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Background: Structural equation modeling (SEM) is a set of statistical techniques used to measure and analyze the
relationships of observed and latent variables. Similar but more powerful than regression analyses, it examines
linear causal relationships among variables, while simultaneously accounting for measurement error. The purpose
of the present paper is to explicate SEM to medical and health sciences researchers and exemplify their

Findings: To facilitate its use we provide a series of steps for applying SEM to research problems. We then present
three examples of how SEM has been utilized in medical and health sciences research.

Conclusion: When many considerations are given to research planning, SEM can provide a new perspective on
analyzing data and potential for advancing research in medical and health sciences.

Text

Structural equation modeling (SEM) is a powerful multi-
variate analysis technique that is widely used in the
social sciences [1]. Its applications range from analysis
of simple relationships between variables to complex
analyses of measurement equivalence for first and
higher-order constructs [2]. It provides a flexible frame-
work for developing and analyzing complex relationships
among multiple variables that allow researchers to test
the validity of theory using empirical models. Perhaps
its greatest advantage is the ability to manage measure-
ment error, which is one of the greatest limitations of
most studies. Although its application has been seen in
many disciplines, it has yet to be extensively used in
medical research and epidemiology.

In a recent paper, we provided a “how to” for medical
education researchers [3]. Specific principles and examples
for the field of medical education were utilized. The pur-
pose of the present paper, however, is to introduce struc-
tural equation modeling through explanation and
demonstration of its methods in an attempt to disseminate
it more widely in medical and health sciences research.

The use of SEM has now become widespread across
research domains. In psychology, for example, the citation
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frequency of SEM has steadily increased from 164 in 1994
to 343 in 2000 and then to 742 in the last year (based on
the citation frequency of SEM and M[ANOVA] of Psy-
chINFO database 1970-2010) [4,5]. This suggests that
researchers recognize its application to a variety of
research questions, types of data, and methods of study.
An increase in use of sophisticated tools of analysis reflects
the increase in complexity of empirical models and theore-
tical developments seen in the published research over
the years.

In a recent (2009) commentary in the International
Journal of Epidemiology, Tu expressed concern about
the scarcity of SEM models in epidemiological research
and urged epidemiologists to use SEM models more
frequently [6]. With its strength as a statistical tool to
analyze complex relationships among variables, and
even posit and test causal relationships with non-
experimental data, it allows researchers to explain the
development of phenomena such as disease and health
behaviors. The purpose of the present paper is to con-
sider the potential advances that SEM can make in
medical and health sciences research and provide a five
step approach to implementing SEM research in epide-
miology and medical research. First a description of
SEM is provided, followed by applications to research.
A broad categorization of statistical methods is termed
‘latent variable models’, which include factor analysis,
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item response theory, latent class models, and struc-
tural equation models [7]. The focus of the present
paper in on structural equation models and the latent
variable models that are included in SEM.

1. Description of SEM

Although SEM was developed in the early 1900s as a
result of Spearman’s (1904) development of factor analy-
sis and Wright’s (1918, 1921) invention of path analysis,
the first basic introductory textbook on SEM was not
published until 1984 [8-11]. With the advances in com-
puter programming such as EQS (EQuationS imple-
menting Structural Equation Modeling), and LISREL
(Linear Structural Relationships) researchers began uti-
lizing SEM techniques in their research [12,13]. Indeed,
it has become “the preeminent multivariate technique”
[4] and is now accessible on-line at no cost (e.g.,
http://openmx.psyc.virginia.edu/).

There are several integrated analytic techniques within
SEM. These include between-group and within-group
variance comparisons, which are typically associated
with ANOVA. It also includes path analysis (regression
analysis) whereby equations representing the effect of
one or more variables on others can be solved to esti-
mate their relationships.” Path analysis, thus, represents
the hypothesized causal relationships among variables to
be tested. Factor analysis is another special case of SEM
whereby unobserved variables (factors or latent vari-
ables) are calculated from measured variables. These
analyses can usually be performed using data in the
form of means or correlations and covariances (i.e.,
unstandardized correlations). These data, moreover, may
be obtained from experimental, nonexperimental and
observational studies. All of these techniques can be
incorporated into the following example.

Several symptoms of a disease are measured and used
in a factor model that represents these symptoms. The
relationship between the factor(s) and behavioral and/or
environmental characteristics are determined through
path analysis. The impact of different types of medica-
tion on the factor(s) is then compared across the mea-
sured behavioral and environmental conditions.

