum potential suggests interesting

connections with quantum walks on the network [54, 55] and with possible node metrics that

can be defined on their basis [56, 57]. We will devote future research to investigating the rela-

tion between the reconstructed potential representation and Schrödinger dynamics on a net-

work. Moreover, our results suggest the possibility to define a node centrality, based on the

discrepancy between the reconstructed potentials of the network (quantified, e.g, by square-

norm) before and after the removal of a specific node. Such a metric would be analogous to

the Laplacian centrality [58], that is defined as the relative difference in the sum of the squared

eigenvalues due to a node removal. We will investigate in future research possible definitions

of potential-based node metrics and their relation with Laplacian centrality and other estab-

lished node rankings.

A further perspective is represented by the application of the reconstructed potential for-

malism to characterize the variability of real networks as a consequence of random alterations,

such as the random removal of one or more nodes, or the failure of links. By constructing an

ensemble consisting of different realizations of the randomizing process of interest, the fractal-

ity of the ensemble potential can be used to quantify the sensitivity of the network structure to

the considered perturbations.

Supporting information

S1 Appendix. Additional plots of graphs and potentials for WS networks. The S1 Appendix

reports plots analogous to Fig 2 for the cases c = 2 and c = 50.
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