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Abstract: Objective: To determine if prenatal socioeconomic status (SES) is associated with
childhood working memory (WM), we constructed a more precise, integrative measure of
WM using variables from multiple tasks that may provide a more representative measure
of WM. Study Design: We used data from a prospective birth cohort study in Mexico
City, Mexico, with N = 515 children aged 6–9 years. Prenatal SES was measured using
the Mexican Association of Marketing Research and Public Opinion Agencies (AMAI)
index. We created a latent variable for nonverbal working memory using multiple tasks
(Cambridge Neuropsychological Test Automated Battery spatial working memory, operant
chamber Delayed Match to Sample and Incremental Repeated Acquisition). Structural
equation models were used to assess associations between prenatal SES and nonverbal
working memory, adjusting for child demographics (e.g., age and sex), prenatal expo-
sures (e.g., exposures to lead, arsenic, and secondhand smoke), and family (current SES,
maternal IQ) variables. Results: Children had a mean age of 6.6 years [SD 0.6], and
50.5% were boys. Using confirmatory factor analysis, we constructed a latent variable of
nonverbal working memory, which was measurement invariant across child sex. Prena-
tal SES was associated with childhood nonverbal working memory (standardized factor
loading = 0.17; p = 0.004). These associations were modified by child sex. Higher prenatal
SES was significantly associated with higher childhood WM in females (standardized factor
loading = 0.26; p = 0.002), but not in males. Conclusions: Prenatal socioeconomic status
is a predictor of childhood working memory, but it may be a stronger predictor for girls
compared with for boys.

Keywords: socioeconomic status; working memory; prenatal exposures; structural
equation modeling
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1. Introduction
During early life, rapid and sequential changes in brain development are especially

sensitive to “insults”, which can include environmental influences such as socioeconomic
status (SES). Prenatal SES is associated with neonatal brain morphology [1], and socioeco-
nomic disadvantage during pregnancy is associated with neurological abnormalities and
autonomic nervous system dysfunction during childhood [2]. Thus, the detrimental effects
of early socioeconomic disadvantage on neurodevelopment may persist across the lifes-
pan [3]. However, most of the research that has examined the effects of SES on childhood
executive functions (EFs) has examined SES post pregnancy. Executive functions (EFs) are
high-level supervisory cognitive skills vital for a child’s social and academic success [4–12].
Studies of SES and childhood EF have yielded mixed findings, with a recent meta-analysis
providing evidence of small to moderate effects [13].

Another possibility for these mixed findings is that conceptualizations of SES vary
across studies and cultures. In the United States, SES is often operationalized using income
or education, or less frequently a combination of the two, while in Europe, it is more
commonly operationalized using occupation. However, these single-item indicators do not
capture the multi-factorial nature of SES. While income is often used as a proxy for SES,
wealth has been suggested to be even more important for health, as wealth can buffer the
effects of temporary low income, and wealth has been shown to vary substantially across
individuals with similar income levels [14]. Wealth has been measured using questions
such as car or home ownership or information on liquid assets. In Mexico, SES is often
measured using a validated, multi-item weighted index [15] that encompasses not only the
educational level of the head of household, but also living situation and wealth (having
a computer, appliances such as water heaters, washing machines, gas/electric stoves,
soil/cement floors; the number of rooms/bathrooms, cars, etc.). This culturally sensitive
index may provide a more holistic measure of SES for our cohort based in Mexico. Further,
although SES is a construct that changes over time, most studies conceptualize it as a stable
construct measured at study baseline and then used as a predictor [16]. Childhood SES has
been shown to impact later health, independent of adult SES, and using SES measured at a
single life stage may be inadequate to determine the full impact of SES on health [14].

Adding to the complexity of studying SES effects on EFs is that because EFs are
high-level skills, they can be challenging to measure precisely. Often, an EF component
is measured using a single performance task. For example, working memory (WM), a
core component of EF that refers to sustaining one’s focus and keeping information in
mind, is a broad construct that has been operationalized differently across studies, although
there are some shared similarities in procedures that assess this construct. WM is often
measured using a single task, which requires the child to remember information and update
that memory as the task progresses. For example, WM may be assessed via a delayed
matching-to-sample task, in which the child must remember what stimulus appeared at
the beginning of a trial and then make the appropriate response, with the possibility that
the stimulus to remember will be different for each trial.

