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Background: Ischemic events after carotid endarterectomy (CEA) in carotid artery
stenosis patients are unforeseeable and alarming. Therefore, we aimed to establish a
novel model to prevent recurrent ischemic events after CEA.

Methods: Ninety-eight peripheral blood mononuclear cell samples were collected from
carotid artery stenosis patients. Based on weighted gene co-expression network analysis,
we performed whole transcriptome correlation analysis and extracted the key module
related to ischemic events. The biological functions of the 292 genes in the key module
were annotated via GO and KEGG enrichment analysis, and the protein-protein interaction
(PPI) network was constructed via the STRING database and Cytoscape software. The
enrolled samples were divided into train (n = 66), validation (n = 28), and total sets (n = 94).
In the train set, the random forest algorithmwas used to identify critical genes for predicting
ischemic events after CEA, and further dimension reduction was performed by LASSO
logistic regression. A diagnosis model was established in the train set and verified in the
validation and total sets. Furthermore, fifty peripheral venous blood samples from patients
with carotid stenosis in our hospital were used as an independent cohort to validation the
model by RT-qPCR. Meanwhile, GSEA, ssGSEA, CIBERSORT, and MCP-counter were
used to enrichment analysis in high- and low-risk groups, which were divided by the
median risk score.

Results: We established an eight-gene model consisting of PLSCR1, ECRP, CASP5,
SPTSSA, MSRB1, BCL6, FBP1, and LST1. The ROC-AUCs and PR-AUCs of the train,
validation, total, and independent cohort were 0.891 and 0.725, 0.826 and 0.364, 0.869
and 0.654, 0.792 and 0.372, respectively. GSEA, ssGSEA, CIBERSORT, and MCP-
counter analyses further revealed that high-risk patients presented enhanced immune
signatures, which indicated that immunotherapy may improve clinical outcomes in these
patients.
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Conclusion: An eight-gene model with high accuracy for predicting ischemic events after
CEA was constructed. This model might be a promising tool to facilitate the clinical
management and postoperative surveillance of carotid artery stenosis patients.

Keywords: ischemic events, carotid endarterectomy, diagnosis model, machine leaning, immune infiltration

1 INTRODUCTION

Ischemic events, mainly ischemic heart disease and ischemic
stroke, are the leading cause of death and disability worldwide
(Murray and Lopez, 1997; Campbell et al., 2019). The main
etiology of ischemic events is atherosclerosis formation, which
arises from inflammation, lipid deposition and plaque fibrosis in
the vascular endothelium over decades (Franceschini et al., 2018;
Libby et al., 2019). Therefore, it is necessary to accurately identify
atherosclerotic patients who are more prone to ischemic events.
With developments in medicine and technology, multiple
diagnostic techniques have been used to identify people at
high risk of ischemic events, including noninvasive (such as
computed tomography, biomarkers, stress testing and nuclear
scanning) and invasive (such as selective and superselective
arteriography) techniques (Dagvasumberel et al., 2012; Zhang
et al., 2017; Martinez et al., 2020; Varasteh et al., 2021).
Nonetheless, these methods have only moderate prediction
accuracies, and some high-risk patients are not identified
early, which leads to ischemic events (Penalvo et al., 2016).
Thus, new methods to identify patients at high risk for
ischemic events are urgently needed.

Indeed, substantial efforts have been made to cope with the
occurrence of ischemic events, and carotid endarterectomy
(CEA) has been indicated to be one of the most critical
techniques (Howell, 2007). Unstable plaque shedding of the
carotid intima is an important cause of cardiovascular and
cerebrovascular occlusion, especially at the carotid bifurcation.
In clinical practice, CEA is the optimal treatment modality to
prevent ischemic events in patients with atheromatous disease at
the carotid bifurcation (Howell, 2007; Rerkasem et al., 2020).
However, this prophylactic surgery does not provide complete
prevention, and some patients who undergo regular CEA surgery
may still experience ischemic events (Folkersen et al., 2012). The
recurrence of ischemic events (including ischemic stroke and
myocardial infarction) after CEA is an important and urgent
issue, but few studies have focused on it (Folkersen et al., 2012;
Zenonos et al., 2012).

