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Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa,
Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological
agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very
different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need
to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy
management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most
clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the
largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting
that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such
number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network
that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features
make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.

1. Introduction

Protozoan pathogens constitute an important group of
parasites with medical and veterinary importance. Among
them, Leishmania spp. and Trypanosoma spp. are examples
of mammalian parasites. About half a million people are
infected by parasites of the T. brucei group in Africa, 11–
18 million with T. cruzi in the Americas, and 12 million
with Leishmania in Africa, Asia, Europe, and Americas
[1, 2]. The life cycles of Leishmania and T. cruzi involve
an obligatory intracellular stage in mammals, in contrast
to the exclusively extracellular parasites of the T. brucei
group. Both Leishmania and T. cruzi invade host cells, while
Leishmania lives inside parasitophorous vacuoles and T. cruzi
escapes from the vacuole and lives in the cytoplasm of
the host cell. In both cases, the parasites have to adhere

to the host cell surface in order to invade the cell and
survive under harsh conditions of the host cytoplasm.
Trypanosoma and Leishmania also present an insect stage
during its life cycle, all T. brucei group organisms are
transmitted by tsetse flies of the genus Glossina, T. cruzi
is transmitted by haematophagous insects belonging to the
family Reduviidae, and Leishmania spp. are transmitted from
man to man by different species of sandflies. Therefore,
a common feature amongst parasitic protozoan organisms
is their ability to adapt their metabolism to a wide range
of environmental conditions and selection pressures, which
include the availability and quality of carbon sources in
the different mammalian and insect hosts [3]. Therefore,
enzymes associated in energy metabolism are important
candidates to rational designing of trypanocidal therapeutic
drugs.

mailto:cpereira@retina.ar


2 Enzyme Research

2. A General View of Trypanosomatids’
Energy Metabolism

Even though trypanosomes share energy metabolism fea-
tures with higher eukaryotes, they present unique charac-
teristics which differentiate them from their metazoan host.
Furthermore, the exact nature of their energy metabolism
varies sensibly not only between trypanosomatid species [3]
but also between different life cycle stages of any given specie
[4]. It has been considered that these differences evolved
from the variable nutrient supply in the particular environ-
ments of each trypanosomatid [5]. However, the metabolic
disparities among different trypanosomatid species, which
share the same host, indicate that metabolite availability
alone cannot be the reason for the energy metabolism
strategy exploited in each case [6].

To date, the most extensive experimental studies of
trypanosome energy metabolism have been conducted in T.
brucei, more precisely on the mammalian host associated to
the bloodstream form and procyclic trypomastigote present
in the tsetse fly midgut. Both of these life cycle stages are
easily cultured in defined media in vitro.

The completion of the respective genome projects has
enabled to in silico deduce a general metabolic pathway map
for these trypanosomes; however this strategy alone misses to
determine the presence and importance of single metabolic
steps in each life cycle stage [5].

Although trypanosomes possess all enzymatic compo-
nents needed for the glycolytyc pathway, the first seven
enzymes are contained inside specialized microbodies from
the peroxisome class called glycosomes [7]. These are
rounded single membrane-bound organelles with a diam-
eter of approximately 300 nm [8]. Many proteins that are
localized to the interior of glycosomes contain specific
targeting signals called PTS1 and PTS2 [9]. Furthermore the
specialized matrix protein import system shares mechanis-
tic similarities with the endoplasmic reticulum/proteasome
degradation process which suggests that glycosomes, as
well as peroxisomes and glyoxysomes, all share a common
evolutionary origin [10, 11]. The key role of glycosomes in
trypanosome energy metabolism becomes evident with the
fact that the bloodstream form of T. brucei depends exclu-
sively on glycolysis for ATP generation. The end metabolite
of this pathway of hexose sugars corresponds to excreted
pyruvate [12]. Intraglycosomal redox balance is maintained
using a glycerol-3-phosphate dehydrogenase shuttle. The
reoxidation of the glycolysis-derived NADH coenzyme is
accomplished inside this organelle through an NAD-linked
glycerol-3-phosphate dehydrogenase which reduces dihy-
droxyacetone phosphate to glycerol-3-phosphate [7]. In the
presence of molecular oxygen, after exportation from the
glycosome this molecule is directed to the mitochondria
where it becomes reoxidized to dihydroxyacetone phosphate
by the cyanide-insensitive trypanosome alternative oxidase
[13] which then returns to the glycosome. On the other
half of the glycolytyc pathway the final product that leaves
the glycosome is 3-phosphoglycerate. In the cytosol the
remaining three glycolitic steps take place producing pyru-
vate as end-product, thus the net ATP yield corresponds