However, research in the neurodevelopment and psychometrics literature has demon-
strated that while using a single task to tap into an EF component can yield important
information, single tasks can also be noisy indicators of the EF component [17]. This is be-
cause a child’s performance on a given cognitive task can also depend on non-EF cognitive
processes; this idea is known as task impurity [18]. Moreover, there can be task-specific
variance, in which there is error due to the specific task and not due to the underlying EF
component being measured [18].

To address this, latent variable approaches [7,8,19–21] have been used to improve the
precision of modeling an EF component. Rather than using a single task, a combination
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of tasks is used to tap into a single EF component, allowing researchers to extract what is
common among the tasks to provide a more precise measure of the EF component. Further,
because cognitive domains are inherently complex and multi-determined, a combination of
tasks yields a more comprehensive picture of the underlying construct with greater mea-
surement precision across the full range of functions. However, latent variable approaches
remain underused when studying the effects of risk factors on EFs, which tends to rely on
single-task analyses [19,22–31].

Here, our goal is to study whether prenatal SES is associated with childhood WM. The
importance of childhood working memory on pediatric health is multifold: Childhood
working memory is associated with academic performance [32–42] and health outcomes
such as overweight and obesity [43–51] in later life. Working memory is important for
the development of reading [34,38], arithmetic skills [35,36], mathematics [39], and other
educational achievement skills [37,40]. Poorer childhood working memory is found to be
associated with higher dropout risk in high school [41], and worse academic and occupa-
tional functioning in late adolescence and young adulthood [42]. Deficits in childhood
working memory are related to neurodevelopmental disorders [45] such as attention deficit
hyperactivity disorder [46,47], dyslexia [48], dyscalculia [49,50], and major depression
disorder [51]. In this analysis, we constructed a more precise, integrative measure of WM
using measures from multiple tasks that may provide a more representative measure of
WM to study risk factors that impact childhood WM.

2. Methods
2.1. Data

Mother–child dyads included in the present study were recruited during the second
trimester of pregnancy, as part of the Programming Research in Obesity, Growth, Environ-
ment and Social Stressors (PROGRESS) cohort. Participants were recruited through the
Mexican Social Security System in Mexico City, Mexico. Written informed consent was
obtained from all participants, and study protocols were approved by institutional review
boards at the Brigham and Women’s Hospital, Icahn School of Medicine at Mount Sinai, and
the Mexican National Institute of Public Health. The PROGRESS cohort initially comprised
N = 948 children born to pregnant mothers recruited to the cohort. Of the original cohort,
N = 406 children did not have scores for all three WM tasks at age 6. We also excluded the
following numbers of participants who were missing covariate information: An additional
N = 16 mother–child dyads were missing information regarding the mother’s IQ, and an
additional N = 11 mother–child dyads were missing current SES information. Thus, the
analytic sample for the present study was N = 515 mother–child dyads, who had complete
data on prenatal SES, WM tasks, and covariates. Anonymized data were accessed on
10 April 2021.

2.2. Measures

Prenatal socioeconomic status: Prenatal SES was measured using a validated approach
developed by the Mexican Association of Marketing Research and Public Opinion Agencies
(AMAI) [15], using a weighted sum of thirteen culturally relevant indicators (e.g., the
education level of the head of household, type of flooring, automobiles, etc.) to define
6 levels of SES, known as the 13 × 6 rule.

2.3. Current SES

Current SES was measured using an updated multi-item index from the AMAI, using
8 indicators to define 7 levels of SES, known as the 8 × 7 rule.
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2.4. Working Memory Tasks

To develop a measurement model for WM, we used three nonverbal tasks, which were
the CANTAB spatial working memory, and two behavioral tasks from the National Center
for Toxicological Research-Operant Test Battery (NCTR-OTB): delayed matching-to-sample
(DMTS) and incremental repeated acquisition (IRA). The selection of task variables for
inclusion was based on theory-driven considerations [52] of the optimal indicators that
represent different facets of the task. Following best practices [53], we included three pairs
of non-correlated indicators for WM to ensure the identifiability of the model.

2.5. Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory
(CSWM) [54–56]

The participant was tasked with searching for hidden tokens within boxes, with
increasing difficulty depending on the number of boxes. If a token was found inside a
particular box, it would not be found again in that box during that trial, thus necessitat-
ing the participant to remember where the tokens had been located. We extracted two
indicators: between search errors, which refer to when a participant returns to search a
box where a token had already been located; and strategy, with higher scores indicating
inefficient strategy.