With the development of bioinformatics and machine
learning, elegant studies have broadly applied artificial
intelligence in the medical field because it better describes the
complexity and unpredictability of human physiology (Deo,
2015; Rajkomar et al., 2019). Compared with traditional
imaging diagnostic methods, machine learning can extract the
most critical characteristics of the disease from high-dimensional
variables to improve the performance of predicting ischemic
events after CEA (Heo et al., 2019). With the help of these
algorithms (such as random forest (Svetnik et al., 2003), and
least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1997)), researchers could identify the key factors

in predicting recurrent ischemic events after CEA from
massive data.

In this study, we retrieved gene expression data and clinical
information from GEO for 97 patients. The hub genes of
recurrent ischemic events after CEA were identified by
machine learning algorithms and validated in an independent
cohort (which included 50 samples from our hospital). Finally, we
developed and validated a diagnostic model for predicting the
probability of ischemic events after CEA. Based on this model, it
is possible to intervene recurrent ischemic events after CEA in
advance and improve clinical outcomes.

2 MATERIALS AND METHODS

2.1 Data Source
The workflow of the overall analysis is shown in Figure 1. The
gene expression and clinical annotation data of GSE21545
(Folkersen et al., 2012) were retrieved from the Gene
Expression Omnibus (GEO) database. This dataset was based
on an Affymetrix® platform (GPL570) and included 97 peripheral
blood mononuclear cell samples. The raw data were processed
using the robust multichip analysis (RMA) algorithm
implemented in the “Affy” R package. RMA was used to
perform background adjustment, quantile normalization, and
final summarization of oligonucleotides per transcript using
the median polish algorithm (Liu et al., 2022a). The baseline
clinical data of patients were presented in Supplementary
Table S1.

2.2 Weighted Gene Co-Expression Network
Analysis
Based on gene expression profiles, a total of 22,880 genes were
identified from the samples. All genes were sorted in descending
order according to their expression variability, which was
calculated by the median absolute deviation in the entire
dataset. To ensure the rationality of network construction, we
excluded the outlier samples using an optimal version of
hierarchical clustering, which applied Euclidean distance and
averaging methods to rearrange the samples. Next, based on
the top 5,000 genes, a gene co-expression network was
constructed using the “WGCNA” R package (Langfelder and
Horvath, 2008). We used step-by-step methods to construct gene
networks. To meet the criterion of scale-free network
distribution, the Pearson correlation coefficient between paired
genes was calculated, and the optimum soft threshold β was
selected. First, the Pearson’s correlation value between paired
genes was used to acquire a similarity matrix. Next, with the
optimum soft threshold value, the similarity matrix was
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transformed to an adjacency matrix. The adjacency matrix was
calculated by setting the parameter amn = |cmn| β (cmn =
Pearson’s correlation between genes m and n; amn =

adjacency between genes m and n). Subsequently, the
adjacency matrix was transformed into a topological overlap
matrix (TOM), which was used to describe the similarity of

FIGURE 1 | Flowchart of the analysis procedure.
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gene expression, and 1-TOM was used to describe the
dissimilarity between genes. Finally, a dynamic tree algorithm
was used to partition the modules of the hierarchical clustering
results (minimummodule size = 30; deep-split = 2; cut tree height
= 0.99; merge module height = 0.25). To further investigate the
module, the dissimilarity of the module eigengene (ME) was
calculated. A cut line for the module dendrogram was selected,
and then the modules with cutting height <0.25 were merged
(Guo et al., 2022).

2.3 Identification of Clinically Significant
Modules
MEs were used for the component analysis of each module, and
modules with similar expression profiles showed highly
correlated eigengenes. The relevant modules were identified by
calculating the correlation between the ME and ischemic events.
The genemodule with the highest correlation coefficient and a p <
0.05 was considered the most relevant module to ischemic events
and was defined as the key module.

