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Simple Summary: In approximately 50% of prostate cancer patients undergoing surgical treatment,
cancer has extended beyond the prostate boundary (i.e., extraprostatic extension). The aim of our
study was to expand artificial intelligence (AI) models that identify cancer in the prostate to also
identify the cancer that spreads outside the boundary of the prostate. By combining past models with
image post-processing steps and clinical decision rules, we built an autonomous approach to detect
the extension of the cancer beyond the prostate boundary using prostate MRI. Our study included
123 prostate cancer patients (38 with extraprostatic extension), and our proposed method can detect
cancer outside the prostate boundary in more cases than radiologists.

Abstract: The localization of extraprostatic extension (EPE), i.e., local spread of prostate cancer beyond
the prostate capsular boundary, is important for risk stratification and surgical planning. However, the
sensitivity of EPE detection by radiologists on MRI is low (57% on average). In this paper, we propose a
method for computational detection of EPE on multiparametric MRI using deep learning. Ground truth
labels of cancers and EPE were obtained in 123 patients (38 with EPE) by registering pre-surgical MRI with
whole-mount digital histopathology images from radical prostatectomy. Our approach has two stages. First,
we trained deep learning models using the MRI as input to generate cancer probability maps both inside and
outside the prostate. Second, we built an image post-processing pipeline that generates predictions for EPE
location based on the cancer probability maps and clinical knowledge. We used five-fold cross-validation
to train our approach using data from 74 patients and tested it using data from an independent set of
49 patients. We compared two deep learning models for cancer detection: (i) UNet and (ii) the Correlated
Signature Network for Indolent and Aggressive prostate cancer detection (CorrSigNIA). The best end-to-end
model for EPE detection, which we call EPENet, was based on the CorrSigNIA cancer detection model.
EPENet was successful at detecting cancers with extraprostatic extension, achieving a mean area under
the receiver operator characteristic curve of 0.72 at the patient-level. On the test set, EPENet had 80.0%
sensitivity and 28.2% specificity at the patient-level compared to 50.0% sensitivity and 76.9% specificity for
the radiologists. To account for spatial location of predictions during evaluation, we also computed results
at the sextant-level, where the prostate was divided into sextants according to standard systematic 12-core
biopsy procedure. At the sextant-level, EPENet achieved mean sensitivity 61.1% and mean specificity 58.3%.
Our approach has the potential to provide the location of extraprostatic extension using MRI alone, thus
serving as an independent diagnostic aid to radiologists and facilitating treatment planning.
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1. Introduction

Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer
death among men worldwide [1]. It is estimated that in 2022 prostate cancer will account for
268,490 new cases and 34,500 deaths in the United States alone [2]. Radical prostatectomy
is a common treatment for localized prostate cancer, yet 20% to 40% of patients experience
biochemical recurrence after surgery [3]. These patients are much more likely to develop
metastases [4]. Positive surgical margins caused by the extension of cancer beyond the
prostate gland [5], i.e., extraprostatic extension (EPE), represent a major risk factor for
biochemical recurrence and reduced cancer-specific survival after radical prostatectomy [6].
Cancers with extraprostatic extension are common [7–9], occurring in 50% of patients
undergoing radical prostatectomy [10].

Detection of extraprostatic extension may improve selection of treatment (i.e., surgery
or radiation) and help with surgical planning for patients who choose surgery (radical
prostatectomy). If extraprostatic extension is suspected pre-operatively, surgeons may need
to resect more tissue to reduce the likelihood of positive margins. Conversely, if extrapro-
static extension can be confidently ruled out, surgeons will perform nerve-sparing radical
prostatectomies to reduce the risk of post-operative erectile dysfunction and urinary incon-
tinence [11]. Current guidelines from the American Urological Association recommend
multiparametric MRI imaging studies for the evaluation of extraprostatic extension [12].

The ability of radiologists to detect extraprostatic extension on MRI varies greatly
(sensitivity 12–83% and specificity 63–92%) [13]. One meta-analysis concluded that, with
an average sensitivity of 57% [14], MRI is not sensitive enough to reliably find tumors with
extraprostatic extension. One challenge is that grading systems for reporting extraprostatic
extension on MRI lack standardization [15,16]. Quantitative assessment criteria such as
tumor–capsule contact line length [5,12] have been shown to be independent predictors of
extraprostatic extension.

Automated approaches have the potential to improve the accuracy and reliability of
extraprostatic extension detection on MRI. Prior work [17–20] primarily used radiomics
to predict the presence of extraprostatic extension, with one recent study employing deep
learning [7] (Table 1). These prior studies have a common set of limitations: (1) They lack
spatially accurate ground truth labels, since the histopathology images and the MRI are
cognitively registered, a process prone to error; (2) they solve a binary classification problem
i.e., predict the presence or absence of extraprostatic extension at the index lesion level,
without attempting to spatially localize extraprostatic extension; (3) none of the approaches
are fully automatic, as they require radiologist input usually in the form of manual lesion
segmentations (see column 3 in Table 1).

In recent years, many studies have shown promising results in automatically detecting
prostate cancer on MRI using convolutional neural networks [21–26]. We argue that tumor
detection inside the prostate can be viewed as a sub-task for extraprostatic extension
prediction, and we propose a fully automated extraprostatic extension detection framework
using these existing cancer models as building blocks. The goal of our study was not to
build a better deep learning model for prostate cancer, but to evaluate the utility of existing
models in detecting cancer that extends beyond the capsule.