to two molecules per glucose. However in anaerobic con-
ditions the yield is halved due to the inability to reoxidize
glycerol-3-phosphate, and glycerol becomes an end-product
equimolar to pyruvate [5]. The essential role of glycolysis
in trypanosome energy metabolism and its particular and
divergent strategy of glycosomal confinement, which distin-
guishes them from other eukaryotes, constitute a clear and
plausible target for chemotherapeutic molecules [14]. RNAi-
induced down regulation of components of the glycosomal
matrix protein import system produces a relocalization of
glycolytyc enzymes to the cytosol which is accompanied by
a lethal phenotype [15, 16]. One of the possible explanations
for the essential compartmentalization of glycolytyc enzymes
relies on the lack of feedback regulation determined for the
trypanosome enzymes hexokinase and phosphofructokinase
[17–19]. Both of these initial steps of the glycolytyc pathway
consume ATP that is recovered in later steps as well as the
net ATP gain derived from the pathway. In the absence
of specific regulation ATP produced by glycolysis would
boost the flux through these enzymes above the capacity
of the enzymes downstream with lethal accumulation of
intermediate metabolites and cellular depletion of ATP. In
this sense confinement within a membranous organelle
from the final ATP synthesis steps constitutes an alternative
regulatory strategy to unregulated enzymes [16].

Returning to the metabolism of bloodstream form
T. brucei, the end-product of glucose metabolism is pyruvate.
It cannot be further metabolized because during this stage
pyruvate dehydrogenase, the tricarboxylic acid (TCA) cycle,
and the respiratory chain are absent from the mitochondrial
compartment. All the members of the order Kinetoplastida
are characterized by a single large mitochondrion which
contains a unique structure named kinetoplast [12]. This
structure is constituted by a gigantic network of concate-
nated circular DNAs which represent the mitochondrial
genome. Among these molecules, those termed maxicircles
encode mitochondrial rRNAs and respiratory chain subunits
[20]. Evidence for the expendable nature of mitochondrial
metabolic pathways during bloodstream stage derive from
the findings that T. equiperdum and T. evansi actually
correspond to T. brucei mutants which, respectively, contain
relics or completely lack kinetoplast DNA [21]. Although
ATP synthase is present, it hydrolyzes ATP in order to
maintain proton gradient across the inner mitochondrial
membrane essential for the translocation of nuclear-encoded
proteins into the mitochondrial matrix [22, 23].

On the other hand, T. brucei procyclic trypomastigotes
contain a complete set of mitochondrial respiratory chain
complexes and all the enzymes responsible for the tricar-
boxylic acid cycle. Despite the suggestive potential aerobic
metabolism, glucose catabolism end-products indicate a
predominant fermentation activity. Additionally inhibition
of respiration and F0/F1-ATP synthase has no effect on intra-
cellular ATP concentration [24]. Apart from carbon dioxide,
succinate and acetate are the main excreted metabolites [25].
A fraction of the succinate derives from intraglycosomal
redox balance maintenance. Glycosomal NADH is reoxi-
dized by a glycosomal malate dehydrogenase which reduces
oxaloacetate to malate, and after the subsequent production
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of fumarate, another glycosomal reducing reaction yields
succinate which is then secreted [26]. The remaining succi-
nate is produced inside the mitochondria through a set of
the enzymes relative to the tricarboxylic acid cycle, during
the degradation of proline and glutamate [12]. Furthermore
mitochondrial pyruvate is not oxidized to carbon dioxide
and water [27, 28]. This molecule is decarboxylated, and
the resulting acetyl-CoA is converted to acetate yielding an
additional molecule of ATP [29, 30]. Acetate represents the
essential precursor for lipid biosynthesis in procyclic form
of T. brucei [31]. The diverse functions of components of
the tricarboxylic acid cycle allow concluding that in these
organisms there is no cycle [12].