2.4 Protein-Protein Interaction Network
Construction
All genes in the key module with a minimum level of confidence
greater than 0.4 were submitted to the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) (https://
string-db.org/) database version 11.0 (Szklarczyk et al., 2017;
Szklarczyk et al., 2019). Protein interaction data obtained from
the STRING database were used to calculate the degrees of genes
by Cytoscape software (version 3.8.0; https://cytoscape.org/)
(Shannon et al., 2003). Based on the maximal clique centrality
(MCC) algorithm, significant modules with strong protein
interactions were calculated and selected by Molecular
Complex Detection (MCODE), which is a plugin in
Cytoscape. The parameter settings for MCODE were as
follows: degree cut ≥2, K-core ≥2, node score cut ≥2, and
maximum depth = 100.

2.5 Functional Enrichment Analysis
“ClusterProfiler” (Yu et al., 2012; Liu et al., 2021a), a
Bioconductor package, was used to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis. The terms with p <
0.05 were considered significant.

2.6 Random Forest
To identify genes associated with ischemic events, random forest
was employed. Random forest, originally proposed by Breiman
(Mantero and Ishwaran, 2021), is an ensemble learning algorithm
that can construct abundant trees and predict outcomes by voting
across all trees. In this study, the expression values of all genes in
the key module were extracted and merged with the clinical
characteristic information of the samples. Then, all samples were
randomly divided into train (75% of samples, n = 66) and
validation datasets (25% of samples, n = 28). Finally,
“randomForestSRC” version 2.9.3 (which provides fast

computing of unified random forests for survival, regression,
and classification), a package in R, was used to screen out key
genes associated with ischemic events in the train dataset.

2.7 LASSO Logistic Regression Model
To further identify genes associated with ischemic events after
CEA, the LASSO regression algorithm (Lockhart et al., 2014) was
used to obtain the coefficient for each key gene selected by
random forest. To achieve this purpose, we used the “glmnet”
(Friedman et al., 2010) R package (which is used for LASSO and
elastic-net regularized generalized linear models). The alpha
parameter of glmnet was set to 1, and the lambda value was
chosen by cross-fold validation of the key gene set (5-fold cross-
validation). Ultimately, the diagnostic model achieved the best
lambda value, and its predictive accuracy in the train and
validation sets was assessed by receiver operating characteristic
(ROC) curve and precision recall (PR) curve.

2.8 Human Carotid Artery Stenosis
Specimens
Participants fulfilling all of the following inclusion criteria are
eligible for the study: 1) Imaging revealed carotid artery
stenosis; 2) have clearly defined indications for surgery; 3)
Patients with valvular heart disease, blood diseases, and
malignant tumors were excluded. A total of 50 peripheral
venous blood samples were collected from patients with
carotid stenosis in the First Affiliated Hospital of
Zhengzhou University. The baseline clinical data of patients
were presented in Supplementary Table S1. The specimens
obtained upon admission to the hospital and stored at −80°C
until use in quantitative real-time qPCR (RT-qPCR). The
Research Ethics Committee of the First Affiliated Hospital
of Zhengzhou University approved this study, which was
consistent with the Declaration of Helsinki, and the TRN is
2019-KW-94.

2.9 RNA Isolation and RT-qPCR
Total RNAwas isolated from peripheral blood using RNAiso Plus
(Takara, Dalian, China) according to the manufacturer’s
instructions. The integrity and purity of the extracted total
RNA were measured using NanoDrop One (Thermo Fisher
Scientific, Waltham, United States) ultra-micro UV
spectrophotometer. Reverse transcription was performed using
the PrimeScript RT reagent Kit (Takara, Dalian, China) with
gDNA Eraser. Serum RNA was reverse transcribed into cDNA
using a RevertAid H Minus First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific, Waltham, United States) under the
following conditions: 25°C for 5 min, 42°C for 60 min, and 70°C
for 5 min. The product was immediately stored at −80°C until use.

