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After ChatGPT was released, large language models (LLMs)
became more popular. Academicians use ChatGPT or LLM
models for different purposes, and the use of ChatGPT or
LLM is increasing from medical science to diversified areas.
Recently, the multimodal LLM (MLLM) has also become pop-
ular. Therefore, we comprehensively illustrate the LLM and
MLLM models for a complete understanding. We also aim
for simple and extended reviews of LLMs and MLLMs for a
broad category of readers, such as researchers, students in
diversified fields, and other academicians. The review article il-
lustrates the LLM andMLLMmodels, their working principles,
and their applications in diversified fields. First, we demon-
strate the technical concept of LLMs, working principle, Black
Box, and the evolution of LLMs. To explain the working prin-
ciple, we discuss the tokenization process, token representa-
tion, and token relationships. We also extensively demonstrate
the application of LLMs in biological macromolecules, medical
science, biological science, and other areas. We illustrate the
multimodal applications of LLMs or MLLMs. Finally, we illus-
trate the limitations, challenges, and future prospects of LLMs.
The review acts as a booster dose for clinicians, a primer for
molecular biologists, and a catalyst for scientists, and also ben-
efits diversified academicians.

INTRODUCTION
Since the launch of ChatGPT byOpenAI onNovember 30, 2022, large
language models (LLMs) have become popular quickly. The medical
and scientific communities have been thrilled to use LLMs in various
biology, medicine, and science areas. During the last phase of 2022,
Stokel-Walker reported in Nature that ChatGPT can write Smart es-
says.1 After that, people found that the written responses of this LLM
chatbot were rapid and often invariable from humans. Conversely, re-
searchers found that LLMs can process the text from queries and can
respond, revolutionizing the field.

LLMs are one of the significant achievements among the recent
noteworthy technologies of artificial intelligence (AI). The rapid
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development of AI has led to the development of this sophisticated
technology of LLMs. As a component of AI, LLMs are trained
with billions of words derived from internet-based content,
books, articles, and massive texts. During the production of text,
the LLM chatbots also extract input from billions of unidentified
general web pages. However, using AI and NLP (natural language
processing), LLM chatbots can recognize questions and offer auto-
mated answers. They are LLM-based dialog agents.2,3 This model
can answer free-text queries without being trained with a specific
topic. The model’s explicit training objective is constructed on
the generative pre-trained transformer (GPT) architecture. It is
to predict the next word efficiently and can be prepared in a sen-
tence or paragraph. Their performance has become increasingly
human-like through dialog as a dialog agent (Figure 1). The
most essential benefit of GPT models is their processing speed.
The GPT model can answer complex input queries in just a few
seconds. LLMs use a machine learning model based on the archi-
tectures of neural networks.2,4–6 The skill resembles cognitive
capability.

The publicly popularized LLM chatbot, ChatGPT was GPT model
3.5. Millions of users started to use it within a few months after it
was released. It was noted that about 100 million users used
ChatGPT within 2 months after its launch.7 Subsequently, interest
in LLM chatbots has increased very fast across academic domains.
Afterward, it has been used across industrial domains.8,9 In medi-
cal science, it has been applied in different areas such as cardiol-
ogy,10 orthopedics,11 radiology,12 infectious disease,13 drug resis-
tance,14 surgery,15 etc. Other than medical science, ChatGPT has
been used in different academic areas such as pharmacology and
rapy: Nucleic Acids Vol. 35 September 2024 ª 2024 The Authors.
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Figure 1. Theworking principle of a LLM in generating

a single-token sequence

Themodel generates tokens, ultimately forming a complete

sentence.
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drug discovery,16 law,17 education,18 biomedical engineering,19

finance,20 etc.

Subsequently, in 2023, OpenAI released GPT model 4, which is a
multimodal LLM (MLLM). MLLMs can be trained with video,
audio, or image, along with all the training parameters that are
used to trained LLM. It can be trained with more comprehensive
training parameters. MLLM is a robust model.21 Therefore, it is
considered a more advanced version of LLM. GPT-3.5 and
GPT-4 used different parameters and tokens. It was reported
that GPT-3 was using over 175 billion machine learning parame-
ters. GPT-3’s parameters (175 billion) help the LLM’s vast under-
standing of language and knowledge across various domains. This
machine learning model was trained on 300 billion tokens.
GPT-3.5 is more fine-tuned than GPT-3’s abilities. GPT-3.5 is
more refined and exhibits more accuracy compared with GPT-3.
Similarly, the GPT-4 model was developed to incorporate about
1.8 trillion parameters. At the same time, this MLLM is trained
with 13 trillion tokens.22

Here, this comprehensive review article illustrates the basic tech-
nical concept of LLM, its working principle, LLM and its
Black Box, and the evolution of LLMs. We also illustrate the appli-
cation of LLMs in medical science, biological science, and other
areas. We illustrate the multimodal applications of LLMs or
MLLMs. Finally, we illustrate the limitations, challenges, and
future prospects of LLMs. The article has been simplified and
extended, which will help a broad group of readers to understand
the topic better.
2 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
Basic technical concept of LLMs

The role of an LLM is to respond to questions.
The model is trained with a considerable
number of tokens. It is based on transformer
architecture and NLP. The transformer archi-
tecture is a type of deep learning neural
network architecture. The significant questions
are: Which token will most probably come
next? What will the weightage of a token
be? The LLM works through the probability
distribution. The probability distribution is as
follows:

P (un+1|u1 . .un), where u1 . un is a
sequence of tokens (the context) and un+1 is
the predicted next token.2

How the LLM works

Language models (LMs) have been developing
for several years to enhance the intellect of
machine languages. Technically, LMs function with probability
value allocation to word sequence and deliver appropriate text
output (Figure 1).23 LMs utilize tokens as basic units for under-
standing and generating text output, where tokens refer to
parts of text that can be words, characters, or sub-words.
With the use of tokens, LMs can grasp the connection and
relation among words, enabling them to produce grammatically
textual output that is right.24 LLMs, i.e., pre-trained LMs with
millions of parameters, can grasp and produce output st-
rikingly similar to human language. The LLMs operate with the to-
kenization theory and can apply millions of tokens to produce
output.