In this paper, we propose a two-step fully automated workflow for prediction and
localization of extraprostatic extension on multiparametric MRI. First, we used pre-trained
deep learning models to generate cancer probability maps both inside and outside the
prostate gland. Second, we defined a series of post-processing steps and clinically inspired
decision rules to predict the presence or absence of extraprostatic extension for each lesion.
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Table 1. Summary of previous studies predicting presence of extraprostatic extension on multipara-
metric MRI. Abbreviations: EPE = extraprostatic extension; w/ = with; CNN = convolutional neural
network; SVM = support vector machine; TCL = tumor–capsule contact line length (also known as
capsular contact length); PI-RADS = Prostate Imaging-Reporting and Data System; ESUR = European
Society of Urogenital Radiology; ADC = apparent diffusion coefficient.

First Author
(Year)

Evaluation
Granularity

Radiologist
Input Required

Patient
Number

Method AUC

Hou (2021) [7]
Per index
lesion

Tumor
segmentation 849 Radiologists

CNN
0.63–0.74
0.73–0.81

Cuocolo (2021) [17]
Per index
lesion

Tumor
segmentation 193

Radiologists
Radiomics + SVM

81–83% acc
0.73–0.80
74–79% acc

Eurboonyanun (2021) [27]
Per index

Measure TCL 95
Logistic regression w/

lesion absolute TCL (euclidean) 0.80
actual TCL (curvilinear) 0.74

Losnegard (2020) [28] Per index
lesion

Tumor
segmentation

228 Radiologists
Radiomics + Random forest

0.75
0.74

Park (2020) [29] Per patient Measure TCL 301

Radiologists using
MRI-based EPE grade,
ESUR score,
Likert scale,
TCL

0.77–0.81
0.79–0.81
0.78–0.79
0.78–0.85

Xu (2020) [19]
Per lesion
(all those
MRI visible)

Tumor
segmentation 95 Radiomics +

Regression algorithm 0.87

Shiradkar (2020) [18]
Per index
lesion

Tumor and
periprostatic
fat segmentation

45 Radiomics + SVM 0.88

Mehralivand (2019) [30]
Per index
lesion Measure TCL 553

Logistic regression w/
MRI-based EPE grade
+ clinical features

0.77
0.81

Ma (2019) [31]
Per index
lesion

Tumor
segmentation 210

Radiologists
Radiomics +
Regression algorithm

0.60–0.70

0.88

Stanzione (2019) [20] Per index
lesion

Tumor
segmentation

39 Radiomics +
Bayesian Network 0.88

Krishna (2017) [32]
Per lesion
(all those
MRI visible)

Tumor
segmentation 149

Radiologists
Logistic regression w/
PI-RADS scores,
tumor size, TCL, ADC entropy

0.61–0.67,

0.61–0.72,
0.73, 0.69, 0.76

2. Materials and Methods
2.1. Dataset
2.1.1. Population Characteristics

This retrospective chart review study was approved by the Institutional Review Board
of Stanford University. As a chart review of previously collected data, patient consent was
waived. The study focused on a cohort of 123 patients with confirmed prostate cancer who
had a pre-operative MRI and underwent radical prostatectomy at our institution. Patients
were randomly split into a training and validation set (n = 74) and a held-out testing set
(n = 49) (Table 2). Extraprostatic extension was present in 28 of the 74 training set patients,
and 10 out of the 49 testing set patients.
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Table 2. Details of the train and test cohorts. Lesion volumes are presented as median (IQR), where
IQR = interquartile range. Lesion volumes were computed based on the histopathology labels,
assuming continuity between slices and using the MRI slice thickness.

Cohort Train Test

Patient number 74 49
Lesion count 90 58

Indolent 9 10
Aggressive 81 48
EPE (pathologically proven) 29 10

Lesion volume (mm3) 1541.6 (714.7, 3418.6) 1099.1 (743.2, 2544.7)
EPE volume (where applicable) 8.6 (3.6, 44.6) 10.6 (5.6, 36.3)

2.1.2. Image Acquisition

Magnetic resonance images (MRI) were acquired using 3 Tesla GE scanners (GE
Healthcare, Waukesha, WI, USA) with external 32-channel body array coils without en-
dorectal coils. The imaging protocol included T2-weighted MRI (T2w), diffusion weighted
imaging (DWI), derived Apparent Diffusion Coefficient (ADC) maps and dynamic contrast-
enhanced imaging sequences. Axial T2w MRI (acquired using a 2D Spin Echo protocol)
and ADC maps were used in this study (see characteristics in Table 3).

Table 3. Radical prostatectomy cohort data characteristics. Abbreviations: T2w—T2-weighted MRI;
ADC—Apparent Diffusion Coefficient map. [a, b] indicates range between a and b.

Number of Patients 123

T2w
Repetition time (TR, range) (s) [3.9, 6.3]
Echo time (TE, range) (ms) [122, 130]
Pixel size (range) (mm) [0.27, 0.94]
Distance between slices (mm) [3, 5.2]
Matrix size [256, 512]
Number of slices [20, 44]

ADC
b-values (s/mm2) 0, 50, 800, 1000, 1200
Pixel size (range) (mm) [0.78, 1.50]
Distance between slices (mm) [3, 4.5]
Matrix size [50, 256]
Number of slices [15, 40]

The excised prostates were fixed in formalin and embedded in paraffin and then
serially sectioned using customized 3D-printed molds with slice orientation and thickness
matching that of T2w images, followed by staining with hematoxylin and eosin. All
stained slices were scanned at 20×magnification (pixel size 0.5 µm) to generate digitized
whole-mount histopathology images.