The RT-qPCR was performed on a QuantStudio five Real-
Time PCR System (Applied Biosystems, Foster City,
United States) using a Hieff qPCR SYBR Green Master Mix
kit (Yeasen, Shanghai, China). The RT-qPCR reaction was
performed 95°C for 5 min, followed by 40 cycles of 95°C for
10 s and a primer-specific annealing temperature of 60°C for 30 s.
The RT-qPCR primer sequences were provided in
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Supplementary Table S1. The relative quantification values for
RNA were calculated by the 2-ΔΔCt method. GAPDH was used
as an endogenous control for normalization.

2.10 Gene Set Enrichment Analysis and
Immune Infiltration Profiles
Based on the median risk score of each sample, the entire study
cohort was divided into high- and low-risk groups. The
differential genes between the high- and low-risk groups were
identified by the “limma” package and sequenced by the log2
(fold change) value. GSEA was used to decipher the underlying
biological mechanisms of the genes in this model using GO and
KEGG terms (Molecular Signatures database, version: c5. go.v7.4.
symbols.gmt and c2. cp.kegg.v7.4. symbols.gmt). After that, the
CIBERSORT (Newman et al., 2015; Liu et al., 2022b), MCP-

counter (Shi et al., 2020; Liu et al., 2021b) and single-sample gene
set enrichment analysis (ssGSEA) (Yi et al., 2020; Liu et al., 2022c)
algorithms were used to explore the infiltration abundance of
different immune cells between the high- and low-risk groups.
Heatmaps and boxplots were used to uncover the degree of
difference in the responses of various immune cell subsets
between the two groups under different algorithms.

2.11 Statistical Analysis
All data processing, statistical analyses and plotting were
completed using the R program (version 4.03). The unpaired
Student’s t-test and Wilcoxon test were used to compare the
differences between two groups. The Benjamin-Hochberg
method was used to further calculate the false discovery rate
(FDR). For every analysis, statistical significance was considered
at p < 0.05.

FIGURE 2 | Scale-free networks were constructed, and genes were clustered by WGCNA. (A): Scale-free network analysis under different soft-thresholding
powers. The left panel shows scale-free topological indices at different soft-thresholding powers. The right panel shows the correlation analysis between the soft-
thresholding powers and average connectivity of the network. (B): Gene clustering diagram based on hierarchical clustering under optimal soft-thresholding power.
(Dynamic Tree Cut: before module merging; Merged Dynamics: after module merging).
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3 RESULTS

3.1 Preparation of Data for WGCNA
In this section, we cleaned the raw gene profiles for WGCNA.
Based on the 97 PBMC samples with 22,880 gene expression
profiles, we calculated the median absolute deviation (MAD) of
each gene and retained the top 5,000 genes sorted by the MAD.

The hierarchical clustering algorithm was further used for three
outlier samples. After removing the three samples, we obtained a
clean dataset consisting of 94 PBMC samples with 5,000 gene
expression profiles.

3.2 Co-Expression Network Construction
First, the pickSoftThreshold function (from the “WGCNA” R
package) was used to select the optimal soft threshold. Under the
premise that the absolute value of the correlation coefficient is
greater than 0.8, we chose 8 as the optimal soft threshold for
constructing scale-free networks (Figure 2A). Next, we employed
the cutreeDynamic function (from the “dynamicTreeCut” R
package) to identify co-expression modules in the network
(Figure 2B), and all genes were clustered among the 26
modules. To reduce the complexity of the network, modules
with similarity greater than 0.75 were merged.
MergeCloseModules, a function in the “WGCNA” R package,

TABLE 1 | Number of genes contained in the merged module.