2.6. Delayed Matching to Sample (DMTS)

The DMTS task has been described in detail elsewhere [57]. Briefly, the participant
observed a shape that was presented on the center of three press plates. After the subject
pressed the shape, the light was extinguished, and the subject had to choose the press plate
with the matching shape from the three press plates illuminated with different shapes.
Random delays of 1, 2, 4, 8, 16, and 32 s were used. The task lasted for 15 min, or until the
participant had correctly completed 60 trials (and earned 60 tokens). From this task, we
extracted two variables: overall accuracy, which is the number of correct choices divided by
the total number of choices times 100, and overall correct choice latency time, which was
the average time in seconds to press the correct choice. The overall correct choice latency
time was chosen, rather than overall choice latency, as we conceptualize the time that it
takes a child to make a correct response to be related to WM, with short correct choice
latency times reflecting greater confidence in the answer. Furthermore, the exclusion of
incorrect choice latencies likely reduces the contribution of attention in this model since
children that tend to be “off task” will likely not respond as quickly and will more likely
make an incorrect choice.

2.7. Incremental Repeated Acquisition (IRA)

The IRA tasks a participant with learning increasingly longer sequences of lever
presses, with the goal to collect as many tokens as possible [58]. Briefly, one of six lights
was illuminated, and the subject had to learn which of four response levers to press when
that light was on to obtain a token. After the subject earned 3 tokens, a second light was
illuminated, and the subject had to figure out which of the 4 response levers to press
to turn off that light. Once that light was turned off, the first light was turned on, and
the subject had to remember which lever to press to earn a token. This task continued,
increasing the number of levers in the sequence until the subject successfully completed
3 six-lever sequences without making any errors or until 15 min had elapsed. We extracted
two indicators for this task: memory accuracy, which was the total number of correct lever
presses after the first time a particular stimulus light was illuminated (i.e., when the subject
should have known which lever to press without searching) divided by the total number of
lever presses after the first time that stimulus light was illuminated, and percent of task
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complete, which was the total number of errorless sequences completed divided by the
total possible (18; 3 at 6 levels).

2.8. Covariates

We adjusted for maternal IQ, child sex, child age, and current SES. In secondary
analyses, we additionally adjusted for prenatal exposure to neurotoxicants—lead, arsenic,
and secondhand smoke exposure. We used maternal blood lead and arsenic concentrations
measured at the second trimester of pregnancy, and self-reported exposure to secondhand
smoke indoors during the second trimester of pregnancy.

2.9. Developing a Measurement Model for Childhood WM

We used confirmatory factor analysis (CFA) to test a one-factor model for WM using
the six indicators from three tasks, allowing for correlation between indicators of the
same task. We assessed the goodness of fit using a chi-squared test, which compared
the covariance matrix of the observed variables to the covariance matrix predicted by the
model, with a good fit indicated if the p-value for the chi-squared test was non-significant
(p > 0.05). We also assessed the root mean squared error of approximation (RMSEA), with
good fit indicated for RMSEA < 0.05. Further, we report the Comparative Fit Index (CFI),
with good fit indicated for CFI > 0.95, and the standardized root mean square residuals
(SRMR), with good fit indicated for SRMR < 0.08 [59,60].

Finally, we tested for measurement invariance by child sex [28], using increasingly
stringent thresholds to test for strong invariance (factor loadings and intercepts are the
same for boys and girls). We used a series of chi-squared tests to compare the model fit for
configural invariance, weak invariance, and strong invariance, with non-significant results
indicating measurement invariance by sex.

2.10. Associations Between Prenatal SES and WM

We used a structural equation model to assess associations between prenatal SES and
WM, adjusted for covariates. To test whether the association of prenatal SES and WM
differed by child sex, we used multigroup SEMs, with child sex as the grouping variable.
We fit two models—a free model, in which the effect of prenatal SES is allowed to differ
by child sex (with all other paths constrained to be the same for both boys and girls), and
a constrained model in which the effect of prenatal SES is constrained to be the same for
boys and girls (with all other paths constrained to be the same for both boys and girls). We
then used a chi-squared test to assess whether the effect of prenatal SES differs significantly
by child sex, with a cutoff of significance at alpha = 0.05. As neurodevelopment is sexually
dimorphic, we also reported sex-stratified results, in which we used a multigroup SEM,
with child sex as the grouping variable, and constrained factor loadings and correlations
among the WM indicators to be the same across child sex. We allowed the paths of the
predictors (prenatal SES and covariates) on WM to vary by child sex.

For missing data, we did not use imputation and did not use full information maxi-
mum likelihood for the structural equation modeling, as we did not know the underlying
mechanism for the missing data; hence, we chose to use complete data here as we had a
large sample size.