Tokenization process

In tokenization, the text is split into small sections known as tokens,
which are subsequently utilized for analysis in LLMs. Tokenization is
crucial in text pre-processing, preparing input tokens for LMs. The
commonly employed methods for tokenization are WordPiece
and BPE (byte-pair encoding), which are utilized by significant
models such as bidirectional encoder representations from trans-
formers (BERT) as well as the GPT. Nevertheless, the tokenization’s
effect may vary in languages that are rich morphologically, such as
the Turkic languages, where the addition of prefixes and suffixes
can generate numerous words. In such cases, a newly formed
tokenizer operating at the morphological level can challenge the
already established tokenizers.25 Within LLMs, tokenization also
holds importance in speech processing. The tokenization process in
discrete speech notably contributes to integrating speeches into
the LLMs.
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Nonetheless, the discrete process gives rise to information loss, which
impairs the performance. One unique speech-representing codec
called RepCodec has been proposed for semantic speech tokenization
to enhance the functioning of these speech tokens (discrete).26 In the
context of text summarization, tokenization is an essential technique
for obtaining the needed information precisely.27 Summaries help
lower the time needed to read and facilitate researching documents.
However, tokenization can potentially introduce ambiguity, and there
exists a lack of clarity on whether the divided tokens attain optimal
performance for the intended task.28 An innovative, straightforward,
and effective method named GrowLength has been introduced to
expedite the pre-training process of LLMs. This method gradually en-
hances training length during the pre-training period, thus reducing
computing expenses and improving efficiency.29

Token representation

LLMs utilize embedding and encoding mechanisms to represent to-
kens. These mechanisms enable the model to comprehend and
generate natural language by capturing the tokens’ semantic and syn-
tactic information. Embedding mechanisms map tokens to high-
dimensional vectors, thereby facilitating the model’s grasp of their se-
mantic meaning. One commonly adopted approach involves utilizing
pre-trained embeddings of the words, such as GloVe or Word2Vec,
which offer distributed descriptions of words depending on their
contextual usage.30 Within LLMs, token embeddings are acquired
through pertaining and fine-tuning, enabling the model to capture
intricate linguistic patterns and relationships between tokens.31 En-
coding mechanisms, on the other hand, process token embeddings
to capture sequential and contextual information. In LLMs, this is
typically accomplished by employing self-attention mechanisms
such as the transformer architecture, which allows it to allocate
important weights for each token in the overall input sequence.32

Consequently, the model becomes proficient in capturing long-range
dependencies and contextual information, which proves critical for
numerous NLP tasks. In addition to self-attention, recent research
has explored novel token encoding mechanisms, such as recurrent
alignment and contrastive losses, designed to encapsulate nuanced se-
mantic relationships between tokens and optimize the embedding
space.33

Token context and relationships

LLMs such as GPT-3 and BERT can capture context and establish re-
lationships between tokens by generating token representations that
retain crucial contextual knowledge necessary for various tasks. An
exemplification of this is observed in the SPAE (Semantic Pyramid
AutoEncoder), which empowers LLMs that are frozen to undertake
comprehension and generate tasks requiring non-linguistic proced-
ures such as videos or visual representation of objects. SPAE accom-
plishes this by converting raw pixels into interpretable lexical tokens
taken out from the word stock of the LLM, thereby capturing both se-
mantic meaning and intricate details necessary for visual reconstruc-
tion.34 In addition, contextual LMs, such as BERT produce token rep-
resentations that retain context-specific knowledge essential for tasks
at the type level, thereby indicating the context sensitivity of processes
such as similarity estimation and relatedness estimation.35 The
contextual knowledge facilitates LLMs in capturing intricate relation-
ships between tokens, rendering them suitable for various tasks,
including image generation and semantic estimation. Attention
mechanisms in the models play a pivotal role in contextual under-
standing by allowing the models to selectively focus on different seg-
ments of the input sequence to capture pertinent information. An
illustration of this is the tri-attention framework in NLP, which
explicitly incorporates the query, key, and context interactions by
including context as the third dimension in the computation of rele-
vance scores. Thus, this framework surpasses traditional bi-attention
approaches and pre-trained neural LMs in various NLP jobs36

Furthermore, the Vit-BiGRU-Attention sentiment classification
model utilizes attention mechanisms to assign varying weights to in-
dividual words, thereby enhancing the comprehension of emotions
and determining the polarity of emotions in user comments, ulti-
mately leading to improved accuracy in sentiment classification.37

As a machine learning model, LLM architecture primarily consists of
numerous layers of neural networks, such as recurrent, feedforward,
embedding, and attention layers. It uses a probabilistic model, toke-
nization process and representation, and neural architecture at a
time to generate human-like language text.

LLM and its “Black Box”

Neuroscience models mainly guide artificial neural networks (ANNs),
which brain mechanisms encourage and develop. Unfortunately, net-
works generated by neurons are described as unclear as those gener-
ated by the brain. The data was observed to diffused, so it was not
straightforward to solve. AI is developed using the ANN model,
which cannot be adequately described in the Black Box of AI. Re-
searchers are trying to describe the inner workings of a complex Black
Box model of AI.38 The Black Box can be applicable to LLM or
ChatGPT models.39,40 However, the interpretability of the LLM
output cannot be adequately explained. At the same time, tokeniza-
tion processes cannot be adequately explained. Therefore, the output
of LLMs can be described as the Black Box of LLMs and understand-
ing it is a challenge for the researcher.41–43

Evolution of LLMs

The evolution of LLMs is evidence of the rapid pace of AI research
and innovation. The journey of LLMs started with simpler LMs,
and the present journey continues with the development of massive
neural networks such as GPT-3.5 and GPT-4 (Figure 2). The present
LLM, GPT-4, is a multimodal LLM with immense capabilities across
vision, video, audio, language, and 3D. It also claims billions of pa-
rameters along with a safety research and monitoring system.44 The
timelines of LLM evolution include multiple stages from the last
few years. It evolved significantly over the years, with advancements
in model architecture and training methodologies.45

Before the era of deep learning, rule based and statistical methods
were dominated by NLP. Models such as ALICE (1995) and Eliza
(1966) put the foundation for conversational agents. However, they
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 3
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Figure 2. The evolution of a LLM through chatbots

(A) The evolution of LLM chatbots with a timeline that finally

developed the recent MLLM. (B) Some significant medical

chatbots follow the LLM or MLLM models.
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were rule based and lacked a proper language understanding.46 In the
2000s, statistical models such as HiddenMarkovModels and n-grams
improved language processing by considering probabilities of word
sequences. These models were data driven but limited in handling
complex language distinctions.47