To conduct the above analyses, both a structural (i.e.,
path) and a measurement model are designed by the
researcher. The structural model refers to the relation-
ships among latent variables, and allows the researcher
to determine their degree of correlation (calculated as
path coefficients). That is, path coefficients were defined
by Wright (1920, p. 329) as measuring the importance
of a given path of influence from cause to effect [14].
Each structural equation coefficient is computed while
all other variances are taken into account. Thus, coeffi-
cients are calculated simultaneously for all endogenous
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variables rather than sequentially as in regular multiple
regression models.

To determine the magnitude of these coefficients, the
researcher specifies the structure of the model. This is
depicted in Figure 1. As shown, the researcher may
expect that there is a correlation between variables A
and B, as shown by the double headed arrow. There
may be no expected relationship between variables A
and C, so no arrow is drawn. Finally, the researcher may
hypothesize that there is a unidirectional relationship of
variable C to B, as indicated by an arrow pointing from
C to B. The relationships among variables A, B, and C
represent the structural model. Researchers detail these
relationships by writing a series of equations, hence the
term ‘structural equation’ (referring to the relationships
between the variables). The combination of these equa-
tions specifies the pattern of relationships [12].

The second component to be specified is the mea-
surement model. As represented in Figure 1, it consists
of the measured variables (e.g., variables 1-7), which
are typically used in research, as well as latent vari-
ables. Latent variables are factors like those derived
from factor analysis, which consist of at least two
inter-related measured variables. They are called latent
because they are not directly measured, but rather are
represented by the overlapping variance of measured
variables. They are said to better represent the
research constructs than are measured variables
because they contain less measurement error. As indi-
cated in Figure 1, for example, measurement model A
depicts a latent variable A, which is the construct
underlying measured variables 1 and 2. To further
explicate the process of developing and analyzing a
model, the following steps are outlined next.

Step 1: Identify the Research Problem

The researcher develops hypotheses about the relation-
ships among variables that are based on theory, pre-
vious empirical findings or both [15]. These
relationships may be direct or indirect whereby inter-
vening variables may mediate the effect of one variable
on another. The researcher must also determine if the
relationships are unidirectional or bidirectional, by using
previous research and theoretical predictions as a guide.
The researcher outlines the model by determining the
number and relationships of measured and latent vari-
ables. Care must be taken in using variables that pro-
vide a valid and reliable indicator of the constructs
under study. The use of latent variables is not a substi-
tute for poorly measured variables. A path diagram
depicting the structural and measurement models will
guide the researcher when identifying the model, as
described next.
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Figure 1 A structural equation model - from Nachtigall C, Kroehne U, Funke F, Steyer R. Why should we use SEM? Pros and cons of

structural equation modeling. Meth Psychol Res Online 2003, 8:1-22.

Step 2: Identify the Model

Identifying the model is a crucial step in model develop-
ment as decisions at this stage will determine whether
the model can be feasibly evaluated. For each parameter
in the model to be estimated, there must be at least as
many values (i.e., variance and covariance values) as
model parameters (e.g., path coefficients, measurement
error).” A model that has fewer of these values than para-
meters is referred to as underidentified and impossible to
solve mathematically. This problem also occurs when
variables are highly intercorrelated (multicollinearity)®,
the scales of the variables are not fixed (the path from a
latent variable to one of the measured variables must be
set as a constant), or there is no unique solution to the
equations because the underidentification results in more
parameters to be estimated than information provided by
the measured variables. In underidentified models there
are an infinite number of solutions and therefore no

unique one. These problems may be remedied with the
addition of independent variables, which requires that
the model be conceptualized before data are collected.
There are many further issues to consider when mana-
ging parameters that cannot be addressed in this primer.
For further details on model identification, readers are
encouraged to see Kline [16].

Step 3: Estimate the Model

There are many estimation procedures available to test
models, with three primary ones discussed here. ML is
set as the default estimator in most SEM software. It is
an iterative process that estimates the extent to which
the model predicts the values of the sample covariance
matrix, with values closer to zero indicating better fit.
The name maximum likelihood is based on its calcula-
tion. The estimate maximizes the likelihood that the data
were drawn from its population. The estimates require
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large sample sizes, but do not usually depend on the
measurement units of the measured variables. It is also
robust to non-normal data distributions [17].

Another widely used estimate is least squares (LS),
which minimizes the sum of the squares of the residuals
in the model. LS is similar to ML as it also examines
patterns of relationships, but does so by determining the
optimum solution by minimizing the sum of the squared
deviation scores between the hypothesized and observed
model. It often performs better with smaller sample
sizes and provides more accurate estimates of the model
when assumptions of distribution, independence, and
asymptotic sample sizes are violated [18].