2.1.3. Labels

All radical prostatectomy specimens were reviewed by a genitourinary pathologist
(C.A.K.) with 10 years of experience. The expert pathologist outlined cancer, including
extraprostatic extension, on all whole-mount digital histopathology slices, generating
pixel-level cancer and extraprostatic extension labels. By computationally registering
surgical histopathology images and the corresponding MRI, we mapped the extent of
extraprostatic extension and cancer onto MRI creating pixel-level labels for both classes
(details in Section 2.2.1). Prostate segmentations were available on all T2w MRI and digital
histopathology slices for all patients. The prostate was segmented on T2w images by expert
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technologists (mean experience = 9 years) and adjusted as necessary by our expert team
(C.A.K, G.S.—a urologic oncologist with 13 years of experience; P.G.—a body MR imaging
radiologist with 14 years of experience; M.R.—an image analytics expert with 10 years of
experience working on prostate cancer).

Additionally, all MRI in the test set were reviewed retrospectively by a radiologist (P.G.
or A.S.—a body MR imaging radiologist with 5 years of experience) with the knowledge
that patients had undergone prostatectomy for cancer, who indicated whether extrapro-
static extension was present. These labels were used to compare our model’s performance
with that of radiologists in detecting the presence of extraprostatic extension on multipara-
metric MRI.

2.2. Data Pre-Processing
2.2.1. Histopathology Pre-Processing

Several pre-processing steps were applied to the digitized histopathology images:

1. Registration: Each digital histopathology image was aligned with its corresponding
T2w MR image using the automated affine and deformable registration method
RAPSODI [33]. This enabled accurate mapping of pixel-level cancer and extraprostatic
extension labels from digital histopathology images onto MRI. For details on this
process, refer to [26,33].

2. Smoothing: Images were smoothed with a Gaussian filter with σ = 0.25 mm to avoid
downsampling artifacts.

3. Resampling: The Gaussian smoothed images were downsampled to an X-Y size of
224× 224 pixels, resulting in an in-plane pixel size of 0.29× 0.29 mm2.

4. Intensity normalization: Each RGB channel of the resulting digital histopathology
images was Z-score normalized.

2.2.2. MRI Pre-Processing

Several pre-processing steps were applied to the MR images, following the procedure
in [25,26]:

1. Affine Registration: The T2w images and ADC images were manually registered us-
ing an affine transformation driven by the prostate segmentations on both modalities.

2. Resampling: The T2w images, ADC images, prostate masks and cancer labels were
projected and resampled on the corresponding histopathology images, resulting in
images of 224× 224 pixels, with pixel size of 0.29× 0.29 mm2.

3. Intensity standardization: We followed the procedure by Nyul et al. [34]. Using
the training dataset, we learned a set of intensity histogram landmarks for T2w
and ADC sequences independently. Then, we transformed the image histograms
to align with the learned mean histogram of each MRI sequence. The histogram
average learned in the training set was also used to align the cases in the test set.
This histogram alignment intensity standardization method helps ensure similar MRI
intensity distribution for all patients irrespective of scanners and scanning protocols.

4. Intensity normalization: Finally, Z-score normalization was applied to the prostate
regions of T2w and ADC images.

2.3. Proposed Approach

Our approach consists of two stages (Figure 1). First, we used deep learning mod-
els pre-trained for cancer detection to generate cancer probability maps over the entire
image. Second, we defined a set of post-processing steps and heuristic rules based on
clinical knowledge in order to generate localized predictions for lesions with extraprostatic
extension from the cancer probability maps.
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Figure 1. Flowchart describing our method for generating spatial predictions of cancer lesions
with extraprostatic extension. A convolutional neural network takes in T2w and ADC images and
outputs a probability map for cancer. We apply post-processing steps of masking, thresholding and
connected components to the probability map to obtain a set of lesion candidates. We check each
lesion candidate against a set of heuristic rules and determine which are the lesions with suspected
extraprostatic extension.

2.3.1. Step 1: Deep Learning Models for Cancer Detection

Many studies focused on cancer detection inside the prostate using convolutional
neural networks. The goal of our study was to evaluate the utility of these existing models in
detecting cancer that has spread beyond the prostate capsule. Specifically, we implemented
two networks: UNet [35] and the state-of-the-art Correlated Signature Network for Indolent
and Aggressive prostate cancer detection (CorrSigNIA) [26]. Both models were pre-trained
for cancer detection inside the prostate gland using a five-fold cross-validation scheme.
Details on the choice and training of these models can be found in Appendix A.

At inference time, given input images of T2w and ADC axial slices IT2(x, y), IADC(x, y)
(Figure 2a,b), the pre-trained model outputs a cancer probability map for the 2D slice,
pCa(x, y) (Figure 2d):

pCa(x, y) = fθ(IT2, IADC), (1)

where x and y are the pixel coordinates in the left–right and posterior–anterior directions,
respectively; function fθ is the convolutional neural network with learned weights θ.

2.3.2. Step 2: Post-Processing Pipeline

We apply several post-processing steps to the cancer probability maps output by
the deep learning models in order to generate predictions for lesions with extraprostatic
extension (Figure 2):

1. Dilated prostate mask. The deep learning cancer predictions become less reliable
the further we look outside the prostate, since other anatomical features may drive
false positives. To prevent this, we applied a dilated prostate mask to the cancer
probability map. Based on the diameter of the largest extraprostatic extension lesions
in our cohort, we chose to dilate the original prostate mask using kernels of size
64× 64 pixels (corresponding to 1.86 cm × 1.86 cm):

Mpr(x, y) = dilate(Lpr(x, y)), (2)

where Lpr(x, y) represents the prostate segmentation mask (pixels have value 1 inside
the prostate, value 0 outside) andMpr(x, y) is the resulting dilated prostate mask. We
set all values in the probability map outside this region to zero:

p(x, y) = pCa(x, y) ∗Mpr(x, y), (3)

where pCa(x, y) is the cancer probability map output by the model (Equation (1))
(Figure 2d); ∗ denotes element-wise multiplication; the resulting p(x, y) is the 2D
masked cancer probability map for a given slice (Figure 2e).
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2. Binary threshold. All pixels in the prediction map with probability p(x, y) greater
than a fixed threshold, α, were considered to be cancer, and the rest were set to zero; α
is a hyperparameter:

pα(x, y) =

{
p(x, y) if p(x, y) > α

0 otherwise,
(4)

and this results in a thresholded cancer probability map pα(x, y) for the slice. We
computed pα(x, y) for all slices in a case, resulting in a volume Pα(x, y, z) for the
patient, where z is the slice index.