Analyses were conducted in R (version 4.5.0) using the lavaan [61] and msm [62]
packages.

3. Results
Table 1 shows the demographic breakdown by child sex. Prenatal SES, SES at age 6,

and mother’s IQ did not differ by child sex. Further, four out of the six WM indicators do
not differ by sex. Females had a more inefficient CANTAB SWM strategy compared with
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males (p = 0.013). Females had shorter DMTS correct choice latency times compared to
males (p = 0.022), with shorter latency times suggesting better performance on the task. In
general, we see mobility between SES levels from pregnancy to age 6 (see Supplemental S1,
which illustrates the transitions in SES level from prenatal to age 6), suggesting that current
SES (at age 6) should be included as a covariate when assessing the association between
prenatal SES and childhood WM.

Table 1. Summary of variables by child sex.

Boys Girls p-Value

Sample size (N) 260 255

DMTS overall accuracy (median [IQR]) 86.27 [81.82, 91.23] 87.50 [82.03, 91.75] 0.155

CANTAB SWM between search errors 63.00 [55.75, 71.00] 65.00 [58.00, 71.00] 0.449

CANTAB SWM strategy 39.00 [37.00, 41.00] 40.00 [38.00, 41.00] 0.013

DMTS overall correct choice latency time 3.08 [2.45, 4.12] 2.87 [2.34, 3.78] 0.022

IRA memory accuracy 72.32 [51.43, 82.10] 69.94 [47.09, 81.05] 0.118

IRA percent of task complete 100.00 [66.67, 100.00] 100.00 [66.67, 100.00] 0.119

Age (years) 6.56 [6.30, 7.07] 6.56 [6.29, 7.01] 0.761

Prenatal SES (%) 0.235

E (lowest) 27 (10.4) 23 (9.0)

D 115 (44.2) 112 (43.9)

D+ 57 (21.9) 63 (24.7)

C 36 (13.8) 34 (13.3)

C+ 25 (9.6) 18 (7.1)

A/B (highest) 0 (0.0) 5 (2.0)

Mother’s IQ (median [IQR]) 86.00 [75.00, 95.00] 86.00 [77.50, 94.00] 0.751

SES at age 6 (%) 0.282

D− (lowest) 1 (0.4) 1 (0.4)

D 47 (18.1) 56 (22.0)

D+ 93 (35.8) 67 (26.3)

C− 58 (22.3) 67 (26.3)

C 36 (13.8) 45 (17.6)

C+ 20 (7.7) 15 (5.9)

A/B (highest) 5 (1.9) 4 (1.6)
IQR = interquartile range; DMTS = delayed match to sample; IRA = incremental repeated acquisition;
CANTAB = Cambridge Neuropsychological Test Automated Battery; SWM = spatial working memory;
SES = socioeconomic status.

The correlations between WM indicators are presented in Supplemental S2. The
one-factor CFA provided a good fit to the data (chi-squared test p = 0.077; CFI = 0.995;
RMSEA = 0.042; and SRMR = 0.017). All the factor loadings were statistically significant
at the p = 0.05 level, and the standardized factor loadings ranged from −0.43 to 0.73. The
tests of measurement invariance by sex supported strong invariance (see Supplemental S3,
which shows the assessment of measurement invariance by sex), indicating that the means
of the WM latent variable can be compared across sex.

Figure 1 presents the SEM to assess adjusted associations between prenatal SES
and WM. The model fit indices were the following: chi-squared test p-value = 0.045;
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CFI = 0.989; RMSEA = 0.03; and SRMR = 0.029. A higher prenatal SES level was associated
with higher WM (standardized factor loading = 0.17; p = 0.004), adjusted for mother’s IQ,
child sex, child age, and current SES level. Further, a higher current SES was also associated
with higher WM (standardized factor loading = 0.13; p = 0.02). Mother’s IQ and child age
were also significant at the p = 0.05 level. As this model treats prenatal SES as an ordinal
variable with six levels, we conducted a sensitivity analysis in which we considered an
alternative coding for prenatal SES. We dichotomized prenatal SES (high—belonging in
A/B, C+, C or D+ vs. low—belonging in D or E). The model fit indices were the following:
chi-squared test p-value = 0.027; CFI = 0.99; RMSEA = 0.03; and SRMR = 0.03. In this
adjusted model, high prenatal SES was still associated with higher WM (standardized
factor loading = 0.13; p = 0.026). In separate adjusted regressions of each nonverbal working
memory task measure (see Supplemental S4, which shows adjusted regressions of SES
with each task variable separately), prenatal SES was associated with the CANTAB spatial
working memory strategy, IRA memory accuracy, and IRA percent of task complete at the
alpha = 0.05 significance level. After false discovery rate (FDR) correction, prenatal SES
was only associated with IRA memory accuracy.
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Figure 1. Associations of prenatal SES and childhood nonverbal WM, adjusted for maternal IQ, child
sex, age, and current SES. Standardized factor loadings and p-values are presented.