In subsequent consideration of advancement LLMs, a recurrent neu-
ral network (RNN) model is an ANN model that processes and con-
verts sequential data inputs into sequential data outputs. RNNs were
among the first neural network architectures applied to sequential
data, such as text, and were initially created in 1980s. Currently, it
is ideally suited for machine learning problems involving sequential
data. However, it suffered from vanishing gradient problems, limiting
it ability to capture long-range dependencies. The long short-term
memory (LSTM) networks addressed the vanishing gradient problem
by introducing a memory cell in 1997.48 It allowed them to capture
long-term dependencies in sequential data, improving performance
in language-related tasks.49 Then, in 2013, word embeddings, such
4 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
as Word2Vec and GloVe, represented words as
continuous vector spaces. These embeddings
captured semantic relationships between words,
offering better representations than traditional
methods.50 In 2017, statistical language process-
ing came out, and the introduction of deep
learning techniques revolutionized NLP. The
RNN and LSTM networks showed promise in
sequential data tasks, paving the way for more
advanced models. The appearance of Google
transformer architectures and attention mecha-
nisms marked a turning point in LLM evolution.
Transformers use attention mechanisms to
process words about all other words in a
sentence, significantly improving contextual
understanding.51

OpenAI’s GPT series, starting with GPT-1, then
GPT-2, and the massive GPT-3, showcased the
power of pre-trained models fine-tuned for
various tasks. GPT-3’s unprecedented scale
generated coherent and contextually relevant
text.52,53 GPT-2 was released in 2018 and can
use 1.5 billion parameters. This version of GPT
used the extensive collection of free novel books
dataset called the BooksCorpus dataset, contain-
ing 11,308 novels. It has been noted that it in-
cludes about 1� 109 words or around 74 million
sentences.6 Similarly, GPT-3 was released in
2020, and it can handle 175 billion parameters.
GPT-3 is assumed to be 100 times more extensive than the previous
GPT (GPT-2). The training dataset comprises 45 terabytes and 5
corpora. It contains Wikipedia, WebText2, Common Crawl (web-
pages), Books1, and Books2. GPT-3 is one of the most sophisticated
LLMs until today.6 Due to user requirements, GPT-3 was evolved into
GPT-4, an MLLM.

Simultaneously, several other pre-trained LMs were developed in
recent years (Table 1), which include open pre-trained transformer,
pathways language model (PaLM), anthropic-LM, language model
for dialog applications, MT-NLG, and LLaMA.6,54

LLMs stand as a superior consequence of the remarkable progress in
AI research. Their evolution from basic LMs to powerful transformers
has redefined the possibilities of NLP. While their applications across
domains offer immense benefits, ethical considerations must guide
their deployment to ensure a responsible and equitable social integra-
tion.55 As we continue to explore the potential of LLMs, a balanced
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Table 1. Different recently developed LLMs and their developers

Sl. no. LLM name Developer Year of release Remarks

1. LLaMA Meta 2023
It is the collection of foundation language models ranging from 7B to 65B parameters. This is modeled on
trillions of tokens, and shows that it has the potential to train state-of-the-art models using publicly
obtainable datasets exclusively, deprived of resorting to exclusive and inaccessible datasets.

2. ChatGPT OpenAI 2022
It is based on an LLM, and enables users to refine and steer a specific conversation toward a preferred length,
style, format, and level of detail, as well as language.

3. Flamingo DeepMind 2022
It is a single visual language model (VLM), sets a new state-of-the-art in few-shot learning on an extensive range
of open-ended multimodal tasks. It is also able to tackle a number of challenging problems with just a handful
of task-specific examples, lacking any additional training prerequisite.

4. DALL-E OpenAI 2021
It uses developed text-to-image models by OpenAI by deep learning methods to produce digital images from
natural language descriptions, known as prompts.

5. Anthropic-LM Anthropic 2023
A combination of AI chatbot and LLM that can help doctors to diagnose diseases accurately and efficiently.
An improved version has also been designed to be safer than other models and is sometimes called a
potential ChatGPT killer.

6. Turing-NLG Microsoft 2020
It is a 17-billion-parameter language model by Microsoft that outperforms the state-of-the-art on many downstream
NLP tasks. In addition to completing an unfinished sentence, it can generate direct answers to questions and
summaries of input documents.

7. Minerva Google 2022
Minerva is based on the pathways language model (PaLM). It is a 540-billion-parameter language model that
can generalize across different domains and tasks. It was trained on a dataset of scientific papers and web
pages that contain mathematical expressions.

8. Wu Dao 2.0 Academia 2021

It has the ability to perform natural language processing and image recognition, in addition to generation
of text and images. The model cannot only write essays, poems, and couplets in traditional Chinese,
it can both generate alt text based on a static image and generate nearly photorealistic images based
on natural language descriptions.

9. Imagen Google 2023
Imagen is a text-to-image diffusion model with an exceptional degree of photorealism and a deep level
of language understanding. It builds on the power of large transformer language models in appreciative
text and hinges on the strength of diffusion models in a high-fidelity image generation group.

10. GPT-3 OpenAI 2020
It is a decoder-only transformer model of a deep neural network, which overtakes recurrence and
convolution-based architectures It contains sustainable identified themes, emotions, and sentiment
from surveys, reviews, live chat logs, help desk tickets, and more.

11. Megatron Nvidia 2021
It is an extremely optimized and well-organized library for training LLMs. With this model parallelism,
language models can be trained with billions of weights and then used in NeMo for downstream tasks.
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approach that combines technological advancement with ethical
mindfulness will shape the future of AI and human-machine interac-
tions.56 A continuous drive marks the evolution of LLMs for larger
models and further evolution into MLLM, which provides better
pre-training strategies and increased attention for future consider-
ations to ensure responsible AI development and deployment.

Prompt engineering

LLMs or chatbot technologies use deep learning and NLP to learn the
language patterns for conversations with humans from a large
amount of text data. In conversations with humans, LLMs depend
on proper input or high-quality prompting, which is called "prompt
engineering."57,58 Therefore, asking the right question to an LLM is
essential. This is a new area of research that focuses on refining,
designing, and implementing instructions or prompts to improve
LLMs’ output.