Modules Numbers Modules Numbers Modules Numbers

Blue 2,981 Grey 176 Lightyellow 64
Salmon 372 Greenyellow 121 Royalblue 63
Pink 289 Darkgreen 116 Darkred 48
Yellow 292 Midnightblu 88 Darkgrey 38
Green 244 Lightcyan 77 Orange 31

FIGURE 3 |Genemodule analysis based onWGCNA. (A): Heat map of the eigengene adjacency. (B): Heatmap between genemodules and clinical characteristics.
(C): Heatmap of the topological overlap matrix of genes selected by WGCNA.
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was used to merge these modules (cutHeight = 0.25, verbose = 3),
and only 15 modules remained. The number of genes in each
module is displayed in Table 1. After merging the modules,

cluster dendrograms were plotted by the plotDendroAndColors
function (from the “WGCNA” R package) (Figure 2B).
Ultimately, the heatmap depicted the TOM among 400 genes

FIGURE 4 |GO and KEGG enrichment analysis, PPI networks and hub genes. (A,B): GO (A) and KEGG (B) enrichment analysis of yellow module genes. (C): PPI
network analysis of yellow module genes. The edge represents the interaction between two proteins. A greater node indicates that the protein is more important in the
network. (D,E): The two most closely connected network clusters in the PPI network identified using the MCODE plugin. [(D): cluster 1: score = 16.353, node = 18,
edges = 139; (E): cluster 2: score = 9.429, node = 15, edges = 66].
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(which were randomly selected from all genes) in WGCNA
(Figure 3C).

3.3 Identifying Key Clinically Significant
Modules
An eigengene adjacency heatmap (Figure 3A) was plotted by the
plotEigengeneNetworks function (from the “WGCNA” R
package) to explore the correlations between modules. In this
research, the parameters of 94 samples included ischemic events,
age, and time (postprocedure to ischemic event). The occurrence
of ischemic events after CEA is an urgent problem to be solved, so
our research focused on the early diagnosis of ischemic events.
The yellow module (including 292 genes) (r = 0.26, p < 0.01) was
the most notable module and had the strongest biological
association with ischemic events in patients after CEA
(Figure 3B).

3.4 GO and KEGG Enrichment Analysis and
PPI Network Construction
To further investigate the functional features of the 292 genes in
the yellow module, the enrichGO and enrichKEGG functions
(from the “clusterProfiler” R package) were used to perform GO
and KEGG enrichment analysis. Overall, the top 20 enriched GO
terms and KEGG pathways from GO and KEGG enrichment
analysis were plotted by the ggplot function (from the “ggplot2” R
package) (Figures 4A,B). Among the GO terms, “neutrophil
activation involved in immune response”, “neutrophil
degranulation”, “specific granule”, “tertiary granule”, and
“secretory granule membrane” were significantly enriched.
Similarly, among the KEGG pathways, “Tuberculosis”, “Toll-
like receptor signaling pathway”, “Hematopoietic cell lineage”,
“C-type lectin receptor signaling pathway” and “Legionellosis”
were significantly enriched. Based on the STRING database and
Cytoscape software, a PPI network of the key genes within the
yellow module was constructed (Figure 4C). Two key modules in
the PPI network were identified by the MCODE plugin. The first
module (score = 16.353, nodes = 18, edges = 139) consisted of 18
target genes, including MOSPD2, CYSTM1, PTAFR, CKAP4,
CD36, CLEC5A, CD33, CLEC12A, FPR2, ATP8B4, FCAR,
CD93, MCEMP1, CLEC4D, GPR84, BST1, FCER1G, and
PLAUR (Figure 4D). The second module (score = 9.429,
nodes = 15, edges = 66) consisted of 15 target genes, including
CLEC7A, CCR2, FLT3, MEFV, NLRP3, TLR7, CD86, FCGR1A,
NLRC4, TLR2, TNF, THBD, CCR1, CLEC4A, and CTSB
(Figure 4E).

