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State-of-the-art preoperative biomechanical analysis for the planning of spinal surgery
not only requires the generation of three-dimensional patient-specific models but also
the accurate biomechanical representation of vertebral joints. The benefits offered by
computational models suitable for such purposes are still outweighed by the time and
effort required for their generation, thus compromising their applicability in a clinical
environment. In this work, we aim to ease the integration of computerized methods
into patient-specific planning of spinal surgery. We present the first pipeline combining
deep learning and finite element methods that allows a completely automated model
generation of functional spine units (FSUs) of the lumbar spine for patient-specific FE
simulations (FEBio). The pipeline consists of three steps: (a) multiclass segmentation of
cropped 3D CT images containing lumbar vertebrae using the DenseVNet network, (b)
automatic landmark-based mesh fitting of statistical shape models onto 3D semantic
segmented meshes of the vertebral models, and (c) automatic generation of patient-
specific FE models of lumbar segments for the simulation of flexion-extension, lateral
bending, and axial rotation movements. The automatic segmentation of FSUs was
evaluated against the gold standard (manual segmentation) using 10-fold cross-
validation. The obtained Dice coefficient was 93.7% on average, with a mean surface
distance of 0.88 mm and a mean Hausdorff distance of 11.16 mm (N = 150).
Automatic generation of finite element models to simulate the range of motion (ROM)
was successfully performed for five healthy and five pathological FSUs. The results of
the simulations were evaluated against the literature and showed comparable ROMs in
both healthy and pathological cases, including the alteration of ROM typically observed
in severely degenerated FSUs. The major intent of this work is to automate the
creation of anatomically accurate patient-specific models by a single pipeline allowing
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functional modeling of spinal motion in healthy and pathological FSUs. Our approach
reduces manual efforts to a minimum and the execution of the entire pipeline including
simulations takes approximately 2 h. The automation, time-efficiency and robustness
level of the pipeline represents a first step toward its clinical integration.

Keywords: deep learning, patient-specific 3D model, FE analysis, surgical planning and simulation, spine-
pathology

INTRODUCTION

Patient-specific three-dimensional (3D) models are essential
in computer-assisted surgical procedures. In spine surgery,
computer-assisted techniques have been increasingly used in
various stages of surgical planning and/or execution, e.g., to
determine the optimal trajectory for the insertion of pedicle
screws (Goerres et al., 2017; Knez et al., 2019; Mischler et al.,
2020), but also to improve surgical navigation and allow an
improved execution of the surgical plan (Liebmann et al.,
2020; Müller et al., 2020). Biomechanical models can provide
information on the preoperative pathological condition such
as degenerative changes and their biomechanical consequences
(Du et al., 2016; Cai et al., 2020). Patient-specific simulations can
be used to analyze the effects of different surgical procedures
on specific structures and pathologies. Potentially, the surgical
plan can be improved based on the simulation output (Jiang
and Li, 2019; Zhou and Willing, 2020). If included in the clinical
workflow, such preoperative computational biomechanical
analysis, in combination with precise intraoperative navigation,
may improve patient outcomes. Finite element (FE) simulations
of the lumbar spine have been employed in clinical applications to
identify biomechanical parameters (Bernakiewicz and Viceconti,
2002; Little and Adam, 2012), evaluate surgical procedures, and
analyze implants, e.g., for spinal fusion (Zhang et al., 2018) or
total disc arthroplasty (Zhou and Willing, 2020). Such analyses
may provide information on the expected bone and implant
loads before surgery (Erbulut et al., 2015; Más et al., 2017;
Özmen and Günay, 2019; Panico et al., 2020). Moreover, the
biomechanical analysis of pathological spinal segments has the
potential to provide indications on the degeneration process of
intervertebral disc (IVD) and facet joints (FJs) (Rohlmann et al.,
2006; Bashkuev et al., 2020; Cai et al., 2020), thus helping in the
analysis of postoperative complications such as the development
of adjacent segment degeneration (Li et al., 2015; Zhou and
Willing, 2020). IVD and FJ degenerations alter the load transfer
in the spine and are commonly associated with low back pain
(Uçar et al., 2019; Bashkuev et al., 2020). Nevertheless, current
standard clinical procedures lack the ability to perform such
patient-specific biomechanical analysis on a daily basis, which
hinders the possibility for optimizing the surgical plan.

Abbreviations: CT, Computed Tomography; CNN, Convolutional neural
network; DOF, Degree of freedom; DC, Dice coefficient; FJ, Facet joint; FE,
Finite element; FSU, Functional spine unit; HD, Hausdorff distance; IVD,
Intervertebral disc; MSD, Mean surface distance; ROM, Range of motion; 3D,
Three-dimensional.