Trypanosomes in culture universally prefer glucose as
carbon source for energy metabolism; however in the
digestive environments endured during the insect stages, it
is accepted that carbohydrates are only available in limited
quantities. Therefore it has been demonstrated that amino
acids, such as proline and threonine, can be metabolized
for ATP production. This has also been studied in T. cruzi
epimastigotes which although prefer to use glucose over
amino acids as an energy substrate [32]. Under aerobic
conditions they produce, in addition to CO2, considerable
amounts of succinate, L-alanine, and acetate [33]. Epimastig-
otes produce ammonia only after the glucose in the medium
has been exhausted [32]. An axenic culture model suggests
that T. cruzi amastigotes mostly use glycolytyc metabolism
for ATP production [34]. Amastigotes also ferment glucose
to succinate and acetate, but do not seem to excrete ammonia
and have little need for the oxidation of amino acids. All these
metabolic pathways are summarized in Figure 1.

Maintenance of energy homeostasis requires coordinate
regulatory responses according to the surrounding media
composition inside the hosts. Most of the enzymes required
for energy management, participating in these adaptation
processes, are phosphotransferases with a nitrogenous group
or a phosphate as acceptors (ECs 2.7.3 and 2.7.4, resp.),
such as arginine kinase (AK), nucleoside diphosphate kinase
(NDPK), and adenylate kinase (ADK).

3. Phosphotransferases in Trypanosomatids

Phosphotransferase families related to cell energy manage-
ment are highly represented in trypanosomatid organisms;
for example, since most of the organisms express one to
three adenylate kinase isoforms in each cell, T. brucei has
seven isoforms targeted to different subcellular structures,
such as flagellum, glycosome, mitochondrion, and cytoplasm
[35, 36]. L. major and T. cruzi also have six putative adenylate
kinase isoforms according to our data and the currently
available genome projects [37, 38]. The presence of such
number of phosphotransferases and the predicted subcel-
lular localization of each isoform support the hypothesis
of the existence of an enzymatic phosphotransfer network
that communicates the spatially separated intracellular ATP
consumption and production processes [35, 39, 40]. In
other organisms, energetic homeostasis is maintained by
remodeling this phosphotransfer network. For example, in
mammals the lack of muscle creatine kinase is complemented

by glycolytyc enzymes and adenylate kinase; in a similar way,
the suppression of the adenylate kinase gene produces an
upregulation of glycolytyc enzymes and creatine kinase [41–
43].

Since phosphotransferases participate in a variety of
metabolic routes leading to many crucial compounds essen-
tial for trypanosomatid organisms, these families of enzymes
become interesting targets for drug design.

3.1. Arginine Kinases. Phosphoarginine and phosphocre-
atine, generally called phosphagens, play a critical role
as energy reserve because the high-energy phosphate can
be transferred to adenosine diphosphate (ADP) when the
renewal of adenosine triphosphate (ATP) is needed. It has
been proposed that phosphoarginine supports bursts of
cellular activity until metabolic events such as glycogenolysis,
glycolysis, and oxidative phosphorylation are switched on
[44]. Phosphoarginine synthesis also allows the cells to
operate with low ATP levels since it may constitute a usable
pool of the high-energy phosphate. Phosphagens act as
reservoir, not only of ATP, but also of inorganic phosphate
that is mostly returned to the medium by the metabolic
consumption of ATP [45]. Arginine kinase (ATP: arginine
phosphotransferase; EC: 2.7.3.3) catalyzes the reversible
transphosphorylation between N-phospho-L-arginine and
ADP [44]:

Mg · ATP + L-arginine ←→ P-L-arginine + Mg · ADP + H+

(1)

From an evolutionary viewpoint, arginine kinase was
included in a family of conserved proteins with phospho-
transferase activity, with creatine kinase as the best known
member. Arginine kinase is the most widely distributed
phosphagen kinase, which is found in Annelida, Coelen-
terata, Platyhelminthes, Nemertea, Mollusca, Phoronida,
Arthropoda, Echinodermata, Hemichordata, and Chordata
[46, 47]. In addition, arginine kinases are considered the
most closely related member to the ancestral guanidino
kinases [48].