3.5 Identification of Optimal Diagnostic
Biomarkers for Predicting Ischemic Events
According to the results of WGCNA, the yellow module is
most associated with the occurrence of ischemic events after
CEA. Using the expression of the genes in the yellow module
in the train set, the random forest algorithm was applied. We
retained 79 genes with relative importance >0.5. To further
simplify the diagnostic model and reduce overfitting, LASSO

regression was performed. Eventually, we obtained an eight-
gene model, including RLSCR1, ECRP, CASP5, SPTSSA,
MSRB1, BCL6, FBP1 and LST1 (Figures 5A,B). The final
model formula was as follows: risk score = −1.61 -
0.24*PLSCR1 + 0.37*ECRP + 0.13*CASP5 + 0.20*SPTSSA -
0.38*MSRB1 + 0.34*BCL6 + 0.24*FBP1 + 0.23*LST1.
According to this formula, we calculated the risk score of
each patient. Logistic regression analysis showed that the
eight-gene model was an independent predictor of ischemic
events after CEA in the train dataset (odds ratio [OR] and 95%
confidence interval [CI], 2.57 [1.33–7.24]; p = 0.005),
validation dataset (OR and 95% CI, 10.64 [1.82–188.51];
p = 0.033) and total dataset (OR and 95% CI, 3.60
[1.60–9.08]; p = 0.003). ROC and PR curve analysis of the
diagnostic model for predicting ischemic events was
conducted in the train cohort, validation cohort, and total
cohort. The ROC-AUCs value was 0.891 in the train cohort,
0.826 in the validation cohort and 0.869 in the total cohort
(Figures 5C–E). The PR-AUCs value was 0.725 in the train
cohort, 0.364 in the validation cohort and 0.654 in the total
cohort (Figures 6A–C). These findings suggested that our
model had a high accuracy performance.

3.6 Verification of the Eight-Gene Model
Using RT-qPCR
RT-qPCR assays were performed in 50 samples. The risk score for
the samples was calculated by the expression of the eight genes
and risk score formula. ROC curve analysis of the diagnostic
model for predicting ischemic events was conducted in the
independent validation cohort. The ROC-AUC (Figure 5F)
and PR-AUC (Figure 6D) value was 0.792 and 0.372 in the
independent validation cohort.

3.7 GSEA
A total of 94 samples were divided into high- (n = 47) and low-
risk (n = 47) groups according to the median risk score. GSEA
revealed significant GO terms (Figures 6E,F) and KEGG
pathways (Figures 6G,H) in which the differentially expressed
genes were concentrated between the two risk subtypes. These
were mainly inflammatory and immune infiltration-related
functions or pathways, including “lipid and atherosclerosis”
(normalized enrichment score (NES) = 1.528, FDR = 0.035),
“cytokine-cytokine receptor interaction” (NES = 1.464, FDR =
0.035), “interleukin-6 production” (NES = 2.070, FDR = 0.002),
“B cell activation” (NES = −1.891, FDR = 0.002) and “Toll-like
receptor signaling pathway” (NES = 1.842, FDR = 0.002). These
results indicated that our model has a close connection with
inflammatory responses.

3.8 Immune Infiltration Analysis
To explore the infiltration abundance of immune cells between
the high- and low-risk groups, three algorithms, CIBERSORT,
MCP-counter and ssGSEA, were performed to ensure the
stability and reproduction of our results. We calculated the
score of different cell subpopulations in 94 samples
(Figure 7A). Interestingly, we found significant immune cell
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abundance differences between the two subtypes (Figures
7B–D), especially B cell subtypes (such as naive B cells,
activated B cells, and immature B cells) and T cell subtypes
(such as activated memory CD4 T cells, regulatory T cells,
activated CD8 T cells, gamma delta T cells, and type 17 T
helper cells). Overall, the high-risk group had higher immune
assessment scores than the low-risk group.