One of the major challenges for inclusion of such methods
in the clinical practice is the effort required to create patient-
specific functional models from medical images. It includes
several manual steps and is time-consuming even for experienced
professionals (Sarkalkan et al., 2014; Campbell and Petrella,
2015). The time needed for the creation of patient-specific
finite element (FE) models has rarely been reported, although
critical for integrating biomechanical simulations in a clinical
environment (Zadpoor and Weinans, 2015). To the best of
our knowledge there is no complete automated pipeline for
anatomically accurate FE simulations of the lumbar spine based
on 3D CT images. A lot of work has been done on parametric
FE models (Galbusera et al., 2008; Bashkuev et al., 2018, 2020;
Lavecchia et al., 2018; Nikkhoo et al., 2020; Zhou and Willing,
2020) or a combination of statistical and FE models (Bonaretti
et al., 2011, 2014; Rao et al., 2013; Campbell and Petrella,
2016). However, those models either neglect important patient-
specific structures or their generation involve high amounts
of manual work requiring certain types of operator expertise.
Although efforts have been made to automate the generation of
FE models of the healthy spine (Bah et al., 2009; Campbell and
Petrella, 2015), hitherto this process has never been combined
with deep learning-based segmentation methods and has not
yet been applied to pathological cases. Nowadays, deep learning
methods are employed in medical research to analyze images,
extract structural information, and to localize and segment
3D structures (Glocker et al., 2012; Korez et al., 2015; Roth
et al., 2016; Lessmann et al., 2019). They provide fast results
in an automated fashion, with an accuracy comparable to
those from manual human processing (Nikolov et al., 2018).
Integrating these methods into the creation of patient-specific
biomechanical models could drastically accelerate the process
and enable a complete automated framework, which in turn
would allow clinical routine applications of computational
preoperative planning using 3D models (Zadpoor and Weinans,
2015). In previous studies, deformable models were added to
a 3D convolutional neural network (CNN) (Korez et al., 2015)
to perform segmentation of vertebral bodies from 3D magnetic
resonance spine images, However, the method has not yet been
applied to FE modeling. It has been also shown how the automatic
creation of FE models could benefit from using a mesh-based
registration method (Bonaretti et al., 2014).

In this work, we propose a combination of deep learning,
statistical, and FE methods on lumbar 3D CT images to
generate anatomically accurate patient-specific FE models of
FSUs. A biomechanical investigation of spinal segments may be
highly clinically relevant, hence our main aim is the automation
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of the complete workflow (Figure 1). By saving time and
reducing manual interaction for modeling and simulation, the
main intent of the presented pipeline is a step toward a
seamless clinical integration of such models. The goals are the
ability to perform state-of-the-art segmentation of pathological
(degenerative) lumbar spine’s segments and the execution of
FE simulations with reasonable results. Using clinically available
dataset, the implemented pipeline should provide a basis for
further developments toward the integration of patient-specific
modeling in clinical planning of spinal surgery. The automation
is achieved by the integration of state-of-the-art deep learning
methods and a novel interface to FE modeling. The outputs are
anatomically accurate patient-specific biomechanical models and
results of FE simulations.

MATERIALS AND METHODS

We have combined multiple deep learning methods using two 3D
CNNs allowing the automated segmentation of lumbar vertebrae
and identification of corresponding point sets on the vertebral
meshes. Multiple training datasets were prepared and used to
train the different networks needed for the segmentation of the
3D CT images and for the identification of anatomical regions on
vertebral models (Figures 1A,B). We re-trained the DenseVNet
segmentation network presented in Gibson et al. (2018a) within
the NiftyNet platform (Gibson et al., 2018b). The correspondence
of anatomical points and regions between the segmentation and
the template model is achieved by an automated identification of
anatomical landmarks on the vertebral surfaces through semantic
segmentation. This step acts as an interface to perform non-
rigid fitting of the template SSMs and improves the following
non-rigid registration results (Clogenson et al., 2015). The
method for landmarks identification employed feature steered
graph convolutions (FeaStNet) described in Verma et al. (2018).
Meticulously prepared reference meshes of the SSMs were a
requirement to enable automatic identification of soft tissue

insertion points and surfaces. Subsequently, a functional patient
specific FE model is automatically created for different lumbar
segments based on deformable template models. The goal of the
resulting pipeline is to eliminate the time-consuming procedure
of preparing FE models (Bah et al., 2009; Taylor and Prendergast,
2015; Wu et al., 2019).

Some of the methods implemented and combined in this work
exist as individual implementations. Major effort was spent for
their combination and integration into a single pipeline, and
developing required interfaces. The correspondence property of
the registered template meshes was crucial for the automatic
creation of the FE models, e.g., for healthy and degenerated
discs (Figure 1C). The exclusion of manual steps may result
in more reliable and robust pipelines. Furthermore, the ability
to biomechanically analyze pathological cases in an automated
fashion seems highly relevant for computational surgery planning
in an efficient clinical workflow.

Multiclass Segmentation
Training Dataset
The preoperative clinical 3D CT images were selected from a
larger dataset by exclusion of severe pathological vertebrae (ethics
approval ID: BASEC: 2019-00698). The resulting dataset contains
52 3D CT images all acquired at Balgrist University Hospital
between 2014 and 2019. The original field of view (FoV) was
manually and systematically reduced by cropping the 3D images
to contain the lumbar spine from level L2 until the sacrum.
Final 3D images include 3 complete lumbar vertebrae (L5, L4,
and L3). The resulting FoVs covered a range of 224–390 voxels
(87–117 mm) transversely, and 107–402 voxels (107–141 mm)
in the inferior-superior direction. Each cropped 3D image was
manually segmented by a single trained radiologist to minimize
variability, using the software Mimics 19.0 (Materialise Inc.,
Leuven, Belgium). Available region-growing and thresholding
algorithms were used to generate 3D masks of the original
3D CT images. Distinctive labels were assigned to vertebrae of
different levels. Similarly, the output of the trained network will

FIGURE 1 | The three steps of the proposed pipeline: (A) multiclass segmentation of the CT image dataset, (B) semantic segmentation and non-rigid registration of
template model, (C) FE modeling and simulation, involving complementing the anatomical models with soft tissues (ligaments, IVD) using automatic landmarks
detection.
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not only contain the segmentation, but also a label discerning
between vertebral levels. By cropping the images, we eliminated
the class imbalance problem that could otherwise lead to a
biased network (Hesamian et al., 2019), which occurs when
the majority of the imaging dataset is occupied by background.
After cropping, the 3D images were pre-processed by applying
a histogram matching transformation (Woods and Gonzales,
1981), equalizing histograms with the reference histograms of
an arbitrarily chosen CT image. This preprocessing step allowed
the normalization of the intensity within the dataset and is easily
applicable to any new image.