3. Connected components. Next, we computed all 3D connected components in the
Pα(x, y, z) volume with connectivity value 26 using the python cc3d library [36]:

{C(i)α (x, y, z)} = cc3d.connected_components(Pα(x, y, z)). (5)

Each component C(i)α (x, y, z) is a lesion candidate (Figure 2f). Note that the connected
components function returns binary mask objects, i.e., each pixel in C(i)α (x, y, z) is
either 0 or 1, and all the pixels with value 1 are connected.

4. Logical rules: We used logical rules to prune these components and determine the
final predictions for extraprostatic extension:

• Rule I: Component must predict cancer both inside:

C(i)α ∩ Lpr 6= 0, (6)

and outside the prostate capsule

C(i)α \ Lpr 6= 0, (7)

where Lpr is the prostate binary mask, i.e., Lpr(x, y, z) = 1 for pixels inside the
prostate and Lpr(x, y, z) = 0 for pixels outside the prostate. If a component is

either fully inside (C(i)α \ Lpr = 0) or fully outside the prostate (C(i)α ∩ Lpr = 0),
it is not a viable candidate for extraprostatic extension (Figure 2g, and brown
components were discarded because they are fully outside the prostate and the
green component was accepted since it crosses the prostate border).

• Rule II: For each viable lesion candidate, compute tumor–capsule contact line
length (TCL) and compare with threshold thTCL. The overlap between a candi-
date C(i)α and the prostate boundary Lpr defines a curvilinear segment (shown in

pink in Figure 2g), and l(i)TCL is the length of this segment.

l(i)TCL = tumor_capsule_contact_line_length(C(i)α ,Lpr). (8)

Lesion candidates with l(i)TCL < thTCL are discarded. Candidates with l(i)TCL ≥ thTCL
constitute our final predictions for cancer lesions with extraprostatic extension.
Each final candidate C(i)α is a binary mask; multiplying it element-wise with
the probability map Pα gives the probability map for cancer with extraprostatic
extension (Figure 2h).

q(i)(x, y, z) = C(i)α (x, y, z) ∗ Pα(x, y, z). (9)

We denote the final extraprostatic extension probability map for the entire case
volume Q(x, y, z).
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Figure 2. Row 1: Registered MRI and histopathology slices, along with output from cancer detection
deep learning model in a patient with bulky extraprostatic extension. (a) T2w image, (b) ADC image,
(c) Histopathology image overlaid with ground truth cancer labels and prostate segmentation mask.
Purple contour shows prostate gland segmentation, orange contour is cancer inside the prostate,
white contour is extraprostatic extension (EPE). (d) Cancer probability map output by the pre-trained
deep learning cancer detection model. Row 2: Post-processing steps to generate final predictions for
cancer with extraprostatic extension. (e) Cancer probability map after applying dilated prostate mask.
(f) Candidate lesions (shown in yellow) were obtained by applying binary threshold and detecting
connected components. (g) Candidate lesions were pruned based on their location relative to the
prostate; components fully inside or fully outside the prostate were rejected (brown), those crossing
the border were accepted (green). For the green lesion candidate, the tumor-capsule contact line
(TCL) is displayed in pink. (h) Final prediction map for lesion with EPE.

Algorithm 1 presents all these steps in pseudo-code.
We refer to our proposed end-to-end model that includes pre-trained CorrSigNIA +

post-processing steps + decision rules as EPENet, and we refer to the baseline end-to-end
model pre-trained UNet + post-processing steps + decision rules as UNet_EPE. Both
models take as input the T2w and ADC images and output the extraprostatic extension
probability map volume Q(x, y, z) for the patient.
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Algorithm 1 Steps for predicting lesions with extraprostatic extension

Require: IT2, IADC,Lpr
Require: user defined parameters α, TCLth
Ensure: load pre-trained cancer model fθ

pCa ← fθ(IT2, IADC) . deep learning model inference, Equation (1)

Mpr ← dilate(Lpr) . Equation (2)
p← pCa ∗Mpr . apply dilated prostate mask, Equation (3)
pα ← binary threshold (p; α) . Equation (4)
Cα ← connected components (pα) . Equation (5)
n← len(Cα)

q← empty list . where final EPE lesion predictions will be appended
for i in 0, 1, ...n− 1 do . iterate over all candidates C(i)α

if C(i)α ∩ Lpr 6= 0 and C(i)α \ Lpr 6= 0 then . Equations (6) and (7)

l(i)TCL ← compute tumor–capsule contact line length(C(i)α ,Lpr) . Equation (8)

if l(i)TCL > TCLth then

q← append(C(i)α ∗ pα) . component C(i)α satisfied all criteria, Equation (9)
. append to list of final EPE predictions

end if
else continue
end if

end for
Q← aggregate all final predictions for the case, q

2.4. Evaluation
2.4.1. Patient-Level Evaluation

If there are extraprostatic extension labels on any slice in a case, the patient is labeled
as ground truth EPE positive; otherwise, the patient is ground truth EPE negative. If our
approach predicts extraprostatic extension on any of the slices (Q 6= 0), then the patient is
predicted EPE positive. If Q(x, y, z) = 0 on all slices, the patient is predicted EPE negative.
The standard definitions for true positive, false positive, true negative and false negative
predictions apply.