Different scientists use prompt engineering to yield more valuable
outputs for precise instructions from LLMs. Kleinig et al. illustrated
how to use prompt engineering in ophthalmology.57 Venerito et al.
explained the use of prompt engineering in rheumatology research
and described how prompts are methodically constructed in this
area of research.59 Polak andMorgan explained how to extract proper
data from research papers.60 Therefore, prompt engineering is valu-
able in biological macromolecules, biological sciences, and medicine.

Application of LLMs in biological macromolecules

Recently, LLMs have been used in various fields of biological macro-
molecules (Figure 3). Researchers have been trying to use LLMs to un-
derstand the properties and functions of biological macromolecules.

Proteins

LLMs have been used in various fields of protein research. Re-
searchers have been using LLMs to understand the properties and
functions of proteins. Therefore, researchers are using LLMs in
different areas of protein science. They have also attempted to develop
protein-centric LLMs to perform protein-related tasks. Recently,
Zhuo et al. have suggested one LLM for protein entitled PROTLLM
to perform protein-language-related and protein-associated tasks. It
is a versatile crossmodal LLM that can perform dynamic protein-
centric assignments and dynamic protein mounting.61 Likewise,
Guo et al. suggested one LLM for the protein named Proteinchat to
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 5

http://www.moleculartherapy.org


Figure 3. Some significant applications of a LLM in the field of biological

macromolecules.
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perform chatbot-like functionalities on three-dimensional protein
structures.62 Similarly, Wang et al. suggested another LLM for the
protein named ProtChatGPT for comprehending proteins with an
LLM.63 At the same time, Wang et al. developed another LLM model
for a protein called InstructProtein. The LLMmodel helps to compre-
hend the protein language and align humans through knowledge in-
struction.64 However, LLMs have started to be used to explore novel
research of different areas of protein structure and function, and other
different areas.

Nucleic acid research

LLMs have recently been used in various fields of nucleic acid
research. We recently explained LLM’s role in the field.65 Researchers
have conducted GeneTuring using six GPT models: new Bing,
ChatGPT, BioMedLM, BioGPT, GPT-3, and GPT-2. The open com-
pany developed ChatGPT, GPT-3, and GPT-2. The GeneTuring test
was conducted with an exhaustive QA database with 600 genomics
questions. New Bing’s overall performance was the best.66 Ji et al.
use a pre-trained transformer model called DNABERT. Using this
pre-trained model, they have indicated transcription factor binding
sites, splice sites, and promoters.67 Recently, a group of researchers
used DeepMind to forecast the effective and improved gene expres-
sion prediction from DNA sequences.68

Polysaccharides and lignin

LLMs have recently started to be used to explore various fields of poly-
saccharides and lignin. Researchers have studied ChatGPT’s perfor-
mance in responding to glycobiology and carbohydrate chemistry
queries. Williams and Fadda explored ChatGPT’s answer style to
different glycobiology and carbohydrate chemistry questions. They
found that the model can answer short and descriptive questions
correctly. However, they found that answers contained fabricated
text.69 Researchers developed an LLM for material modeling. Buehler
developed MechGPT for materials modeling and mechanics, which
6 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
can be used for lignin modeling.70 David et al. developed an LLM
or ANN to assess sugar output from Kraft waste-based lignocellulosic
pre-treatments. They tried to understand that domain-specific
knowledge can help accelerate the progression of lignocellulosic waste
pre-treatment.71

Application of LLMs in biological sciences

Drug discovery and development

LLMs play a significant role in drug discovery, offering valuable con-
tributions in various stages of the drug development process. They
can compute extensive pieces of scientific literature, extracting rele-
vant information about potential drug targets, biomarkers, andmech-
anisms of action.72 Likewise, they aid in identifying potential drug tar-
gets by analyzing biological and biomedical texts to understand the
relationships between genes, proteins, and diseases. LLMs can predict
potential drug interactions, assessing the likelihood of adverse or syn-
ergistic therapeutic effects.9 Moreover, the LLMs can contribute to
monitoring adverse events related to drugs by analyzing medical liter-
ature, clinical trial reports, and social media. They also help match
eligible patients to clinical trials by analyzing electronic health re-
cords, medical literature, and patient data. The application of LLMs
in drug discovery demonstrates their ability to process and under-
stand large volumes of biomedical information, offering valuable in-
sights that can identify novel therapeutic targets, which initiate faster
methods of novel therapeutics development.16 The application of
LLMs in drug discovery demonstrates their ability to process and un-
derstand large volumes of biomedical information, offering valuable
insights that can trigger the faster process of identification of novel
therapeutics and their development.

Molecular biology and computational biology

Chatbot technology is evolving very fast and is appearing as a new AI
tool for molecular biologists and computational biologists. Several re-
searchers have checked the potentiality of LLMs in molecular biology.
Recently, Ross and Gopinath illustrated the process of learning the
structural biophysics of DNA using an LLM.73 Lubiana et al. give
ten tips to assist computational biologists in optimizing the research
workflow with an LLM or ChatGPT. The tips include enhancing data
clean up, writing code efficiently, improving data visualization, and
prompt engineering. They also advise that we should only depend a
little on ChatGPT.74 Tiwari et al. used ChatGPT/GPT-4 or an
MLLM to understand pathway enrichment and annotation gaps
with comparative analysis using the manual curation process (con-
ventional process). They determined some promising capabilities of
this MLLM.75 Levine et al. developed Cell2sentence, a GPT-2 model
based on an LLM. It can be used to teach biological science, especially
single-cell transcriptomics.76 However, the application of LLMs to
MLLMs is increasing day by day in molecular biology and computa-
tional biology.