Training Process
The DenseVNet network was re-trained using NiftyNet
framework (Gibson et al., 2018b) on the 52 3D CT images.
This network was originally developed to perform multiclass
segmentation of different organs in abdominal CT and offers
the possibility to perform segmentation of different structures
with improved boundary accuracy. This peculiarity offers an
advantage for the definition of facet joints’ boundaries between
adjacent vertebral bones, particularly critical for the definition of
contact surfaces for the FE analysis. The platform NiftyNet was
explicitly designed for medical image analysis and it includes the
DenseVNet network structure. We included the computation of
the Dice-hinge coefficient (DC) losses for the segmentation of
each vertebra as described in Gibson et al. (2018a) in the NiftyNet
library. This loss function was chosen as it proved promising
generalization properties thanks to the adapted weights for
classes with low dice scores but significant gradients during
training. As the training dataset included images of different
dimensions and resolutions, the input volumes were resampled
to a voxel dimension of [0.39, 0.39, 0.5]. The training was run for
4,000 iterations using the Adam optimizer with ε = 0.001 (Gibson
et al., 2018a) on a Quadro P6000 GPU (NVIDIA Corporation,
Los Alamitos, CA) and took 30 h. The output of the trained
network is a 3D mask with four different classes, three for
the vertebrae, and one for the background (Figure 1A). Using
the different labels, each vertebral mask was post-processed
by removing incorrectly segmented isolated regions with a
significantly smaller area compared to the segmented vertebrae.
Finally, three segmented models were generated, one for each
vertebral level (Figure 2A), by performing three different
triangulations in MATLAB R2019a (The MathWorks, Inc.,
United States) using the GIBBON package (Moerman, 2018).

Anatomical Model Generation
Semantic Segmentation of Segmented Vertebrae
Training dataset
The ground truth images used for the training of the DenseVNet
network were used to prepare 3D meshes of single vertebral
structures. The segmented masks were used to export 3D
models of individual vertebrae in the form of triangular surfaces
(stereolithographic files: STL). These models were manually
divided into four semantic classes: the vertebral body, the left
transverse with the left superior articular processes, the right
transverse with the right superior articular processes, and the
spinous process with the lamina (Figure 2C). The division

was arbitrarily chosen to achieve satisfying registration of the
template model prior to template mesh-fitting. The rationales
behind the semantic segmentation step, and the consequent
ability to select patient-specific anatomical landmarks, are
multiple. Since the same landmarks were labeled on the SSMs,
the transformation to place the deformable models can be found
automatically. Additionally, initializing the non-rigid registration
using landmarks has been shown to improve results (Clogenson
et al., 2015). Since the training of the network needed each
vertebral model within the dataset to have the same number of
points (equal to N in Figure 3), the segmented vertebrae were
preprocessed to prepare the training dataset. The complete set
of vertebral 3D models was down- or up-sampled before the
semantic division to match a defined number of points. To assure
homogeneous meshes and an accurate representation of details,
N was set to 2,947, with 4,000 triangular faces in each mesh. The
final training dataset comprised 138 vertebral meshes that were
manually segmented and semantically divided.

Training process
Regional information on the segmented meshes was needed to
initialize the position of the template models. The Tensorflow
Graphics (TG) framework uses revised CNNs to segment 3D
models in semantic parts (Valentin et al., 2019), the network is
referred as graph convolutional network and is able to process
point cloud data (Verma et al., 2018). A simplified CNN version
of the FeaStNet architecture was implemented in TG according
to Valentin et al. (2019) and used to semantically divide the
segmented models of the vertebrae into four parts. Figure 3
shows the network structure: first, each vertex of the point was
encoded by a mesh encoder into a N × 4 logits, where N is
the number of points and 4 the number of semantic classes.
The mesh encoder consists in 1 × 1 convolutions linear layer
to change the input dimensions, a sequence of feature steered
graph convolutions was then followed by 1 × 1 convolutions to
convert the output to a N × 4 logits. The training was run using
the Adam optimizer with ε = 1e – 8 and a learning rate equal to
0.001 (Valentin et al., 2019). The output of the mesh encoder was
used to perform a soft-assignment of each vertex to one of the
four classes (Verma et al., 2018).

The trained network was used to establish correspondence
between vertebral 3D models according to the steps depicted
in Figure 2. The division into semantic classes facilitated
positioning of the template SSMs by the automatic identification
of labeled anatomical locations. The landmarks were found by
computing the center of mass of each semantic part, which was
then projected on the surface mesh. A rigid transformation was
defined using the identified landmarks on the 3D models and
the corresponding points labeled on the SSMs. To account for
the uncertainty in the identification of anatomical points, the
iterative closest point method (Besl and McKay, 1992) was used to
fine-tune the final position, providing an improved initialization
for the morphing of the SSMs in the subsequent step.

Template Model’s Fitting
Five SSMs were created, one for each lumbar vertebra. Each
model was trained using manually segmented 3D meshes of
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FIGURE 2 | Segmented and labeled vertebrae and division in semantic parts. (A) DenseVNet output (L3: green, L4: red, L5: blue), (B) 3D segmentation of one
vertebra (L4), (C) Output of the semantic segmentation of four regions of a vertebra (front: red, left: blue, right: pink, back: azure).