In the last decade, the molecular and biochemical char-
acterizations of arginine kinases in T. cruzi and T. brucei have
been reported [49–53]. Since arginine kinase, an important
enzyme involved in the energy supply for the parasite, is
absent from mammalian tissues, it becomes a possible target
for the future development of chemotherapeutic agents
against Chagas’ disease and other parasitic diseases caused
by related organisms. For this purpose, a rational approach
would involve the validation of the enzyme as a therapeutic
target and the search for specific enzyme inhibitors. It
was also postulated that arginine kinase could be a useful
chemotherapeutic target in pesticides development for the
control of cockroach proliferation [54].

Multiple evidence indicates that T. cruzi arginine kinase
is strongly regulated by intra- and extracellular conditions:
(1) the arginine kinase protein and the associated-specific
activity increase continuously along the epimastigote growth
curve, suggesting a correlation between the enzyme activ-
ity, and the nutrient availability or parasite density [32];
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Figure 1: Schematic representation of trypanosomatids’ energy metabolism. Enzymes are indicated with numbers: 1, hexokinase; 2, glucose-
6-phosphate isomerase; 3, phosphofructokinase; 4, aldolase; 5, triosephosphate isomerase; 6, glyceraldehyde-3-phosphate dehydrogenase; 7,
phosphoglycerate kinase; 8, phosphoglycerate mutase; 9, enolase; 10, pyruvate kinase; 11, glycerol-3-phosphate dehydrogenase; 12, glycerol
kinase; 13, phosphoenolpyruvate carboxykinase; 14, malate dehydrogenase; 15, fumarase; 16, fumarate reductase; 17, pyruvate phosphate
dikinase; 18, pyruvate dehydrogenase complex; 19, acetate:succinate CoA transferase; 20, citrate synthase; 21, α-Ketoglutarate dehydrogenase;
22, succinyl-CoA synthetase; 23, succinate dehydrogenase; 24, fumarase; 25, malate dehydrogenase; 26, proline oxidase; 27, Δ′-pyrroline-5-
carboxylate reductase; 28, glutamate semialdehyde dehydrogenase; 29, glutamate dehydrogenase; 30, threonine dehydrogenase; 31, acetyl-
CoA : glycine C-acetyltransferase; 32, NADP-linked decarboxylating malic enzyme; 33, fructose-1,6-bisphosphatase. Enzymes present in
bloodstream forms only are indicated in red, procyclic forms enzymes are in red and black. AOX: alternative oxidase; GPD: FAD-
dependent glycerol-3-phosphate dehydrogenase; I: NADH-ubiquinone oxidoreductase (complex I); II: succinate dehydrogenase (complex
II); III: cytochrome c reductase (complex III); IV: cytochrome c oxidase (complex IV); c: cytochrome c; Q: ubiquinone; F0/F1: F0/F1-
ATP synthase; Glc-6-P: glucose-6-phosphate; Fru-6-P: fructose-6-phosphate; Fru-1,6-P2: fructose-1,6-bisphosphate; GAP: glyceraldehyde-
3-phosphate; G-1,3-P2: 1,3-bisphosphoglycerate; 3-PGA: 3-phosphoglycerate; 2-PGA: 2-phosphoglycerate; PEP: phosphoenolpyruvate;
DHAP: dihydroxyacetone phosphate; glycerol-3-P: glycerol-3-phosphate; succ-CoA: succinyl-coenzyme A; acetyl-CoA, acetyl-coenzyme A.
For a detailed explanation see the text.

(2) the existence of a relationship between the arginine
transport rate, arginine kinase activity and the parasite
stage and replication capability was recently described,
indicating a critical role of arginine kinase as a regulator of
energetic reserves and cell growth [55]; (3) the homologous
overexpression of T. cruzi arginine kinase improves the ability