4 DISCUSSION

Ischemic events are treacherous events that occur in
cardiovascular and cerebrovascular diseases, which are the
leading causes of death and long-term disability worldwide
(Collaborators, 2019; Campbell and Khatri, 2020; Iadecola
et al., 2020). In recent years, substantial machine learning

FIGURE 5 | The development and validation of the diagnostic model based on the random forest and LASSO regression algorithms. (A): The log(λ) value was
optimally selected by 5-fold cross-validation and plotted by the partial likelihood deviance. (B): The processes of LASSO regression for screening variables and mapping
each variable to a curve. (C–F): ROC curves were used to predict ischemic events after CEA in the train [(C): AUC = 0.891], validation [(D): AUC = 0.826], total [(E): AUC =
0.869] sets and independent cohort [(F): AUC = 0.792].
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models have been applied to improve the clinical outcomes of
diseases because they show better potential in diagnosis and
prevention and improve the undesirable therapeutic status of

patients (Vallee et al., 2019; Qiao et al., 2020). In addition, CEA is
widely applied as a classic surgery to prevent ischemic events
(Rerkasem et al., 2020). However, the detailed mechanisms

FIGURE 6 | PR curves assess the accuracy of the eight-gene model and GSEA of the two subtypes. (A–D): PR curves were used to predict ischemic events after
CEA in the train [(A): AUC = 0.725], validation [(B): AUC = 0.364], total [(C): AUC = 0.654] sets and independent cohort [(D): AUC = 0.372]. (E–F): Top five GO terms of
differential genes in the high- and low-risk groups. (G,H): Top five KEGG pathways of differentially expressed genes in the high- and low-risk groups.
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underlying ischemic events and accurate diagnostic models for
predicting ischemic events after CEA remain to be investigated.

In our study, we extracted a yellow module (including 292
genes) significantly related to ischemic events after CEA,
according to the WGCNA results. GO and KEGG
enrichment analyses were further used to identify the
potential functions and mechanisms of these 292 genes.
KEGG analysis showed that these genes mainly participated
in “Tuberculosis”, “Toll-like receptor signaling pathway”,
“Hematopoietic cell lineage”, “C-type lectin receptor
signaling pathway” and “Legionellosis”. GO analysis further
revealed that neutrophil activation, with terms such as
“neutrophil activation involved in immune response”,
“neutrophil degranulation”, “specific granule”, “tertiary
granule” and “secretory granule membrane”, was the most
significantly enriched functional module. A recent study found
that patients with tuberculous meningitis (TBM) were more
vulnerable to subsequent stroke (up to 57%), especially
children or those with advanced stages and severe illness
(Shulman and Cervantes-Arslanian, 2019). Zhang et al.
reported that the inactivation of the Toll-like receptor
signaling pathway protects neurological function in patients
with ischemic events (Zhang et al., 2012). Moreover, both
immune and inflammatory responses were activated in the
acute and chronic phases following ischemic events, which
played a double-edged role in pathophysiology (Pothineni
et al., 2017; Jayaraj et al., 2019; Ketelhuth, 2019; Iadecola
et al., 2020). Therefore, our results suggested that the genes
in the yellow module played key roles in the progression of
ischemic events.

Afterwards, to establish a diagnostic model for predicting
recurrent ischemic events after CEA and further eliminate the
effect of multicollinearity, we performed an integrated analysis of
the relationships between gene expression and clinical
characteristics in the cohort and used random forest and
LASSO to screen the genes in the yellow module. Finally, we
found that an eight-gene model (including PLSCR1, ECRP,
CASP5, SPTSSA, MSRB1, BCL6, FBP1 and LST1) was highly
accurate for predicting ischemic events after CEA. Previous
studies revealed that BCL6 is a candidate gene for spontaneous
hypertension and stroke (Watanabe et al., 2015), but further
investigation into the mechanisms of these genes and ischemic
events is necessary. Univariate logistic regression analysis
revealed that the eight-gene model was an independent
predictor. The higher the score calculated by the formula was,
the higher the risk of ischemic events after CEA. More
importantly, the ROC-AUCs and PR-AUCs of the train,
validation, total, and independent cohort were 0.891 and
0.725, 0.826 and 0.364, 0.869 and 0.654, 0.792 and 0.372,
respectively. The time window for the treatment of ischemic
events is narrow, and it is difficult for most patients to receive
treatment in a timely manner after onset, which leads to serious
adverse consequences (Catanese et al., 2017; Gaafar et al., 2017).
Therefore, it is particularly important to predict and accurately
diagnose ischemic events after CEA.