FIGURE 3 | Structure of the network used to semantically segment vertebral models. 3D coordinates of the vertebral point cloud are input to the first linear
convolution layer, changing the input feature dimensions. The following layers are the feature steered graph convolutions preceding 1 × 1 convolution to N × 4
logits, used to soft-assign each point of the point cloud to one of the four classes.

lumbar vertebrae, which were not extracted from the images used
for the training of the CNNs. The vertebral meshes were divided
based on the spinal level and multiple training datasets were
created consisting of 100 meshes pro lumbar level. The SSMs
were built using a Procrustes Alignment to align each dataset,
which was followed by a non-rigid registration as investigated
in Clogenson et al. (2015). The resulting 3D models are used to
construct the SSMs by finding the main shape variations with
a principal component analysis (PCA). The manual creation
of the reference meshes used as templates assures a smooth
surface and a homogeneous triangularization of elements along
the whole vertebral models. The preparation of the template,
the training of the SSMs, and the registration framework were
implemented in the Scalismo package (University of Basel,
Switzerland) (Lüthi et al., 2012). The semantic division together
with the positions of the 4 landmarks identified by the trained
FeaStNet network provided an optimal initialization for the
non-rigid registration of the template SSMs. The non-rigid
registration was implemented according to Clogenson et al.
(2015) and is based on a point set to image registration. The
registrations of the SSMs were further constrained by the four
landmarks which were identified on the templates in advance.

An additional step was added to the framework presented in
Clogenson et al. (2015) and consists in a projection of the
SSMs points along the mesh’s normal vectors toward the target
surfaces. The correspondence of the landmarks together with
the projection step increased the performance of the non-rigid
registration as well as the precision of correspondence between
registered vertebral structures. Constraining the registration
allowed a reduction of the search space, leading to a more
robust and faster registration process (Clogenson et al., 2015). To
finalize the non-rigid registration, a projection of the template
nodes was performed after the last iteration along the model’s
normal vectors on the target triangulated model resulting from
the DenseVNet segmentation. This step enables the union of
the correspondence property of SSMs with the precision of DL
segmentation. The resulting patient-specific anatomical models
have the same triangularization properties as the reference
meshes of the SSMs but represent the patient’s spinal structures.

Anatomical Model Evaluation
To evaluate the anatomical models, the training of the
DenseVNet network was performed using 47 labeled 3D
CT images while five were excluded for inference. Ten-fold
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cross-validation was performed to assess the performance
of the anatomical model generation. During each iteration,
the network was trained anew and tested on the five
excluded images (containing three vertebrae each). Thus, 150
(10 × 5 × 3) vertebral 3D models were automatically segmented
and compared to manually segmented 3D models (ground truth).

The generation of the anatomical model was evaluated directly
after the DenseVNet segmentation and after the non-rigid
registration of the deformable model. This enables tracking of
the segmentation performance throughout the pipeline. Both
outputs were compared to the ground truth vertebrae. The
evaluation criteria were: the DC, the mean surface distance
(MSD), and the Hausdorff distance (HD).

Finite Element Modeling and Simulation
Model Validation Using Cross-Validation Healthy Data
The five images segmented in the last iteration of the cross-
validation were used to create and run FE simulations of all L3L4
and L4L5 FSUs of each patient, respectively. The dimensions
of the resulting healthy vertebrae were on average: 86.28 mm
left-right, 88.43 mm anterior-posterior, and 48.35 mm inferior
superior. The registration of the deformable templates ensures
the correspondence of nodes across the fitted surface models
(Verma et al., 2018; Wu et al., 2019). The correspondence
property allows to label essential regions for the creation of
the final FE model. The facet joints, the vertebral endplates,
and the ligament attachment points were manually labeled on
the template of each vertebra a priori, as shown in Figure 4
for a model of L4, and used to define contacts and boundary
conditions. The registered SSM resulted in patient-specific
surface meshes allowing the personalization of insertion points
and contact surfaces, adjusted according to the patient anatomies
by the registration step. The resulting surface models were
converted into volumetric meshes and divided into cortical and
trabecular bone. The inter-subject variability of the material
properties was not considered. All the material properties of
the FE model were implemented according to Finley et al.
(2018). The trabecular bone, the IVD nucleus, the vertebral
endplates, and the facet cartilage were represented using a neo-
Hookean model; the cortical bone is modeled as orthotropic
elastic material, and the superior endplate of the upper vertebra
(indicated in red in Figure 4) was rigidly modeled and used to
apply the pure moment loading. To represent the annulus, a
compressible Holmes-Mow material model was coupled with two
fiber components. The material properties of the FE models are
summarized in Table 1.

The anterior longitudinal ligament, posterior longitudinal
ligament, supraspinous ligament, intertransverse ligament,
ligamentum flavum, and interspinous ligament were modeled
as non-linear and tension-only elements (Finley et al., 2018).
The endplates of the superior and inferior vertebrae served as
reference to place and fit the IVD. The superior endplate of the
upper vertebra was used to apply the pure moment of 7.5 Nm in
various directions to simulate flexion, extension, axial rotation,
and lateral bending, whereas the inferior endplate remained
constrained in all the degrees of freedom (DOF). Contact

areas of the FJs were defined in facet’s cartilage regions and
implemented as sliding interfaces enforcing a non-penetration
constraint. Figure 4 shows how those regions and landmarks
are marked on different template models. Using the endplates’
nodes, a hexahedral mesh defining the IVD was created for each
FSU and deformed to assure a tied contact with superior and
inferior vertebrae. These steps defining the FSU FE model were
implemented in the GIBBON package (Moerman, 2018) and the
simulations were performed within the open-source tool FEBio
2.9 (Maas et al., 2012) using an implicit FE solver. The pipeline
was implemented such that the creation of the FE models and the
corresponding simulations were automatically run in sequence.
In this study, only the geometrical inter-subject differences were
considered; because automating the creation of FE models in a
single pipeline was the primary goal.