of the transfectant cells to grow and resist nutritional and pH
stress conditions [51]. Arginine kinase would play a role as a
stress resistance factor when expressed in organisms that lack
this enzyme, such as yeast and bacteria. Recombinant yeast,
expressing crab muscle arginine kinase, showed improved
resistance under stress challenges that drain cellular energy,
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which were transient pH reduction and starvation [56, 57].
T. cruzi epimastigotes treated with hydrogen peroxide pre-
sented a time-dependent increase in arginine kinase expres-
sion, up to 10-fold, when compared with untreated parasites.
Among other oxidative stress-generating compounds tested,
only nifurtimox produced more than 2-fold increase in
arginine kinase expression [52]. Moreover, parasites over-
expressing arginine kinase showed significantly increased
survival capability during hydrogen peroxide exposure.
These findings suggest the participation of arginine kinase in
oxidative stress response systems. It is important to remark
that the insect stage of the T. cruzi life cycle is frequently
exposed to nutritional and pH stress conditions, depending
on the feeding status of the vector. For example, the pH of
excreted material of the T. cruzi vector T. infestans varies
between 5.7 and 8.9, accordingly with the time after feeding
[58]. All these data suggest that arginine kinase is involved in
the adaptation of the parasite to environmental changes and
stress conditions. Recently, the crystal structure of ligand-free
TcAK was determined by molecular replacement methods
and refined at 1.9 Å resolution [59]. This information
could be a new relevant tool for rational trypanocidal drug
design.

Until today no outstanding arginine kinase inhibitors
have been found. Only a few compounds have been reported
which present a partial inhibition of arginine kinase. For
example, the trypanocidal action of green tea (Camellia
sinensis) catechins against two different developmental stages
of T. cruzi was demonstrated by Paveto et al. [60]. Fur-
thermore, recombinant T. cruzi arginine kinase was 50%
inhibited by nanomolar concentrations of these polyphenols
(catechin gallate or gallocatechin gallate). In silico docking
studies indicated that the flavonoid rutin is an arginine
kinase noncompetitive inhibitor and interacts mainly by a
hydrophobic force forming an intermolecular complex with
the enzyme [61]. Arginine kinase was also inhibited by the
arginine analogs, agmatine, canavanine, nitroarginine, and
homoarginine [62]. In addition, canavanine and homoargi-
nine also produce a significant inhibition of the epimastigote
growth in culture.

3.2. Nucleoside Diphosphate Kinases. Nucleoside diphos-
phate kinases (EC: 2.7.4.6) are enzymes involved in the intra-
cellular nucleotide maintenance that catalyze the reversible
transference of high energy phosphates from a nucleoside
triphosphate donor to a nucleoside diphosphate acceptor as
follows [63]:

N1TP + N2DP←→ N1DP + N2TP (2)

Although the high energy phosphate is mainly supplied by
ATP, these enzymes have broad spectrum substrate specificity
and are able to use other ribo- and deoxyribonucleotides
having preference for GTP formation [64].

NDPKs are ubiquitous and widely studied enzymes, and
they can be divided in two groups according to the primary
structure [65]. Group I is composed of canonical NDPKs,
which are broadly studied and found in prokaryotes and
eukaryotes. They form homotetramers in prokaryotes and

homohexamers in eukaryotes [66]. The monomers have
molecular mass between 15 and 18 KDa and are highly
conserved during evolution; for example, there is about 40%
identity between NDPKs from Escherichia coli and humans
[64]. In contrast, group II is formed by divergent NDPKs
that are present only in eukaryotes. Proteins included in
this group are still poorly characterized and contain one
or more NDPK’s canonical domains and N-terminal or C-
terminal extensions. Some domains such as DM10 domains
are present in single copy in this type of NDPKs at the
N-terminus. These domains are also contained in other
unrelated proteins which have three repeats of this domain.
There are only a few studies made on these proteins, in one
of them they could associate DM10 domains to protein-
axoneme connection [67]. However, the function of NDPK’s
DM10 domain remains unexplored. Thioredoxin domains
are also found in this group of NDPKs, and it was postulated
its participation in regulation of NDPK activity by a redox
mechanism [68].

NDPKs are also involved in numerous and diverse bio-
logical processes. Because of the phosphohistidine enzyme
formation in the transference reaction, the phosphate can
also be transferred to different acceptors such as other
proteins in serine or threonine residues and was postulated
to participate in protein G activation by GTP supplement,
so NDPKs are implicated in transduction pathways [69–
74] playing many functions in, for example, development,
proliferation, differentiation, and apoptosis [65, 72, 75–
79]. Interestingly, it was also observed that some NDPKs
have several roles in DNA processing. Human beings have
ten NDPK isoforms (NM23-H1 to 10), five of which were
found to interact to nucleic acids. NM23-H2 is considered
to be a transcription factor because of its capacity to
bind to specific DNA sequences, and NM23-H1, H5, H7,
and H8 had 3′-5′exonuclease activity in vitro. All these
characteristics together with others, as recognition, cleavage,
and structural modification of DNA molecules, allow the
association between NDPKs and DNA repair mechanisms
[77, 80–82].