Subsequently, we further explored the association of these
eight genes with ischemic events after CEA. Previous study has
shown that PLSCR1-TRPC5 was a signaling complex mediating
phosphatidylserine externalization and apoptosis in neurons and
that plays a pathological role in cerebral-ischemia reperfusion

FIGURE 7 | Immune infiltration analysis of the high- and low-risk groups. (A): Heatmap for immune analysis based on CIBERSORT, MCP-counter and ssGSEA
algorithms among two subtypes. (B–D): Immune cell subset and related function association by the CIBERSORT, MCP-counter and ssGSEA algorithms. *p < 0.05, **p <
0.01, ***p < 0.001.
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injury (Guo et al., 2020). Zhang et al. (2020) reported that CASP5
gene overexpression can significantly promote the angiogenesis
ability of vascular endothelial cells by promoting the VEGF
signaling pathway. This affected the formation of
atherosclerosis and played a potential role in the development
of ischemic events. Furthermore, MSRB1 controlled immune
response in vivo and anti-inflammatory cytokine release in
macrophages (Guo et al., 2020). As we know, inflammatory
factors were abundantly released and immune response was
activated in ischemic events after CEA, thus, MSRB1 may
serve a protective role against events. BCL6 may attenuate
oxidative stress-induced neuronal damage by targeting the
miR-31/PKD1 axis and five novel single-nucleotide
polymorphisms loci were identified in the SLT1 locus to be
associated with myocardial infarction (Iida et al., 2003; Wei
et al., 2021). The above results further demonstrate that the
eight-gene module affected ischemic events through multiple
pathways, although three genes (ECRP, SPTSSA and FBP1)
need to be further validated. Noteworthy, immune response
played an important role in these pathways, which warrants
further attention.

We further evaluated the immune infiltration among the two
risk subtypes, which were divided by the diagnostic model, and
more abundant immune infiltration was found in the high-risk
group. A previous study demonstrated that a high abundance of
immune infiltration is a risk factor for ischemic events (Iadecola
et al., 2020). In the acute phase of ischemic events, immune cells
attack the ischemic tissue, thereby aggravating the degree of
ischemia. Metabolic substances released from ischemic tissue
enter the circulatory system and eventually suppress the
immune system, which leads to serious complications such as
infection (Iadecola et al., 2020). These lines of evidence suggest
that our research findings are persuasive. Therefore, the
application of anti-immune and anti-inflammatory drugs may
be a new strategy for the treatment of ischemic events after CEA.

Our work was a comprehensive study to develop an accurate
eight-gene model for predicting ischemic events after CEA. Our
research has the following advantages. 1) In this study,
biomarkers were used to predict ischemic events after CEA,
which was conducive to clinical transformation. 2) This
diagnostic model has high accuracy, and the ROC-AUCs for
the train, validation and total sets were all above or approach 0.8.
3) We validated the accuracy of the model in an independent
cohort by RT-qPCR. 4) We found that the high-risk group of
patients had abundant immune infiltration, which provided
theoretical support for anti-immune and anti-inflammatory
therapy in patients with ischemic events after CEA. However,
although the diagnostic model was satisfactory in terms of its
performance, several limitations remain in our research. First,
some clinical features of samples were obscured in public datasets,
which may affect our comprehensive exploration of the
relationship between gene expression and clinical features
(smoking, obesity, dyslipidemia, etc.). Second, compared the

RNA-seq data, proteomics data can provide more favorable
pathophysiological support, but proteomics analysis cannot be
performed due to the lack of data. Although further studies are
necessary, the proposed model still has great clinical value.

5 CONCLUSION

In conclusion, an efficient diagnostic model for predicting the
occurrence of ischemic events after CEA was constructed. A
population at high risk of recurrent ischemic events after CEA
can be identified by this model. More importantly, the
establishment of the eight-gene model provides new ideas for
precise prevention and anti-immune and anti-inflammatory
therapy in patients with ischemic events after CEA.
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