For the simulation of flexion, extension, lateral bending,
and axial rotation movements all the DOF of the inferior
endplate were constrained and a pure moment of 7.5 Nm was
applied to the superior endplate of the upper vertebra. To test
the mesh convergence of the FE simulations, down-sampled
deformable models (Figure 4B) were registered to the L4 and
L5 vertebrae of one subject. The resulting range of motion
(ROM) from axial rotation simulations was compared among
the different down-sampled models to assess mesh-convergence
of the FE simulations and to compare the results using different
template models.

Evaluation on Pathological FSUs
The whole pipeline was further evaluated on 5 pathological cases,
in addition to the five non-pathological cases from the training
dataset. The 3D CT images were initially acquired as part of a
previous study in our institution (Widmer et al., 2020a) with
approval from local ethical authorities (BASEC Nr. 2017-00874).
The specimens selected for this project were excluded in Widmer
et al. (2020a) as they were classified as severely pathological
by a medical professional. To evaluate the robustness of the
pipeline, different lumbar spinal segments were included. The
five pathological FSUs were composed of two L2L3, two L3L4,
and one L1L2. The anatomical dimensions of the pathological
vertebrae were similar to the ones of the healthy FSUs: 87.37 mm
left-right, 95.9 mm anterior-posterior, and 53.3 mm inferior-
superior. The pathological specimens originated from fresh
frozen cadavers (Table 2). The classification of IVD degeneration
was performed by Pfirrmann grade (Pfirrmann et al., 2001) based
on the segmented 3D models, the CT, and the MR images.
From the five pathological lumbar segments, 3 had Pfirrmann
grade equal to 4, and in two cases the specimen was classified
with a Pfirrmann grade equal to 5. The Weishaupt grade (Zhou
et al., 2016) for FJ degeneration in the 5 pathological FSUs
was between 2 (narrowing of the facet joint space), and 3
(narrowing of the facet joint space and/or moderate osteophytes,
and/or moderate hypertrophy of the articular process, and/or
mild subarticular bone erosions). In this study, the vertebral
structures were segmented and fitted using the trained neural
networks and the statistically deformable templates as described
above, but the IVD was fitted between the labeled upper and
lower vertebral endplates. The accuracy in the segmentation of
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FIGURE 4 | (A) Original and (B) down-sampled template L4 models and corresponding L4L5 FSU FE models. On the two template models, the facets and
endplates surfaces are labeled (blue and red) as well as the ligaments attachment points and paths (green).

TABLE 1 | Material properties used for the FE simulations of the healthy FSUs.

Structure Material model Young’s modulus
(MPa)

Poisson’s
ratio

Cortical bone Orthotropic elastic E1 = 8,000 v12 = 0.4

E2 = 8,000 v23 = 0.3

E3 = 12,000 v31 = 0.35

Trabecular bone Neo-Hookean E = 100 v = 0.2

Vertebral endplate Neo-Hookean E = 1,000 v = 0.3

Nucleus pulposus Neo-Hookean E = 1 v = 0.49

Annulus matrix Holmes-Mow E = 1 v = 0.4

β = 3.4

Annulus fibers Fiber-exponential-
power

α = 65 –

β = 2

ξ = 0.296

Facet cartilage Neo-Hookean E = 30 v = 0.4

the bony structures defined the shape of the IVD mesh that
was enforced to be in contact with the vertebral endplates.
To account for the existing pathology, the material parameters
were corrected automatically. For the FSUs with Pfirrmann
grade 4, the Young’s modulus values of the nucleus pulposus
and of the annulus matrix were changed to 1.4 and 4.5 MPa,
respectively. The Poisson’s ratio was changed to 0.42 in the
nucleus pulposus. The remaining properties were as stated
in Table 1. For Pfirrmann grade 5, the Young’s modulus of
the nucleus pulposus and the annulus matrix were set to 2.2
and 5.5 MPa, respectively. The Poisson’s ratio of the nucleus
pulposus was changed to 0.32 (Wang et al., 2012). The altered
material properties reflect a stiffening of the IVD concomitant
with a loss of fluid content as the degeneration progresses
(Wang et al., 2012).

TABLE 2 | Demographics and degeneration state for the five pathological
samples.

Specimen Sex Age (y) Height (cm) Weight (kg) Pfirrmann

S182452 Male 62 173 79 4

S182664 Male 75 185 98 5

S181997 Male 82 185 91 4

S182571 Female 84 165 67 4

S181934 Male 75 188 79 5

Although material properties mapped from imaging data
would be desirable, patient-specific material properties have not
been included in this study. The main objective of this work is
the automated generation of anatomically accurate FSUs models.
Any material mapping method could then be implemented on
these models. Nevertheless, we used our models to simulate ROM
and evaluated the reasonability of results by comparing them to
reported values from the literature.

RESULTS

Cross-Validation
We report the results of the cross-validation in terms of the
segmentation resulting from the trained DenseVNet network,
and precision of the 3D model after landmark-based template
model fitting (section “Segmentation”) corresponding to the
150 healthy vertebrae. The FE simulations’ results are presented
for the 10 FSUs resulting from the last iteration of the
cross-validation (section “Finite Element Modeling”). The
segmentation metrics before and after the deformation of the
template model showed a slight decrease in performance in terms
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of DC, on the other hand, the MSD and the HD were better after
the template model deformation.