In the context of studying the biological function of
an enzyme, the subcellular localization may be a critical
point to establish. Being multifunctional enzymes, NDPKs
have been found in numerous subcelular compartments
such as cytoplasm, nucleus, mitochondria, intermembrane
space, plasmatic membrane, and flagellum from different
organisms [82–88]. Considering that NDPKs are involved
in phosphotransfer networks their subcellular distribution
might be related to an efficient energy distribution inside the
cells [39].

Trypanosomatid’s NDPKs are of particular interest due
to its inability to synthesize purines de novo relying on
NDPKs for nucleotide recycling [89]. For this reason these
enzymes are considered potential therapeutic targets for
trypanosomiasis such as Chagas disease. T. cruzi has four
putative isoforms of NDPK, TcNDPK1–4. TcNDPK1 is the
unique canonical isoform, while TcNDPK2, 3, and 4 corre-
spond to group II variants. Isoforms 2 and 3 have one DM10
domain preceding the catalytic region, and variant 4 has
unknown N- and C-terminal extensions. The orthologous
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genes of these enzymes are also present in the genomes of the
related parasites T. brucei and L. major, except for the absence
of TcNDPK4 in the latter [90]. The first report of NDPK
activity in trypanosomatids was published in 1995, where
Ulloa et al. detected activity in different subcelular fractions
including membranes and purified a soluble NDPK from
T. cruzi epimastigotes with biochemical properties similar
to canonical enzymes, probably corresponding to TcNDPK1
[91]. TcNDPK1 has a molecular mass of 16 KDa and like
eukaryotic NDPKs forms homohexamers [92]. In addition,
it is expressed in trypomastigote and amastigote stages [90].
This is an interesting enzyme because it showed not only
phosphotransference activity but also DNAse activity with
similar rates to commercial nucleases [93]. This new activity
was extensively characterized in NM23-H2, the human
orthologous of TcNDPK1, and a Lys inside the catalytic site
seems to be responsible for it [94]. As T. cruzi genomic DNA
is also susceptible to TcNDPK1 nuclease activity, it evidences
that TcNDPK1 could act at nuclear level, for example,
being component of programmed cell death machinery in
trypanosomatid organisms [86, 95]. Reinforcing this idea,
T. brucei-related NDPK was localized mainly in the nucleus
of the parasites [96]; conversely it was also identified as
a secreted protein [97]. Other results were obtained for
members of Leishmania genus; in L. major this isoform was
associated to microsomal fractions, and in L. amazonensis it
is secreted and involved in macrophage infection [98, 99].
In T. cruzi it is still not clear the localization of the unique
canonical isoform. It could be possible that the enzyme has
several positions inside the cell and can move from one to
another in response to stimuli. In this context a regulation by
compartmentalization or phosphorylation is expected as was
reported for T. brucei [100].

TcNDPK2, a longer NDPK isoform from T. cruzi, is a
protein of 37 KDa whose first 88 amino acids correspond to
the DM10 domain. It is expressed in the three major stages
of T. cruzi life cycle, and apparently it has distinct regulation
from TcNDPK1 because it is inhibited at high substrate con-
centration [90]. Using immunofluorescence and biochemical
techniques we recently demonstrated that TcNDPK2 isoform
is a microtubules-associated enzyme mainly localized in the
cytoskeleton and flagellum (Miranda et al., unpublished
results). TcNDPK2-like NDPKs are conserved in a wide
range of eukaryotes with motile axoneme, from unicellular
to superior organisms. For example, T. brucei orthologous
genes codify for an NDPK found in parasite’s flagella [101,
102], and in humans the related protein (NM23-H7) is also
expressed in flagella-containing cells such as spermatozoids
[103]. These are interesting results because they suggest a
common possible function for TcNDPK2-like enzymes such
as GTP supplying for tubulin polymerization and thus being
involved in microtubule dynamics. DM10 domains present
in this type of NDPK have not been investigated till the
moment. However, we recently demonstrate, by expression
of truncated and fusion variants of TcNDPK2 in T. cruzi, that
the DM10 domain is sufficient and necessary for cytoskeleton
delivery of the enzyme (Miranda et al., unpublished results).
In addition, it is possible that DM10 domains were impli-
cated in flagella-targeting machinery, a poorly understood

process yet. Importantly, trypanosomatids are considered
model organisms for the study of human illness based on
cilia and flagella disorders, since NM23-H7 is associated to
cone rod dystrophy, a progressive retinal disorder, then the
study of TcNDPK2-related enzymes opens new insights in
this interesting field.