2.4.2. Sextant-Level Evaluation

Following standard clinical practice for systematic 12-core biopsies [37,38], we com-
putationally divide the prostate volume into six regions, i.e., sextants, corresponding to
left and right side and the apex, midgland and base regions. For details on this, refer to
Seetharaman et al. [25]. For each sextant, we assign ground truth labels as follows: if the
sextant contains any extraprostatic extension labels, then it is ground truth EPE positive;
otherwise, it is ground truth EPE negative. Consequently, ground truth EPE negative pa-
tients will have six ground truth negative sextants, and ground truth EPE positive patients
will have one or more ground truth positive sextants.

If our approach predicts extraprostatic extension anywhere within a sextant (Q 6= 0),
then that sextant is predicted EPE positive. If Q(x, y, z) = 0 throughout a sextant, that
sextant is predicted EPE negative. The standard definitions are used to count true positive,
false positive, true negative and false negative predictions.

2.4.3. ROC Analysis

To generate receiver operating characteristic (ROC) curves, we varied the binary
threshold parameter α uniformly between [0, 1] in steps of 0.05. For each value of α we
performed the post-processing steps in Algorithm 1 and the evaluation steps at the patient
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and sextant levels, recording true positive and false positive rates. We then generated two
ROC curves for each model: a patient-level ROC and a sextant-level ROC, each with its
corresponding area under the curve (AUC) score.

2.5. Experimental Design
Hyper-Parameter Optimization

The method described in Algorithm 1 has two user-specified parameters: the binary
threshold parameter α, and the tumor-capsule contact line length threshold TCLth.

Parameter α specifies the threshold applied on the cancer probability map to create a
binary mask (Equation (4)), from which connected components are computed and lesion
candidates determined. By varying α we generate receiver operating characteristic curves
(Section 2.4.3).

The tumor-capsule contact line length threshold TCLth is the length of the contact
line between a lesion and the prostate boundary, above which the algorithm predicts
extraprostatic extension for the lesion (Equation (8)). There is no consensus in the literature
on the best tumor-capsule contact line length value to use in clinical nomograms, with
proposed values ranging from 10 mm to 25 mm [39]. To find the optimal value for the
TCLth parameter, we ran a grid search on the training data, in which we evaluated a range
of thresholds and selected the one with the best performance. Grid search is a tuning
technique that attempts to compute the optimum values of hyperparameters. It is an
exhaustive search that is performed on a specific parameter.

For the proposed EPENet and the baseline UNet_EPE, we generated extraprostatic
extension predictions at different values for TCLth ∈ {2.5 mm, 5.0 mm, 7.5 mm, 10.0 mm,
12.5 mm, 15.0 mm, 17.5 mm, 20.0 mm}. We performed five-fold cross-validation with
respect to the training dataset of the deep learning models. We constructed the receiver
operating characteristic curves and computed AUC at per-patient and per-sextant level,
as described in Section 2.4. Mean AUC was computed over the validation sets of the five
cross-validation folds, both at sextant-level and patient-level. Figure 3 shows the results of
the grid search over parameter TCLth for EPENet and UNet_EPE.

(a) (b)

Figure 3. Grid search over the tumor-capsule contact line length threshold parameter (TCLth) for
EPENet and UNet_EPE. The two panels correspond to the evaluation metric used (displayed on the
y axis): sextant-level AUC in panel (a) and patient-level AUC in panel (b). The x axis shows the
values of TCLth in millimeters. Results are averages computed over the validation sets of the five
cross-validation data folds.
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Based on the graphs in Figure 3, we chose TCLth = 10 mm, since it provided the best
balance between good performance at sextant-level and patient-level. All experiments in
the following sections were conducted with the tumor-capsule contact line length threshold
set to TCLth = 10 mm.

3. Results
3.1. Qualitative Results

We used 3DSlicer [40] to visualize EPENet predictions overlaid on top of MR im-
ages. EPENet successfully detected extraprostatic extension (representative case shown
in Figure 4). Note that EPENet final outputs indicate only lesions with a predicted ex-
traprostatic extension component. Slices on which the model predicts cancer that is fully
contained within the prostate capsule will not show any EPENet final predictions. For
selective identification of cancer inside the prostate gland, the CorrSigNIA model should
be applied directly. EPENet is designed as a tool to specifically highlight areas at risk for
extraprostatic extension and should be used accordingly.

Figure 4 shows predictions computed with tumor–capsule contact line length threshold
TCLth = 10 mm and two different binary thresholds α = 0.1 and α = 0.3. For both values
of α, EPENet generated true positive predictions at the patient-level. However, varying α
changes the model performance at the sextant-level (which takes into account the spatial
location of predictions). Column 1 of Figure 4 schematically illustrates the division of
prostate into sextants corresponding to the apex, mid, base, right- and left-hand side
regions of the gland. This case has two ground truth EPE positive sextants (spanned by
the extraprostatic extension on the left side of the patient) and four ground truth EPE
negative sextants. The EPENet model with α = 0.3 was 100% sensitive and 100% specific,
since the final prediction was confined to the two ground-truth positive sextants (apex
and mid, patient left-hand side). The EPENet model with α = 0.1 was 100% sensitive but
only 50% specific, because the EPE prediction extended into the apex and mid sextants
on the patient right-hand side, thus accounting for two false positive sextant predictions.
To ensure spatially accurate predictions, it is important to select an appropriate operating
point where the model balances sensitivity and specificity at the sextant-level. We address
this in the next subsection.