Application of LLMs in medical sciences

LLMmodels have been used from time to time and have been applied
in different fields of medical science (Figure 4). LLMs can enhance
diagnosis and support clinical judgment in medicine. However, to
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Figure 4. Some significant clinical applications of a LLM in the medical field.
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make them function well in the medical field, particular difficulties
must be overcome.77 LLMs may completely transform the healthcare
industry by improving diagnosis accuracy, predicting the course of
diseases, and supporting physicians in their decision-making.78,79

LLMs in medical education

LLMs might be improved by concentrating on specialized medical
literature to stay relevant and up to date. They can also be custom-
ized for different languages and scenarios, improving global access
to medical knowledge and information.77 Recently, there have been
numerous instances where the application of LLM technology,
notably ChatGPT, has been documented.6 After passing the US
Medical Licensing Exams, ChatGPT became well-known in the
medical community. GPT-4 performs far better than GPT-3.5, its
predecessor.80,81 These medical LMs, however, were exceptionally
trained on texts related to medicine or biology. They come in use-
ful for jobs such as question-answering, translating, and summari-
zing. Examining if smaller models trained on pertinent data can
perform as well at a reduced cost is necessary, given the high
cost of training and utilizing these models. For example, at the
cost of $600, the Center for Research on Foundation Models at
Stanford University made a model named Alpaca that matched
the performance of OpenAI’s text-davinci-003 with just 4% of its
parameters.82 By strengthening critical medical competencies
such as factual knowledge and interpersonal communication,
LLMs can elevate the standard of care for patients. For example,
ChatGPT has demonstrated success in medical licensure exams
demonstrating its substantial medical knowledge and ability to
participate in medical reasoning.80,81,83 LLMs’ medical reasoning
and concept understanding can be improved even further by
providing focused instruction that includes questions akin to those
on a medical test and expertly chosen sample answers. GPT-4 pres-
ently exhibits the most significant medical domain knowledge
among LLMs. Nonetheless, LLMs face a fundamental limitation:
they frequently reproduce pre-existing medical biases84 and
sustain inequalities associated with socioeconomic status, gender,
ethnicity, and other characteristics.80,85

The use of LLMs in healthcare is progressing rapidly, driven by the
widespread availability of LLMs, including their availability to stu-
dents and some research-based initiatives. This involvement can be
validated by the involvement of ChatGPT in the Epic Systems Corpo-
ration’s software, as reported in a recent article.86 The potential appli-
cations are diverse, ranging from streamlining administrative tasks
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 7
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such as assisting on the instructions related to patient discharge, in-
surance filings, as well as obtaining some prior authorizations for
medical services.87 Moreover, there is a prospect of enhancing the
standard-of-care by finding the older medical history from intricate
records of patients along with a detailed checking on some of the stan-
dardized operating procedures. Among the emerging applications,
two stand out: the capability of LLMs to analyze vast amounts of
data in an unstructured form in electronic health records and their
potential to aid in clinical documentation.87,88 Incorporating these
models into the educational framework can stimulate deep critical
thinking, encourage creative work, and provide innovative learning
experiences. Furthermore, gaining a profound understanding of these
models prepares the students for working in the healthcare industry,
which is also closely related to AI. Evaluating the application of
ChatGPT in medical science is a crucial stride in harnessing the tech-
nological potential to guide forthcoming changes in the new era of
medical science. More notably, the next wave of healthcare profes-
sionals needs to not only be familiar with these modern technologies
but also possess the skills to responsibly and effectively employ them
in the delivery of patient care.89 In addition, the emergence of
ChatGPT has generated new insights into AI-powered chatbots and
their possible uses, attracting considerable attention worldwide. In
recent months, there has been growing interest among scientists
and medical professionals in implementing the applications of
LLMs in medicine.90

LLM-based medical tool or device for medical education and

research

LLMs are trained on medical data based on various codes and text.
After examining this training set of data for more than 80 medical
LMs, Wornow et al. distinguished two significant groups.91 Firstly,
textual resources such as progress notes or PubMed abstracts train
specific models. They learn by making predictions about the words
that will come next in these papers, just like generic LMs such as
GPT-3 do. The effectiveness of utilizing domain adaptation, transfer
learning, and alternative methodologies in themedical field is demon-
strated by multiple examples of LLMs that have been specifically fine-
tuned for medical purposes. BioBERT, a biological LM based on the
BERT architecture, was refined by leveraging large biomedical data-
sets such as PMC full-text articles and the abstracts available in
PubMed. As a result, there were significant improvements in several
biological NLP tasks, such as problem-solving, relation extraction,
question-answering, and named entity recognition.92 ClinicalBERT,
a distinct model, was subjected to fine-tuning using the MIMIC-III
dataset, which comprises the electronic health records from patients
in critical care units. Fine-tuning exhibited enhanced efficacy in clin-
ical NLP assignments, including diagnosis categorization, patient
mortality rate prediction, and de-identification.93 BlueBERT, a model
constructed according to the basis of the BERT architecture, has
already been pre-trained on an extensive collection of biomedical
texts and has demonstrated exceptional performance in multiple
biomedical NLP tasks. These tasks include named relation extraction,
biomedical problem-solving, and entity recognition.94 The cases
above highlight the effectiveness of utilizing domain-specific fine-
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tuning, transfer learning, domain adaptation, and alternative
methods to harness the capabilities of LLMs in various fields of med-
ical science.77 Recently, a specialized version named Med-PaLM 2
(Google) that was trained on medical data achieved state-of-the-art
results similar to the level of proficiency exhibited by human doc-
tors.95 Recently, specialized LLMs in different fields of medical sci-
ence have been developed and applied periodically, and some of
them are PMC-LLaMA, ClinicalCamel, MedAlpaca, BioGPT,
BioMedLM, Med-PaLM2, and ChatDoctor (Table 2). These special-
ized LLMs have revolutionized the field of medical science.

LLMs in different clinical fields

By examining extensive medical data, the LLMs can quickly develop
specialized knowledge in variousmedical sectors, including radiology,
pathology, and oncology.103–105 Notably, the release of OpenAI’s
ChatGPT quickly sparked a massive revolution in other clinical fields,
such as ophthalmology, nephrology, cardiology, and orthopedics.11

Some LLMs are also trained using patient record sequences of medical
codes. These models pick up new information by anticipating the co-
des for the next day or comprehending the time intervals between
particular codes. They consider the sequence and the chronology of
medical occurrences documented in a patient’s file. For instance, if
trained on some particular codes, these models can predict the chance
of a stroke, heart attack, or renal failure. Rather than producing text,
these models yield a fixed-length, high-dimensional vector that ma-
chines can read as an “embedding” of the patient’s medical record.
With as little as 100 training data examples, these embeddings can
be used to build models predicting 30-day readmissions, prolonged
hospital stays, and in-patient death.106 Domain-specific LLMs
tailored to specific domains could offer valuable new features in
various clinical domains. For instance, foresight, an LLM that was
built on the GPT architecture and trained on unstructured data
from over 811,336 electronic health records, showed promise in accu-
rately predicting and forecasting outcomes during validation trials.107