Segmentation
The evaluated metrics were computed for each vertebra in
the 5 excluded images segmented during cross-validation. For
each iteration, the metric values were averaged over the five
images for each vertebral level. Table 3 summarizes the average
of the evaluation metrics for all the 3 vertebrae after 10
iterations of the cross-validation (N = 50 per vertebral level).
The resulting metrics show how the trained network achieved
state-of-the-art performance in the segmentation of lumbar
vertebrae with average DC equal to 93.71%. The MSD was
equal to 0.88 mm and the HD to 11.16 mm, on average
among all the three vertebrae for all the five images excluded
in each iteration of the cross-validation (N = 150, combining
the three lumbar vertebrae). Table 3A shows the same metrics
divided per level. After the non-rigid registration step, which was
performed directly after each iteration of the cross-validation,
the DC performance decreased by 3.05%, but the MSD and
HD performances increased by 23.86 and 34.23%, respectively
(Table 3B). The non-rigid registration of the template models
acts as a smoothing filter on the segmented vertebrae, lowering
the overall performance in terms of the DC, but improving the
surface distance metrics of the segmented models by filtering out
large HD values.

Finite Element Modeling
The FE simulations provide load-deformation behavior for
flexion, extension, lateral bending, and axial rotation. The ROM
values averaged over all the 5 subjects are shown in Figure 5 for
each type of motion and two lumbar FSUs.

These ROM values are depicted with reported values for
single FSU models from two different studies (Dreischarf et al.,
2014; Finley et al., 2018). Figure 5 shows the average and the
standard deviation of the intersegmental rotation angles vs. the
change in the applied moment from −7.5 to 7.5 Nm. The results
were in agreement with those from Finley et al. (2018) and
with the reported values from the six computational models
analyzed in Dreischarf et al. (2014). The ROMs resulting from
the FE simulations in this study were 4.49◦–6.45◦ and 3.64◦–
7.64◦ for flexion and extension, respectively, 4.39◦–13.12◦ for
lateral bending, and 3.31◦–6.75◦ for axial rotation. The ranges of
the flexion and extension angles obtained in Finley et al. (2018)
were 3◦–4◦ and 2.1◦–3.8◦, respectively, whereas the ranges for

lateral bending and axial rotation were 2.3◦–3.84◦ and 2.18◦–
3.75◦, respectively. The ROMs reported in Dreischarf et al. (2014)
from median in vivo values differed more to the simulated ones,
they reported angles between 5.5◦ and 19.2◦ and −1◦ and 4◦ for
flexion and extension, respectively. The ranges for lateral bending
and axial rotation were independent of the rotational direction
and equal to −2.3◦ and 10.3◦ and −1◦ and 4◦, respectively.

The results of the mesh convergence analysis performed on
an L4L5 FSU of one subject are summarized in Figure 6. The
reference meshes of the SSMs representing the two vertebral
levels were down-sampled by factors of 1.2, 1.5, 2, and 3 and
registered to the DenseVNet outputs using the same landmark-
based fitting method. The down-sampled models did not affect
the non-rigid registration precision since it was constrained
by the same landmarks identified using the FeaStNet network
and were able to achieve patient-specific geometries. Large
down-sampling factors lead to early non-convergence of the
simulations, likely related to the adverse effect of large element
size in contact modeling. As the original mesh size offers a good
compromise between registration precision and computational
costs, all following models were created with this mesh size.

Pathological FSUs
The pipeline was also evaluated on pathological 3D CT images
and the same metrics were computed after the segmentation of
the five pathological FSUs. The results show how the performance
of the pipeline resulting from the cross-validation translates to
clinically relevant cases. After segmentation, the average DC
was equal to 90.4 ± 2.9%, the MSD was 0.66 ± 0.1 mm,
and the average HD was 10.7 ± 4.4 mm. Figure 7 shows a
comparison between a healthy FSU FE model from the cross-
validation and a pathological FSU with Pfirrmann grade equal to
5. The vertebral structures were segmented and fitted with the
deformable templates as described above, but the elements of the
IVD were reduced automatically according to the mean distance
between the labeled endplates.

The FE simulations of the pathological cases are presented
in Figure 8 together with the ROMs of the healthy FSUs
for flexion/extension, lateral bending, and axial rotation. The
ROM values for pathological FSUs presented in two different
studies (Rohlmann et al., 2006; Warren et al., 2020) are
included in Figure 8. The resulting rotations decreased with
the same moment of 7.5 Nm applied. From the FE simulations,
a difference in intersegmental rotation between specimens
presenting Pfirrmann grade equal to 4 and 5 was noticeable.

TABLE 3 | Mesh metrics from the cross-validation.

(A) DenseVNet segmentation (B) Non-rigid registration

DC (%) AD (mm) HD (mm) DC (%) AD (mm) HD (mm)

L3 93.71 ± 8.2 1.02 ± 1.71 11.9 ± 11.61 92.54 ± 1.8 0.55 ± 0.14 6.39 ± 3.42

L4 93.68 ± 5.9 0.90 ± 1.24 11.1 ± 9.4 90.62 ± 2.5 0.70 ± 0.21 7.27 ± 2.51

L5 93.73 ± 4.9 0.72 ± 0.77 10.4 ± 7.03 89.38 ± 5.7 0.75 ± 0.33 8.30 ± 4.82

The performance is evaluated directly after the DenseVNet Segmentation (A) and after the registration of the deformable models (B). Each metric was evaluated on 50
vertebral models, for each lumbar level.
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FIGURE 5 | ROM data for all the automatically created FSU models for L3L4 (A–C) and L4L5 (D–F). (A,D) flexion (F)/extension (E), (B,E) lateral bending (R: right, L:
left), and (C,F) axial rotation (R, L). The standard deviation is shown in gray and the average rotation in black. The literature values presented in Dreischarf et al.
(2014) are visualized for the in vivo and in silico results, and the reported values from Finley et al. (2018) are presented for a FSU FE model of a 49 years old patient
(FSU-49) and 59 years old patient (FSU-59).