Figure A1 in Appendix B shows qualitative results for additional cases in the test set.
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Figure 4. EPENet predictions for cancers with extraprostatic extension in one example case from the
test set, from apex to base. EPENet does not show any predictions for cancer lesions fully contained
within the prostate capsule. Column (1) Schematic illustration of the prostate division into sextant
regions. Column (2) Input T2w images. Column (3) Input ADC images; yellow labels outline cancer
within the prostate, white labels outline extraprostatic extension (EPE); white arrows point to the
small EPE regions; the panels in the corners show zoomed-in 5 mm × 5mm areas containing EPE.
This patient shows cancer on all slices, but EPE is present only in rows 2 and 3. Column (4) and (5)
show EPENet predictions for different values of the α parameter. Predictions are probability maps
displayed in a cold to hot color scheme (dark blue–0, dark red–1).

3.2. Quantitative Results

Table 4 shows sensitivity and specificity results for EPENet operating at various bi-
nary thresholds α. We observed that for α < 0.30 specificity at the sextant level dropped
below 50% in the cross-validation set. Conversely, for α > 0.35 sensitivity at the sextant
level dropped below 50% in the cross-validation set. We recommend an optimal oper-
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ating point with 0.30 ≤ α ≤ 0.35 to achieve the best balance between sensitivity and
specificity at patient-level and sextant-level. Within this range, we selected α = 0.30 to
maximize sensitivity.

Figure 5 displays the receiver operating characteristic curves (ROC) for EPENet and
UNet_EPE in the cross-validation folds and test set. Over the five cross-validation folds,
at the patient level, EPENet had mean AUC = 0.72± 0.16, while UNet_EPE performed
close to chance with mean AUC = 0.53 ± 0.07. At the sextant-level, EPENet (mean
AUC = 0.64± 0.16) also outperformed the baseline UNet_EPE (mean AUC = 0.50± 0.06).

(a) (b)
Figure 5. Receiver operating characteristic curves based on performance metrics at the sextant-level
(a) and patient-level (b). Dashed lines are the mean performance over the five cross-validation folds
and the shaded regions represent one standard deviation around the average. Solid lines are the ROC
results in the test set. EPENet model is shown in blue, UNet_EPE model is green. In panel (b), the
star marker represents radiologists performance on the test set.

On the test set, the radiologists assessment of EPE was 50.0% sensitive and 76.9%
specific. By comparison, EPENet was 80.0% sensitive and 28.2% specific in the test set.
While our proposed method had more false positives (and hence lower specificity), it
also detected extraprostatic extension missed by the radiologists. The test set included
10 patients with extraprostatic extension: Radiologists correctly identified five cases, while
EPENet correctly identified eight cases. The two cases missed by EPENet had focal ex-
traprostatic extensions associated with smaller cancer lesions inside the prostate (index
lesion volumes of 640 mm3 and 470 mm3 compared to test cohort median 1100 mm3—
see Table 2). The radiologists also missed one of these extraprostatic extensions. Out of
the 10 patients with extraprostatic extension in the test set, 5 presented focal extrapro-
static extension and 5 showed multifocal extraprostatic extension. EPENet correctly pre-
dicted all multifocal cases, whereas the radiologists only correctly predicted two of the
multifocal cases.
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Table 4. Sensitivity and specificity results in the cross-validation and test sets for the EPENet model
operating at various binary thresholds α. We recommend 0.30 ≤ α ≤ 0.35 as the optimal operating
range for this model. Results within the recommended operating range are shown in bold.

Mode Threshold α Cohort
Sensitivity Specificity Sensitivity Specificity

(Patient) (Patient) (Sextant) (Sextant)
% % % %

EPENet 0.10 cross-val 100.0± 0.0 1.7± 3.3 96.5± 7.1 17.9± 8.3
test 90.0 0.0 88.9 13.0

EPENet 0.15 cross-val 100.0± 0.0 11.1± 6.7 95.3± 9.4 29.2± 9.5
test 90.0 0.0 83.3 23.9

EPENet 0.20 cross-val 100.0± 0.0 14.3± 9.6 88.8± 13.0 36.8± 11.6
test 80.0 5.1 83.3 34.4

EPENet 0.25 cross-val 97.5± 5.0 19.2± 13.4 71.8± 19.1 45.7± 11.5
test 80.0 12.8 77.8 45.7

EPENet 0.30 cross-val 95.0 ± 10.0 26.8 ± 8.8 64.4 ± 21.6 54.6 ± 8.1
test 80.0 28.2 61.1 58.3

EPENet 0.35 cross-val 85.0± 20.0 33.2± 13.8 59.3± 21.3 63.2± 7.7
test 50.0 41.0 55.6 67.8

EPENet 0.40 cross-val 81.0± 18.5 39.9± 15.5 43.2± 31.7 71.2± 8.8
test 50.0 51.3 50.0 77.2

EPENet 0.45 cross-val 74.5± 21.2 51.5± 23.3 31.4± 24.6 79.0± 8.7
test 40.0 61.5 38.9 83.7

EPENet 0.50 cross-val 68.7± 19.8 54.3± 22.4 25.7± 25.0 82.6± 6.8
test 40.0 74.4 27.8 90.9

EPENet 0.55 cross-val 56.6± 16.2 65.0± 21.6 19.7± 22.7 87.6± 6.0
test 40.0 87.2 27.8 95.7

EPENet 0.60 cross-val 53.8± 11.3 79.6± 14.0 17.9± 17.2 92.1± 3.9
test 40.0 89.7 16.7 96.7