There is an increasing amount of information about
NDPKs that evidence their participation in many diverse bio-
logical processes. NDPKs seem to be key metabolic enzymes,
thus further studies need to be made in trypanosomatids
to understand how they work, to understand their role in
metabolism and pathogenesis.

3.3. Adenylate Kinases. One of the enzymes related to
cell energy management is adenylate kinases, which are
ATP:AMP phosphotransferases. These enzymes are involved
in the homeostasis of adenine nucleotides by interconversion
of the adenine nucleotide pool, which includes ATP synthesis
from ADP and an increase in the ATP energetic poten-
tial. They catalize reversible phosphotransfer between ADP,
ATP, and AMP molecules, which have been implicated in
processing metabolic signals associated with cellular energy
utilization [104–106]:

Mg2+ · ADP + ADP ←→Mg2+ ·ATP + AMP (3)

Recent evidence indicates that adenylate kinases facilitate
intracellular energetic communication. In typical mam-
malian cells the loss of adenylate kinase function can be com-
plemented by activation of creatine kinase phosphortransfer
[40, 107]. Furthermore a similar role can be attributed
to creatine and adenylate kinases, being both implicated
in the renewal of ATP from ADP and a phosphorylated
compound. In some organisms they participate in muscle
contraction, metabolic sensing of K+-ATP channels [106–
108], and cell motility. In unicellular organisms such as
Tetrahymena and Paramecium, adenylate kinases are involved
in the ATP-regenerating system required for ciliary and
flagellar movement.

They can be considered key enzymes in life support as
they are present in almost all living organisms; they are
distributed from bacteria to vertebrates.

The tridimensional structure of adenylate kinases can be
decomposed into three subdomains, based on the functional
roles and induced fit movements: the NMP-bind and LID
domains, the moving parts, and the CORE domain that
is unaffected by substrate binding. The “long” and “short”
adenylate kinases classification is based on the differences in
the LID domain; LID is an 11-residue segment in the short
type, whereas that in the long type consists of 38 residues and
the difference leads to drastic changes in the conformation
of the LID domain. They are small globular proteins that
suffer conformational changes when they interact with their
substrate [109]; moreover, in most of the cases they are found
as monomers [110].

Adenylate kinases isolated from prokaryotes belong to
the long type [111]. Similarly the ADK localized in the
chloroplast is also the long type [112]. Considering the
chloroplast ADKs and the mitochondrial ADKs to have
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Table 1: Characteristics of trypanosomatids’ phosphotransferases. Summary of the main features of arginine kinases (AKs), adenylate
kinases (ADKs), and nucleoside diphosphate kinases (NDPKs) isoforms from trypanosomatids. Predicted subcellular localizations are
indicated with a question mark. The existence or not of human equivalents (human), N- or C-terminal extensions (N-t and C-t), peroxisomal
targeting signal (PTS-1), and DM10 motifs are also detailed.