However, education and specific training are essential for effectively
integrating LLMs into medical practice. Given the growing impor-
tance of LLMs in healthcare, medical personnel must fully understand
their capabilities and limitations. This knowledge will allow them to
utilize these technologies in clinical settings effectively. To fully equip
future medical practitioners, medical curricula must incorporate the
fundamental principles of utilizing LLMs. It will ensure that students
gain the necessary knowledge and abilities to navigate and exploit
these technological developments.77

Application of LLMs in other areas

Financial modeling and sentiment analysis

LLMs are increasingly used in financial modeling and sentiment anal-
ysis, offering advanced NLP capabilities to analyze and interpret
financial data and model and measure market sentiment. It can tran-
scribe and analyze earnings calls, extracting critical information about
a company’s performance, outlook, and management discussions to
know the market trends.108 In addition, LLMs can analyze text data
related to companies, industries, and economic conditions to assess
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Table 2. Application of specialized LLMs in different fields of medical science

Sl. no. LLM Year of release Remarks Reference

1. PMC-LLaMA 2023

PMC-LLaMA, an open-source language model that is developed by refinement of
an open-source language model on a total of 4.8 million biomedical academic
papers for added injecting medical knowledge, improving its
capability in the medical domain.

Wu et al.96

2. ClinicalCamel 2023

It is an open LLM obviously tailored for clinical research. Fine-tuned from LLaMA-2
using QLoRA, Clinical Camel achieves state-of-the-art performance across medical
benchmarks among openly available medical LLMs. Leveraging
efficient single-GPU training.

Toma et al.97

3. MedAlpaca 2023
MedAlpaca was developed by instruction fine-tuning of the LLaMA 13B and 7B models
on Medical Meadow data. It is also the assembly of reformatted instruction-response
pairs with datasets for medical NLP tasks and data derived from various internet sources.

Han et al.98

4. BioGPT 2023
BioGPT is a domain-specific GPT language model for biomedical text generation
and mining. BioGPT follows the transformer language model backbone, and is
pre-trained on 15M PubMed abstracts from scratch.

Luo et al.99

5. BioMedLM 2022

BioMedLM is based on a HuggingFace GPT model (decoder-only transformer)
with 2.7B parameters and a maximum context length of 1,024 tokens. It also
uses a custom biomedical tokenizer trained on PubMed abstracts with a
vocabulary size of 28,896.

Karkera et al.100

6. Med-PaLM2 2022

Med-PaLM is a large language model (LLM) designed to provide high quality
answers to medical questions. It is also available to Google Cloud customers,
who are able to explore a range of applications, from basic
tasks to complex workflows.
It has been aligned to the medical domain and evaluated using medical
exams, medical research, and consumer queries.

Luo et al.101

7. ChatDoctor 2023

This is a specified language model with improved accuracy in medical advice
refining the large language model meta-AI (LLaMA) by a large dataset of
patient-doctor dialogs obtained from a widely used
online medical consultation platform.

Li et al.102
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and quantify various financial, operational, and market risks.109 Sub-
sequently, LLMs process customer reviews, feedback, and comments
to measure sentiment about products, services, or brands. This infor-
mation is valuable for companies to understand customer satisfac-
tion, allowing companies to make data-driven decisions to improve
strategies in both financial modeling and sentiment analysis.110

LLMs influence their ability to understand and generate human-
like language to process vast amounts of textual data, providing valu-
able insights for decision-making in the financial domain.111

Legal research and analysis

LLMs are increasingly employed in legal research and analysis, trans-
forming how legal professionals access, process, and understand legal
information. They assists legal researchers in analyzing and summa-
rizing case law, providing concise overviews of legal precedents and
decisions; more specifically, they automatically summarize lengthy
legal documents, including contracts, pleadings, and briefs, facili-
tating quick review by legal professionals.112 LLMs contribute to
trademark searches and analysis by processing and summarizing rele-
vant information from trademark databases and legal texts. Applying
LLMs in legal research and analysis enhances efficiency, accuracy, and
the accessibility of legal information, transforming how legal profes-
sionals approach various tasks within the legal domain.113 LLMs can
review and analyze legal contracts, helping legal professionals identify
vital terms, risks, and obligations.
Customer service by chatbots and email response

LLMs power chatbots for customer support, answering queries,
resolving issues, and conversationally providing information. LLMs
enhance the capability of chatbots to handle multiturn conversations,
maintaining context and providing coherent responses across
different user inputs. They engage in natural language conversations,
accurately interpret user queries, and provide more relevant re-
sponses, providing users with a more human-like and intuitive inter-
action experience.113,114 They also can help analyze user sentiment
during interactions, allowing chatbots to respond appropriately and
adapt their tone based on the user’s emotional context.115 LLMs
can help generate responses to customer emails, improving efficiency
in handling customer inquiries. This helps to categorize and prioritize
incoming emails, directing them to the appropriate department or
team for more efficient handling in both chatbot-driven customer ser-
vice and email communication. LLMs are crucial in automating pro-
cesses, improving response accuracy, and enhancing the overall
customer experience by providing more natural and intelligent
interactions.116

Education field

LLMs have found diverse applications in the education sector, trans-
forming various aspects of teaching, learning, and administrative
processes, supporting the automated grading of assignments and
exams, and providing quick and consistent feedback to students.
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 9
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Furthermore, they can assist in language learning by providing
grammar explanations, vocabulary explanations, and conversational
practice.117 Different conditions provide reliable assistance to stu-
dents with homework, offering explanations and guidance on various
subjects. LLMs help generate research proposals and offer guidance
on structuring and framing research questions. Presently, the LLMs
contribute to language translation, breaking down language barriers
and making educational content accessible to a global audience.
Finally, they contribute to student performance data analysis, helping
educators make data-driven decisions.118 Therefore, the application
of LLMs in education is vast and continually evolving, potentially
enhancing learning experiences, streamlining administrative pro-
cesses, and providing personalized support to students and
educators.119

Marketing field

LLMs play a crucial role in marketing across various aspects, applying
NLP capabilities to enhance communication, analyze data, and opti-
mize strategies. It is capable in creating compelling copy for digital
advertising campaigns, ensuring messages resonate with the target
audience, blog posts, articles, and other content for marketing pur-
poses, and maintaining consistency and quality.120,121 Subsequently,
the LLMs can contribute in analyzing competitor strategies, moni-
toring industry trends, and identifying areas for differentiation. Like-
wise, creating personalized marketing messages based on user data
improves customer engagement and conversion rates.122 Besides,
the LLMs power chatbots for customer support, providing instant re-
sponses to queries and guiding users through the customer
journey.123 In short, integrating LLMs in marketing enhances effi-
ciency, personalization, and data-driven decision-making, making
them valuable tools in the dynamic and competitive marketing
landscape.