Radiologists — test 50.0 76.9 — –

4. Discussion

We developed and validated a fully automated pipeline for the prediction and localiza-
tion of extraprostatic extension in patients with prostate cancer. We used pre-trained deep
learning models to generate cancer probability maps and applied post-processing steps and
clinical decision rules to arrive at final predictions for lesions with extraprostatic extension.
The end-to-end EPENet model operates without any radiologist input and only requires
T2w and ADC images to make a final prediction. We recommend 0.30 ≤ α ≤ 0.35 as the
optimal operating range for this model and tumor-capsule contact line length threshold
TCLth = 10 mm. For TCLth = 10 mm and α = 0.30, EPENet achieved sensitivity 80.0% and
specificity 28.2% at the patient-level, compared to the radiologists 50.0% sensitivity and
76.9% specificity on test set data. When accounting for the spatial location of predictions,
at the sextant-level, EPENet model had a balanced 61.1% sensitivity and 58.3% specificity.
High sensitivity shows that our method can reliably detect the presence of extraprostatic
extension. As such, EPENet can be useful in highlighting regions suspicious for extrapro-
static extension that might otherwise be difficult to detect by the human eye. Given the low
specificity at the patient-level, the intended use for EPENet would be as a detection aid
tool for radiologists rather than a standalone diagnosis software. Future work will assess
performance of radiologists with and without our EPENet system and investigate the best
strategies to integrate the proposed application to guide radiologists during prostate MRI
interpretation in clinical practice.

We note that local artifacts or other anatomical features outside the prostate capsule
that appear dark on MRI can mislead deep learning models into predicting extraprostatic
extension (see examples in Figure A1 rows 2 and 3). None of the prior works on EPE
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detection were confronted with this challenge since they used radiologist segmented
lesions as the starting point for extraprostatic extension prediction. This diminishes the risk
of false positives, but increases the risk of false negatives, since any lesion missed by the
radiologist will be, by default, also missed by the EPE model.

Previous studies showed that the radiologists AUC for predicting extraprostatic exten-
sion ranged from 0.60 to 0.75. This is similar to our radiologists performance (AUC = 0.63).
Park et al. [29] showed that by using additional metrics such as tumor–capsule contact line
length or the EPE grading system proposed by Mehralivand et al. [30], radiologists perfor-
mance improved, with AUC ranging from 0.77 to 0.85. Radiomics methods reported AUCs
between 0.73 and 0.88, while the convolutional neural network PAGNet [7] had an AUC in the
range 0.73 to 0.81. Since all the aforementioned methods are trained using radiologist cancer
labels as inputs together with MR images, we cannot directly compare the reported AUC per-
formance with that of EPENet (0.72± 0.16 at patient-level). Both the radiomics methods and
PAGNet required the radiologists to manually segment the index lesions on all slices, making
them time-consuming methods. Furthermore, they all solve a binary classification problem at
the patient-level rather than a spatial detection problem and will omit any lesion missed by
the radiologists. While EPENet generates a localized prediction for extraprostatic extension,
it does not predict the size of the EPE lesion. Future research will focus on distinguishing
between predictions for macroscopic EPE and microscopic EPE.

The automatic detection of extraprostatic extension is a challenging task for two key
reasons. First, extraprostatic extension regions are small (see Table 2, cancer lesion volumes
range between 0.7–3.4 mL, while median extraprostatic extension volume is <0.01 mL) and
it can even be debated whether MRI might not even capture these small regions (sometimes
only representing a handful of pixels). Second, MRI intensities vary greatly across patients,
making it difficult to learn features that capture very small cancers, especially since both
the prostate boundary and cancer are hypointense on T2w images. Appendix C provides
further details and causes for the large number of false positives.

Our study is the first to explore deep learning-based strategies that simultaneously
detect tumors and assess the presence of extraprostatic extension. EPENet had an AUC
of 0.64 ± 0.16 at the sextant-level (0.66 in the test set) and 0.72 ± 0.16 at the patient level
(0.54 in the test set). The main strength of our method is that it operates without any
human input. This has two advantages. First, EPENet brings added value by being able to
highlight regions suspicious for extraprostatic extension that might otherwise be missed by
the radiologists. Second, it eliminates the need for expensive and time-consuming manual
annotations. Furthermore, the framework presented in this paper is fully independent of
the underlying deep learning model used and, thus, can be applied out-of-the-box to any
convolutional neural network trained for prostate cancer detection. As we develop better
deep learning models, or ensemble models, the proposed framework can be applied to
further improve extraprostatic extension detection, at minimal additional computational
cost. An optimized system for EPE detection could have high impact in treatment planning,
since it would enable the surgeon to consider nerve-sparing radical prostatectomy, which
has been shown to significantly reduce the risk of post-operative erectile dysfunction and
urinary incontinence [11,41].

Our study had two noteworthy limitations. First, it included a relatively small dataset
from a single institution, with all MRIs acquired on scanners from a single manufacturer.
This limits the generalization power of our model. There are also limitations in our dataset
labels. Extraprostatic extension labels were defined by mapping from histology. Regions
with missing histology (such as the extreme apex and extreme base of the prostate) may
have missing EPE labels. We also disregarded seminal vesicle invasion. Second, we had
several extraprostatic extension false positives driven by anatomical features outside the
prostate that appear naturally dark on MRI. Future work will focus on increasing the cohort
size and validate our framework on data from external institutions, as well as improved
strategies for reducing false positives.
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5. Conclusions

We introduced an approach to detect cancer lesions with extraprostatic extension on
prostate multiparametric MRI. We used existing deep learning architectures and defined a
framework to identify which candidate lesions might have extraprostatic extension. An
optimized approach for EPE detection can serve to assist radiologists during their inter-
pretation of MRI, providing an independent assessment of the presence of extraprostatic
extension. Our approach may facilitate the planning of treatments, e.g., image-guided focal
therapy or surgical removal of the prostate.
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Appendix A. Details of Deep Learning Models for Cancer Detection