The ranges resulting from the pathological simulations were
on average 57.7% lower than the average angles resulted for the
same simulations on the healthy FSUs. The flexion/extension
simulations resulted in ranges of 1.79◦–4.67◦, and 1.56◦–4.04◦,
respectively. Lateral bending was between 0.93◦–3.76◦ in left
and right directions, and axial rotation resulted in movements

between 1.22◦ and 2.56◦ in left and right directions. The ROMs
decreased with respect to the healthy ones according to the
degeneration grades assigned during the classifications (Widmer
et al., 2020a) the average ROM reduction for FSUs classified as
Pfirrmann equal to 4 was 49.3%, and the reduction for FSU
with Pfirrmann grade equal to 5 was 70.4%. Therefore, FSUs
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FIGURE 6 | Convergence analysis using five different 3D deformable models.
An FSU of L4L5 was used for the simulation of axial rotational movement (R,
right; L, left).

with a higher degenerative condition corresponded to a reduced
ROM from the FE simulations. This was true for all the three
simulated motions. Because of the asymmetrical FJs and/or IVD
degenerations, lateral bending and axial rotation simulations
resulted in different movements for the left and right sides.

DISCUSSION

The presented pipeline combines deep learning methods to
perform image and semantic mesh segmentations, together
with FE modeling to automatically generate and analyze
patient-specific FSUs. The segmentation of vertebrae using
the DenseVNet network produced highly accurate results
comparable to the state-of-the-art automated segmentation
methods (Sekuboyina et al., 2017; Janssens et al., 2018; Vania
et al., 2019) for both healthy and pathological FSUs. The
simulations using the open-source FE solver FEBio during cross-
validation had comparable results to the ones reported in the
literature (Dreischarf et al., 2014; Finley et al., 2018) and also for
the simulated pathological cases (Rohlmann et al., 2006; Jiang
and Li, 2019). The whole pipeline is based on a cropped 3D
CT image of lumbar spinal segments of interest and does not
require any other inputs or manual interaction to perform a
biomechanical analysis of FSUs. The current time required to
create a FE model of the spine is rarely reported but the state-of-
the-art process includes using a software for the segmentation of
volumetric images to obtain surface meshes. The latter are again
imported in a second software to create volumetric models and
perform the FE simulations including pre- and postprocessing
steps (Bah et al., 2009; Haj-Ali et al., 2019; Jiang and Li, 2019;
Özmen and Günay, 2019). From our empirical experience, the
process of segmentation, meshing, FE model preparation and
simulation can take up to several days. In addition, since many
tedious manual steps are needed for the model’s preparation,

the robustness of the process could be affected. However,
replicability is key when different FSU configurations have to be
tested, to identify clinically relevant differences between patients’
structures. With the proposed pipeline, we were able to simulate
simple movements for many FSUs from a 3D CT image with a
minimal amount of user interaction for cropping the input image,
requiring a time effort of about 30 s. Both segmentation and FE
simulations were evaluated on five healthy cases within the cross-
validation, and on five pathological FSUs selected from a different
dataset of images. The entire pipeline, from image cropping to the
patient-specific biomechanical results for the FSUs of interest, is
about 2 h. Compared to current state-of-the-art this represents a
significant reduction in time and manual interaction.

The resulting ROMs of the healthy FSUs were within the range
of other published FE models but slightly outside the range of
in vivo measured ROMs (Dreischarf et al., 2014). The comparison
between models is difficult since the patient-specific geometries
are potentially affecting the ROM. The geometrical variability was
mostly not considered in FE modeling, but different structures
could lead to different ROM results. Patient-specific material
properties were neither considered in the creation of the FE
model, potentially introducing further deviation from in vivo
behavior (Dreischarf et al., 2014). From the obtained results,
we can observe the larger influence of the facet joints in the
lateral bending and axial rotation simulations due to specificity
of patient geometry when estimating joint motion. However,
the different results between healthy and pathological cases were
verified and the pipeline is able to capture different degenerated
states automatically, as shown in Figure 8. The resulting ROMs
obtained for the pathological cases were in line with the
clinical degeneration grades, correctly showing a reduction in
the intersegmental rotation angles in comparison to the healthy
FSUs ROMs. Furthermore, the simulated ROMs partially agreed
with the pathological values reported in the in silico studies
from Rohlmann et al. (2006) and Warren et al. (2020). However,
a direct comparison of values may be compromised due to
simplified FE models in those studies.

The automatization of simulations for the proposed
pathological cases may accelerate the inclusion of FE simulations
in the planning of spinal surgery. It allows studying how
different degrees of degeneration affect the FSU’s motion
patient-specifically. A biomechanically based preoperative
assessment is needed for patients presenting signs of IVD and/or
FJ degeneration, to obtain an optimal patient-specific surgical
plan taking pre-existing conditions into account (Li et al., 2015;
Perolat et al., 2018) and to customize corresponding patient
treatment (Zhou et al., 2016). The selection of an FSU of interest
is the only manual step within the suggested pipeline, making its
integration into the surgical planning workflow easier.