Human resources

LLMs are being increasingly applied in various human resources
(HR) aspects, helping to streamline processes, improve communica-
tion, and enhance decision-making and, similarly, to help optimize
job descriptions to attract a diverse pool of candidates and ensure
clarity in expectations.124 They support automating the interview
scheduling, saving time, and improving the candidate experience.
Specifically, helping to answer common queries from new employees
during the on-boarding process, providing information about com-
pany policies, benefits, and procedures. They finely contribute to an-
alytics by analyzing employee data, generating reports, and providing
insights into workforce trends. They also classify the hiring data to
identify areas for improvement in diversity and recommend strategies
to enhance diversity in the workforce.125 Incorporating LLMs in HR
enhances efficiency, personalization, and data-driven decision-mak-
ing, making them valuable tools for HR professionals in managing
various aspects of the employee life cycle.126

E-commerce

LLMs play a significant role in the e-commerce sector, contributing to
various aspects of online retail. It can generate compelling product de-
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scriptions, improving the quality and consistency of e-commerce con-
tent.127 LLMs analyze customer reviews to provide insights into prod-
uct feedback content based on user preferences and behavior,
enhancing the shopping experience and sentiment.54 Subsequently,
it enables personalized shopping experiences by tailoring website con-
tent, offers, and promotions to individual user profiles, predictive an-
alytics models, forecasting future sales trends, and customer behavior
based on historical data. The integration of LLMs in e-commerce con-
tributes to enhanced customer experiences, improved content crea-
tion, and management efficiency, and more data-driven decision-
making for businesses operating in the online retail space.128

Research and academia

LLMs have significantly impacted research and academia, transform-
ing various aspects of the scholarly landscape. LLMs have performed a
satisfactory role in automated literature reviews by summarizing and
extracting relevant information from a vast corpus of academic pa-
pers.129 LLMs contribute to the automatic generation of concise
and accurate abstracts for research papers, aiding in understanding
complex topics, and writing sections of research papers, providing
language suggestions, and aiding in the overall structure of academic
writing.130 LLMs are employed in plagiarism detection tools to iden-
tify and highlight potential instances of plagiarism in academic
writing. Currently, LLMs are used for automated grading of assign-
ments and exams, providing quick and consistent feedback to stu-
dents. Besides these, LLMs contribute to building and maintaining
institutional knowledge bases, making information easily accessible
to researchers and academics.131 Applying LLMs in research and
academia accelerates processes, improves writing and communica-
tion, and enhances overall efficiency in various scholarly activities.

Multimodal applications of LLMs or MLLMs

MLLMs can be trained with video, audio, image, and text (Figure 5).
Researchers and entrepreneurs have noted the diverse applications of
MLLMs and their immense possibilities. MLLMs are increasingly
combined with computer vision models for tasks involving text and
images, such as images, videos, or audio, to provide a richer and
more comprehensive user experience and visual question-answering
systems.132 The versatility of MLLMs allows them to be applied to
many tasks across diverse industries, demonstrating their potential
to improve efficiency and provide intelligent solutions. More specif-
ically, LLMs assist in summarizing content within images, providing
brief textual descriptions for visually impaired users or those who pre-
fer text-based information.133 They contribute to understanding and
interpreting visual cues within chatbot conversations, providing more
context-aware responses. For assistance, in integrating textual and vi-
sual content for presentations, ensuring coherence and relevance be-
tween the spoken or written text and visual aids, MLLMs enhance
search engines’ capabilities for more accurate results.134 MLLMs
contribute to creating immersive experiences in virtual or augmented
reality by providing natural language understanding alongside visual
and auditory elements. Such an essential combination of LLMs in
multimodal applications enhances the ability to process, understand,
and generate content that spans multiple modalities, providing users
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Figure 5. The MLLM’s working principle.
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with more immersive and contextually rich experiences.135 Recently,
researchers have developed several MLLM models. One such inter-
esting MLLM is Next-GPT, which can be used as an any-to-any
MLLM model.136 Another MLLM model is Bliva, which is a very
simplistic MLLM. It can handle text-rich visual questions.137

Han et al. developed an MLLM-based Chartllama for charts.138

Several other MLLMs have been developed for different
applications, such as mplug-owl,139 Palm-e,140 Mm-llms,141

M3exam,142 Kosmos-g,143 etc.

MLLMs in biological macromolecules to biological sciences

MLLMs have been applied in biological science to explore different
possibilities. Significant models have been developed to explore the
next-generation possibilities. Researchers have developed a GIT-
Mol, an MLLM model to explore the possibilities of complex molec-
ular science that integrates text information, images, and graphs. It
can predict chemical reactions and compound name recognition.144

Recently, Lin et al. developed a multimodal deep learning model for
multiclass glaucoma surgery and its outcome prediction. The multi-
modal neural network improves clinical decision-making for postop-
erative management.145 Xu et al. developed Protst, a next-generation
MLLM model, to explore biomedical texts and protein sequences.146

Similarly, an MLLM model called MuSe-GNN han developed, which
performs gene presentation from multimodal biological graph
data.147 Huang et al. illustrated the application and prospects of an
MLLM in dentistry. The researchers explain how MLLMs can shape
the future landscape of dentistry.21 However, there are many possibil-
ities for the MLLM model to solve complex problems in biological
science.
Limitations of LLMs

LLMs, such as GPT models (GPT-3.5 and GPT-4), have achieved
remarkable success in various NLP tasks. However, they also come
with certain significant limitations (Table 3). LLMs can generate
coherent and contextually relevant text, but they often lack deep un-
derstanding of the world and common sense reasoning. They can
generate nonsensical or incorrect responses in specific contexts.148

LLMs can inadvertently preserve biases present in the training data,
which can result in biased or unfair outputs, especially when dealing
with sensitive topics such as gender, race, or religion. Mitigating
biases in LLMs remains a significant challenge.