Figure 2 presents the sensitivity analysis in which we additionally adjusted for prenatal
exposure to neurotoxicants (maternal blood lead and arsenic levels, and self-reported
exposure to secondhand smoke). The sample size was reduced to N = 482 due to missing
values in the neurotoxicant exposure data. Higher prenatal SES was still associated with
higher WM (standardized factor loading = 0.17; p = 0.006), as was higher current SES
(standardized factor loading = 0.14; p = 0.02).

Lastly, we analyzed whether the association between prenatal SES and WM is modi-
fied by child sex. For the main model, in which we adjusted for maternal IQ, child age, and
current SES, there was indication of effect modification by sex (p = 0.052). As the previous
literature supports the reporting of stratified analyses when the effect in one stratum is
null [63], we present sex-stratified results in Figure 3. Among the N = 255 female partic-
ipants, higher prenatal SES was significantly associated with higher WM (standardized
factor loading = 0.26; p = 0.002), as well as child age with higher WM (standardized factor
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loading = 0.51, p < 0.001) and maternal IQ (standardized factor loading = 0.25, p = 0.003).
Among the N = 260 male participants, only child age was a significant predictor of WM
(standardized factor loading = 0.54, p < 0.001).
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In this analysis using a prospective cohort in Mexico, we assessed whether prenatal

SES may be a predictor of childhood WM. We used multiple variables from three WM tasks
to construct a latent variable of WM for increased measurement precision. Independent of
current childhood SES levels, prenatal SES was a significant predictor for childhood WM. As
SES is thought to be in part a proxy for environmental exposures, we conducted a sensitivity
analysis by including prenatal exposure to multiple neurotoxicants. Our findings suggest
that prenatal SES significantly predicts childhood WM even when adjusting for select
prenatal neurotoxicant exposures. Lastly, we found a suggestion of effect modification
by sex, with prenatal SES being a significant predictor of childhood WM in girls but not
in boys.

By creating an integrative measure of WM that incorporated two indicators from
each WM task, we were able to obtain more interpretable findings on the associations of
prenatal SES with childhood WM. If we had assessed each task variable separately, prenatal
SES was only significantly associated with one out of six task variables after adjusting
for multiple comparisons, making this association difficult to interpret. Many studies
have found significant positive association between socioeconomic status and childhood
working memory [27,64,65], and such association does not vary by age [27,64]. Lower SES
is found to be associated with poorer working memory [27,64], including worse working
memory accuracy and slower reaction time [65]. While our study provides a prospective
study of how SES impacts later childhood working memory, our findings may be limited
by unmeasured confounding and loss-to-follow-up.

We found that for our cohort, SES was dynamic with substantial changes from preg-
nancy to childhood for some individuals; in general, there was upward mobility. By
accounting for SES measured at different life stages, we were able identify prenatal effects
that were independent of current SES levels.

Further research is needed to assess potential mechanisms by which prenatal SES may
impact WM. Underlying stress may be a mechanism by which prenatal SES affects WM,
with maternal stress shown to causally impact offspring WM in animal studies [66–68] with
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sex-dependent effects [66]. As there is sexual dimorphism [69] in brain development and
neurodevelopment, we conducted an exploratory analysis to study whether there were
sex-specific differences in how SES affects childhood WM. Our findings indicate that there
may be a greater impact on girls compared with boys, and it may be of interest in future
research to study sex-specific differences in replication datasets or larger cohorts.

Our analysis found that an integrative measure of working memory, combining multi-
ple task variables, may provide more interpretable findings to study risk and protective
factors of working memory. Psychometric approaches, such as structural equation model-
ing, may provide a robust modeling framework to identify novel risk and protective factors
for child neurodevelopment.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/children12050537/s1, S1: Table that describes transitions in
SES level from prenatal to age 6; S2: Figure that describes correlations between WM indicators; S3:
Table that shows assessment of measurement invariance by child sex for the WM latent variable; S4:
Table that shows adjusted associations of prenatal SES with each task outcome separately.
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