Following, we discuss some of the limitations of this work.
The implemented pipeline was not evaluated on publicly
available datasets. However, it achieved state-of-the-art precision
employing standard medical data. Our goal was not to
outperform existing segmentation methods, but rather to
combine different solutions for both segmentation and FE
modeling tasks in a single automated pipeline. Biomechanical
analysis has the potential to improve surgical planning but
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FIGURE 7 | Left: a healthy FSU FE model evaluated in the cross-validation, right: a pathological FSU FE model with Pfirrmann grade equal to 5.

its integration in the clinical workflow is essential. Hence, the
acceleration of the time-consuming preparation of FE models was
targeted using the proposed implementation. The input images
must still be manually cropped by a user, yet this could be
considered as a user control point to select the correct levels
of interest. The cropping itself represents a very quick step for
medical professionals and the pipeline functions with different
cropping sizes and regions of the lumbar spine. This is one of the
main differences to other semi-automatic approaches consisting
of labor-intensive (and therefore costly) and time-consuming
steps (Zadpoor and Weinans, 2015; Haj-Ali et al., 2019; Nikkhoo
et al., 2020). Indeed, many training data used in this work
were manually annotated, for example the segmentation of
3D CT images, or the anatomical landmarks defined on the
reference meshes of the SSMs. Although manual annotation
may be a possible insertion of errors, it is also comparable
with the state-of-the-art creation of biomechanical models from
CT data. We believe that the advantages are multiple and
as a result of the different trainings, our pipeline is able to
reduce inter-user variability which is normally intrinsic in the
creation of biomechanical models mostly due to the inevitable
involvement of manual work. The automation of multiple steps
has the natural consequence of improving consistency and
allowing comparisons between multiple patient-specific analysis.
In addition, new training datasets may be created with a drastic
decrease in manual efforts.

As another limitation, patient-specific material mapping was
not implemented. This could be critical for a correct patient-
specific model, since the inclusion of patient-specific material
properties plays a crucial role in generating clinically relevant
outputs. The lack of patient-specific material properties may
influence the resulting ROMs. Different studies have shown how
much biomechanical parameters vary between subjects (Van
Rijsbergen et al., 2018; Sawa et al., 2020; Wawrose et al., 2020) and
how the ROM is affected by these variations. The ROMs reported
in this work were partially out of range as compared to other
studies (Dreischarf et al., 2014). Also, minor inaccuracies in the
vertebral geometry, and especially in the FJs, may influence the
ROMs (O’Reilly and Whyne, 2008). In our pipeline, small errors

resulting from the automated segmentation were predominantly
concentrated in the FJ regions. On one hand, this has a negative
impact on the performance metrics of the segmentation, yet a
small one since the surface of the FJ regions are small as compared
to the overall surface of a vertebra. On the other hand, this
could further lead to penetrations between the vertebral meshes
of different levels after SSM registration. In such cases the FJ
gap is created automatically by making fine adjustments to mesh
regions. The resulting small morphological deviations from the
real patient’s anatomy may have a significant effect on simulated
motion, and are a potential explanation for the large ROM values
observed in lateral bending and axial rotation. Particularly in
these modes of spinal movement facet joints act to prevent
from excessive motion, which may have been compromised
on the current study. In addition to ROM, the FJ forces and
intradiscal pressure may deliver insight on the validity of the
presented model, and we intend to further improve the model
by also evaluating these measures. In any case, a comprehensive
validation of the desired outputs is required prior to any clinical
application, as with any computational model.

The intent of this study, however, was to prove that a
complete automated concept for the biomechanical analysis of
lumbar 3D CT images is possible in a single pipeline. Our
main objective was the implementation of a complete automated
pipeline able to generate and simulate anatomically accurate
FE models, also in pathological conditions. More complex FE
models could contain patient-specific material mapping and
implants could be also added. The improvement of the patient-
specificity of the model using material mapping, together with an
improved version of the material models in the FE simulations,
are the next expected steps to improve our pipeline (Widmer
et al., 2020a,b). Additionally, the identification of clinically
relevant FSUs could be implemented automatically using existing
techniques for image cropping, vertebrae localization (Chu
et al., 2015; Korez et al., 2015; Sekuboyina et al., 2017),
and segmentation of pathological (Ibragimov et al., 2017) or
fractured vertebral structures (Roth et al., 2016) including the
segmentation of the IVD (Zheng et al., 2017; Han et al., 2018).
In its current implementation, the pipeline is not able to run
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FIGURE 8 | ROM data for all the automatically created pathological FSU models for (A) flexion (F)/extension (E), (B) lateral bending (R: right, L: left), and (C) axial
rotation (R, L). The Pfirrmann grade (PG) of each FSUs is marked in the image. The pathological results from the literature presented in Rohlmann et al. (2006) and
Warren et al. (2020) are visualized.

the FE simulations for pathologies such as fused vertebrae or
disc prolapse. An enlarged or additional training dataset will
be needed to allow the accurate segmentation of pathological
cases. These may then also include fractured or collapsed
vertebral structures. The current pipeline is limited in that it
is only able to create anatomical models of intact vertebral
structures without osteophytes. The automatic identification
and segmentation of such cases avoiding biases is one of the
bottlenecks in medical images processing (Galbusera et al., 2019).

However, in our group, the accelerated creation of anatomically
accurate models has supported the preparation of instrumented
FE models to investigate the bone-screw interface (Widmer
et al., 2020b). Even if the current pipeline only accepts very
specific types of deformities, it represents a first successful
attempt for the automation of biomechanical analysis. The time
saved for model preparation enables computational analysis at
a low cost, which we believe is an important step toward their
clinical integration.
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CONCLUSION

The results obtained from the implemented pipeline demonstrate
a novel and powerful approach for automatic generation of
predictive models with results that are comparable to manually
segmented and manually generated FE models, in both healthy
and pathological FSUs. The approach reduces manual interaction
to a minimum, involving only the cropping of the 3D CT image
as input to the pipeline for fast generation of anatomically
accurate FE models. The automatization of the labor-intensive
steps of vertebrae segmentation, landmark identification, and
finite element model generation reduces clock time by orders
of magnitude as compared to manual preparation. Results
of FE simulations are available in about 2 h from feeding
cropped images into the pipeline. Notably, the approach allows
modeling of pre-existing pathological conditions in an automatic
fashion. The advances described in this work are a first step
toward enabling substantial improvements for computer-assisted
surgical planning of the spine thanks to the integration of patient-
specific biomechanical analysis.
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