Moreover, while LLMs excel in understanding and generating text
based on context, they may struggle with long-term dependencies
or maintaining coherence over extended passages.6 This can lead to
inconsistencies or inaccuracies in generated text, especially in com-
plex or significant scenarios. The LLMs typically require vast amounts
of data for pre-training, which can be expensive and resource-inten-
sive. Furthermore, they may stumble with generalizing to out-of-
domain or low-resource domains where training data are limited.
While fine-tuning LLMs on specific tasks can improve performance,
it often requires careful selection of hyperparameters, task-specific
data, and fine-tuning strategies.149

In addition, fine-tuning may only sometimes lead to optimal perfor-
mance, especially for tasks with unique requirements or constraints.
In the case of safety and ethical concerns, the LLMs have the potential
to generate harmful or malicious content, including misinformation,
hate speech, or inappropriate material.150 Ensuring LLMs’ safe and
ethical use poses significant challenges for researchers and practi-
tioners. Training and deploying LLMs can be computationally expen-
sive and resource-intensive, requiring powerful hardware and sub-
stantial infrastructure. It can limit accessibility to LLMs for
researchers and organizations with limited resources.151 Addressing
these limitations requires ongoing research and development efforts
in bias mitigation, robustness testing, model interpretability, and
ethical AI frameworks. In addition, interdisciplinary collaboration
involving experts from diverse fields, such as linguistics, psychology,
and ethics, is essential to foster the responsible development and
deployment of LLMs.

CHALLENGES AND FUTURE PROSPECTS
Tokenization in LLMs, although an essential aspect, has its share of
challenges. One notable obstacle is the management of out-of-vocab-
ulary tokens. LLMs face difficulties when they encounter words or
phrases not present in their training data, affecting their ability to
comprehend and generate relevant output. To mitigate this challenge,
continuous refinement and adaptation of the model is required to
keep up with the ever-evolving nature of language. Furthermore, to-
kenization may encounter difficulties in capturing nuanced semantic
meanings. Ambiguities and polysemy in language can lead tomultiple
interpretations of a single token, posing challenges for models to
discern the intended meanings accurately. Addressing such ambigu-
ities necessitates advancements in contextual understanding and
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Table 3. Different limitations of LLMs with their mitigating strategies

Sl. no. Types of LLM limitations Description/remarks Mitigating strategies

1. Ethical concerns

The responses may be risky, biased, or offensive nature.
Having threat of privacy and other security breaches.
No established accountability was present for the
consequences of model outputs.
No consensus on what roles AI should and should
not play in medicine.

Refinement to decrease the incidence of undesirable outputs.
Formation of governance systems and managing the experts.
Fixing of a reporting system for end users to flag the
dangerous responses.
Consensus-building creativities connecting the patients
and medical practitioners.

2. Coherence

Model outputs are centered on learned associations
between the words in spite of considerate input
information (queries) used in outputs.
Falsified facts are offered as if they were true.

The regenerating model architecture and training tactics
used to develop true semantic knowledge.
Fine-tuning to exclude presentation of wrong information.

3. Accuracy

GPT-3 is restricted to data of 570 GB. Models are
limited to learning probabilistic associations
between words, these are not trained to understand.
Training data are obtained from unverified
and invalidated resources, websites, books, etc.

Training data validation for insecurity indicators.
Fine-tuning used to enhance medical accuracy.
Self-improvement over intelligent prompts (like, chain-of-thought).

4. Recency

The training datasets of GPT do not comprise
content created after September, 2021.
All concerning datasets
necessarily “cut off” at a random time or date.

Assembly of the training data from more current sources.
The real-time internet access (e.g., Bing AI, BlenderBot 3, Sparrow).

5. Transparency and interpretability

It is not clear that how models generate answers
from input queries, architectural data,
and algorithms (Black Box problem).
It is uncertain which parts of the training
dataset are gearing, in created responses.

Prerequisite for outputs to cite which portions of the dataset
added to the model’s answers section.
It has explicable AI research and development.
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disambiguation techniques. In addition, tokenization can be
resource-intensive, particularly in models with extensive vocabu-
laries. Processing vast amounts of data for tokenization may result
in increased computational demands, thereby limiting the scalability
of models for real-time applications or resource-constrained
environments.

Despite the challenges mentioned above, the future of LLM tokeniza-
tion holds promising prospects. The current research and develop-
ment activities focus on mitigating the existing constraints and
unlock new capabilities. One avenue of exploration is the enhance-
ment of handling out-of-vocabulary tokens. Future LLMs may incor-
porate more effective mechanisms to adapt to novel language ele-
ments, thus reducing the impact of encountering unfamiliar tokens
and improving overall language coverage. Another exciting frontier
involves advancements in contextual understanding. Research into
more sophisticated attention mechanisms and context aggregation
techniques can lead to models better equipped to capture subtle nu-
ances in language, enabling more accurate and context-aware tokeni-
zation. Improving the interpretability and explainability of tokeniza-
tion processes is an ongoing focal point. As LLMs become
increasingly integrated into various applications, understanding the
rationale behind token-level decisions becomes crucial for building
trust and ensuring ethical use. Efforts to optimize computational ef-
ficiency are also underway. Future LLMs are expected to leverage
innovative architectures or strategies to streamline tokenization pro-
cesses, making them more accessible for various applications and de-
vices. Therefore, while challenges certainly exist, the continuous evo-
lution of LLM tokenization holds immense potential. LLMs can
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achieve greater accuracy, adaptability, and applicability in diverse lin-
guistic contexts by addressing current limitations and embracing
future possibilities. As the field of NLP advances, tokenization within
LLMs is poised to play a pivotal role in shaping the next generation of
intelligent language understanding systems.
CONCLUSION
LLMs have revolutionized biological sciences and medicine, resulting
in transformative and fundamental applications and faster progress in
medicine and different areas of biological sciences. LLMs are helping
to generate new hypotheses in these areas. The LLMmodel also helps
clinical decision-making and understanding of possible future out-
comes. MLLMs make it faster and provide a broader range of oppor-
tunities. There are ample opportunities to research those areas using
LLMs or MLLMs. Researchers have explained that the range of pos-
sibilities is vast.

However, possible risks generate substantial concerns among re-
searchers, experts, and users. Successful validation of the LLM and
MLLM technologies will benefit human society at large. At the
same time, ethics, safety, and potential human replacement are the
most significant concerns. However, we are hopeful that future re-
searchers will use the technologies in a way that will do justice to so-
ciety by properly utilizing them.
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