Enzyme Organism Isoform Localization Human Features

AK T. cruzi/T.brucei 1 Cytosol No Canonical

T. brucei 2 ? No N-t

3 ? No C-t

ADK T. cruzi/T. brucei/L. major 1 Flagellum Yes N-t

2 Reservosome (?) Yes —

3 Glycosome Yes PTS-1

4 Flagellum Yes N-t

5 Cytosol Yes Canonical

6 Mitochondria Yes —

T. brucei 7 (A) Flagellum Yes N-t

NDPK T. cruzi/T. brucei/L. major 1 Nucleus (?) Yes Canonical

2 Cytoskeleton Yes DM10

3 ? Yes DM10

T. cruzi/T. brucei 4 ? Yes Putative

a prokaryotic origin in view of the endosymbiont hypothesis,
the classification can be subdivided into the eukaryotic short
type and the prokaryotic long type. As always there are
exceptions to this classification. For example, the cytosolic
ADK from S. cerevisiae is the long type [113]. Another
interesting case is the long type ADK from Giardia [114].
Giardia belongs to the most primitive group in the Eukary-
otae, it does not have mitochondria. Consequently it is
highly impossible, and Giardia’s ADK has derived from
mitochondria. Lastly the third exception is the short type
ADK from the bacteria, Micrococcus [115]. Gathering all
the information many authors postulate that the long and
short types of adenylate kinase have diverged before the
appearance of eukaryotes; this hypothesis could perfectly
explain why both types of ADKs are found in prokaryotes
and eukaryotes [116].

Their function can be related to their subcellular localiza-
tion. They have been found in the cytoplasm, mitocondrial
matrix, chloroplasts [117], and hydrogenosomes [118],
structures that can be directly related to energy consumption
and generation places. There is absolutely no doubt that
adenylate kinases in those structures are responsible for
the interconversion of the adenosine nucleotides. On the
other hand essential functions have been related to adenylate
kinases; for example, null growth is observed in E. coli [119]
and S. pombe [120], lacking in their adenylate kinases. On the
other hand they can be linked to consumption sites of ATP.
For example, in Paramecium it has been proposed that they
would be involved in the fast interconversion of ADP to ATP
in the process of cilia reactivation [121].

In a few words adenylate kinases can be considered as
key enzymes in cell energetic with the ability of doubling
the ATP energy potential. They are a key sensor in cell
energetic status sensing; thanks to their catalytic activity
small variations in the nucleotide pool of ATP and ADP can
be reflected as big changes in the AMP pool, increasing in

this way the sensibility and response of the AMP responding
mechanisms [107]. Lastly they can be linked to cellular
energetic communication; under highly demanding energy
process in some subcellular structures such as nucleus or
flagella, fast relocalization of organelles involved in energy
synthesis has been observed [39, 40]. These movements have
been considered as mechanisms for reducing the distances
between energy consumption and generating places. Even so
these mechanisms would not be enough, diffusion processes
are slow, so it has been proposed that the energy transport is
catalyzed enzymatically. Key enzymes in the phosphotrans-
ferase network would be adenylate kinases [122].

In parasitic protozoa adenylate kinases have been
detected and characterized. In L. donovani a long LID
domain adenylate kinase has been cloned and characterized
[123]. The unicellular malaria parasite, P. falciparum (Api-
complexa), presents two adenylate kinase isoforms [124].

In other parasitic protozoa a larger number of isoforms
have been characterized. L. major has six putative adenylate
kinase isoforms according to the genome project data.
In other trypanosomatids, T. brucei and Phytomonas spp,
adenylate kinases have been detected in diverse organelles,
microbodies, glycosomes [125]. Recently two flagellar, cyto-
plasmic and mitocondrial associated adenylate kinases were
characterized in T. brucei [35, 36]. A large number of
isoforms, six in total, have also been described in T. cruzi,
with possible flagellar, glycosomal, mitocondrial, and cyto-
plasmatic subcellular localization [37]. The data presented
reveals an enormous variability within organisms, which
are reflection of their adaptation to their life cycle. In the
case of T. cruzi the high number of adenylate kinases can
be attributed to the complex life cycle it goes through
which involves distinct environments (insect vector gut,
mammalian blood, and mammalian host cell cytoplasm)
and consequently variable nutritional conditions. Another
possible explanation to the highly unusual number of
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adenylate kinase can be that they are not only in different
subcellular localization but that they are stage specific.

A summary of the main characteristics from each
phosphotransferase mentioned in the text is presented in
Table 1.

It is evident that hosts and parasites have a large
number of differences in terms of their energy metabolism.
Trypanosomatids’ enzymes completely absent in mammals,
different isoforms in subcellular localization, structure, and
number are some of these divergences. Phosphotransferases
are mainly involved in crucial processes such as the main-
tenance of the ATP balance in the cell. Slight disruptions
on this equilibrium are usually lethal for all living organ-
isms; in consequence we consider that trypanosomatids’
phosphotransferases are promising targets for rational drug
design.
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