We implemented two networks: UNet [35] and the state-of-the-art Correlated Signa-
ture Network for Indolent and Aggressive prostate cancer detection (CorrSigNIA) [26].
U-Net showed promising results in several prostate cancer detection studies [23,42,43],
and it was used as a baseline reference in others [25,26]. The UNet model takes three
adjacent slices of T2w and ADC images as input, and outputs a cancer probability map
for the middle slice. Inspired by the Holistically Nested Edge Detector [44], CorrSigNIA
uses a three-branch architecture to optimize independent kernels for T2w MRI, ADC
maps and CorrNet features, obtained via Common Representation Learning. The latter
approach identifies combinations of MRI features that correlate with histopathology image



Cancers 2022, 14, 2821 17 of 22

features [26,45]. The CorrSigNIA network takes an input of three consecutive slices in each
modality, and predicts cancer probabilities for the middle slice [26].

Both models were pre-trained for the prostate cancer detection task within the bound-
aries of the prostate gland. We used a five-fold cross-validation scheme. We used Adam
optimizer with a batch size of 32, initial learning rate η = 10−3 and weight decay α = 0.1.
We trained for a maximum of 100 epochs, with early stopping on a patience of 20 epochs
when there was no improvement in validation loss. A patience of 10 epochs was used to
reduce learning rate on plateau. We augmented training images with left to right flipping
and random rotation with angles ranging between −15 and 15 degrees.

Appendix B. Additional Visual Results

Figure A1. Visualization of predictions for extraprostatic extension in four example cases from the test
set; each row shows the leading slice from a different case. Column (1) input T2w images; Column (2)
input ADC images; yellow labels outline cancer within the prostate, white labels outline extraprostatic
extension (EPE); white arrows point to the small EPE regions; the panels in the corners show zoomed-
in 5 mm× 5 mm areas containing EPE. Column (3) EPENet predictions. Predictions are probability
maps displayed in a cold to hot color scheme (dark blue–0, dark red–1). Note that EPENet predictions
highlight lesions with extraprostatic extension. EPENet does not show any predictions for cancer
lesions fully contained within the prostate capsule.
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Appendix C. Analysis of False Positive Predictions

To better understand the high number of false positives, we looked at the size of cancer
and extraprostatic extension lesions (Figure A2) the size and position relative to prostate
boundary of EPENet predictions (Figure A3). Figure A2 shows scatter plots where each
point represents a different case, and the x and y coordinates correspond to the volumes
of cancer and extraprostatic extension as computed from ground truth labels. The color
of each point shows how the case was classified by EPENet (TP-true positive, FP-false
positive, FN-false negative, TN-true negative). The first observation we make is that there
is no clear correlation between cancer lesion volume and EPE volume. Both in the train
set (Figure A2a) and test set (Figure A2c) we see that cancer volumes vary widely (from
less than 1% of the prostate volume up to 30% or more), but EPE volumes don’t. This
means that even with ground truth knowledge about cancer extent inside the prostate it
is not straightforward to predict extraprostatic extension, re-emphasizing the difficulty
level of the task. The second observation is that most false positives correspond to cases
where cancer is 5–15% of the prostate volume, and the majority of model true negatives
correspond to cases with small cancers (<5% of prostate volume). There are few false
negative predictions.

Figure A3 takes a closer look at the true positive and false positive cases, this time only
plotting information that is available to the model. The x coordinate shows the volume
of EPENet predictions in a case (i.e., entire predicted cancer, both inside and outside the
prostate), and the y coordinate shows how much of the EPENet prediction is outside
the prostate capsule. What this scatter plot shows is that the two classes are not linearly
separable given the information available to the model. Because of this, our current method
does not use cut-off values neither for the volume of EPENet predictions nor the fraction of
prediction volume outside the prostate. For example, the dotted lines in Figure A3 show
that if we tried to find cut-off values on the training set and apply them to the test set, the
reduction in true positives would be bigger than the reduction of false positives in the test
set. Overall, this shows the scenarios in which our current decision mechanism reaches its
limitations, and helps us gain insight for future work to improve the classifier.

(a) (b)

Figure A2. Cont.
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(c) (d)

Figure A2. True and false predictions, with ground truth information about cancer and EPE lesion
volumes. The x-axis shows the volume of cancer inside the prostate as a percentage of the total
prostate gland volume. The y-axis shows the volume of extraprostatic extension as a percentage
of the total prostate gland volume. Cases which are ground truth negative for EPE therefore have
coordinate y = 0. (a) All training set cases. (b) Training set, zoomed-in view on the cases with small
cancer and EPE volumes. (c) All test set cases. (d) Test set cases, zoomed-in view on the cases with
small cancer and EPE volumes.

(a) (b)

Figure A3. True positive (TP) and false positive (FP) predictions, with information about the EPENet
prediction volumes. The x-axis shows the total volume of EPENet prediction as a percentage of the
prostate gland volume. The y-axis shows the percentage of the prediction volume that is outside the
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prostate. The TP and FP classes are not linearly separable based on size and position of prediction
alone. (a) An example of cut-offs we might select in the training set. (b) Effect of applying training
set cut-offs on the test set. (a) Training set cases. The dotted lines show an example of cut-off values
we could apply to eliminate some false positives (i.e., declare predictions that have either x > 60% or
y > 60% negative for EPE). This would eliminate 14 false positives and create 2 false negatives (15%
reduction in FP and 7% reduction in TP). (b) Test set cases, with the example cut-off values from the
training set. We observe that applying the cut-offs would eliminate five false positives, but would also
lead to three false negatives (14% reduction in FP and 25% reduction in TP).
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