The third, asymptotically distribution free (ADF) esti-
mation procedures (also known as Weighted Least
Squares) are less often used but may be appropriate if
the data are skewed or peaked. ML, however, tends to
be more reliable than ADF. This method also requires
sample sizes of 200 to 500 to obtain reliable estimates
for simple models and may under-estimate model para-
meters [16,19]. For further details see Hu et al. [19] and
Muthén and Kaplan [20].

Step 4: Determine the Model’s Goodness of Fit

These estimation procedures determine how well the
model fits the data. Fitting the latent variable path
model involves minimizing the difference between the
sample covariances and the covariances predicted by the
model. The population model is formally represented as:

T =3(0) @

Where X is the population covariance matrix of
observed variables, 0 is a vector that contains the model
parameters, and X (0) is the covariance matrix written
as a function of 0. This simple equation allows the
implementation of a general mathematical and statistical
approach to the analysis of linear structural equation
system through the estimation of parameters and the fit-
ting of models. Estimation can be classified by type of
distribution (multinormal, elliptical, arbitrary) assumed
of the data and weight matrix used during the computa-
tions. The function to be minimized is given by:

Q=[s-0c(0)] W[s-0c(0)] 2)

where s is the vector of data to be modeled - the var-
iances and covariances of the observed variables - and o
is a model for the data. The model vector o is a func-
tion of more basic parameters 0 that are to be estimated
so as to minimize Q. W is the weight matrix that can
be specified in several ways to yield a number of differ-
ent estimators that depend on the distribution assumed.
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Essentially the researcher attempts to represent the
population covariance matrix in the sample variables.
Then, an estimation procedure is selected, which runs
through an iterative process until the best solution is
found.

Another source of information in the output is the fit
indices. There are many indices available, with most
ranging from 0 to 1 with a high value indicating a great
degree of variance in the data accounted for by the
model [21]. The Comparative Fit Index (CFI) is most
commonly used and compares the existing model with a
null model. A good fit is also represented by low resi-
dual values (e.g., .00), which represents the amount of
variance not accounted for by the model. These are cal-
culated as indices such as the Root Mean Square Error
of Approximation (RMSEA), which is the square root of
mean differences between the estimate and the true
value. Another goodness-of-fit statistic commonly
reported is 3% which assesses the likelihood that the dif-
ferences between the population covariance matrix and
model implied covariance matrix are zero. This statistic,
however, varies as a function of sample size, cannot be
directly interpreted (because there is no upper bound),
and is almost always significant. It is useful, however,
when directly comparing models on the same sample.
Dahly, Adair, and Bollen [22], for example, tested var-
ious fit indices for different models depicting the rela-
tionship between maternal height and arm fat area with
fetal growth. When adding and removing variables, as
well as specifying varying relationships between vari-
ables, each corresponding fit index was calculated. This
allowed the researchers to determine factors in the fetal
environment that are most significantly related to systo-
lic blood pressure of young adults. In summary, when
evaluating fit statistics, CFI values > .90 and RMSEA <
.05 are considered adequate [23].

A comparison of indices was conducted by Hu and
Bentler [18] on data that violated assumptions of normal
distribution, independence of observations, and symme-
try. Their results indicate that TLI, BL89, RNI, CFI, Mc,
Gamma Hat, and RMSEA are able to identify good
models. Many of these are provided by standard SEM
software packages (e.g., EQS, LISREL, Mplus, AMOS).4

To determine the model’s goodness-of-fit, sample size
is an important consideration. It must be large enough to
obtain stable estimates of the parameters. Many recom-
mendations have been published, suggesting that there is
no precise decision rule. Monte Carlo studies provide
guidance that sample sizes of 10 for a one-factor, five-
observed variable model, and 30 for a two-factor, five-
observed variable model provide robust results [24].
More general guidelines are used in current research
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with the suggestion that at least 100 but preferably 200
cases are needed to obtain stable results [16]. Using a
large sample reduces the likelihood of random variation
that can occur in small samples [25], but may be difficult
to obtain in practice.

Step 5: Re-specify the Model if Necessary

To obtain improved fit results, the above sequence of
steps is repeated until the most succinct model is derived
(i.e., principle of parsimony). A recommended procedure
to improve the model estimations is through examination
of the size of the standardized residual values between
variables. Large residuals may suggest inadequate model
fit. This can be addressed by the addition of a path link,
or inclusion of mediating or moderating variables (if the-
oretically supported). Once the model is re-calculated, its
fit may show improvement and residual may be reduced.
These results then need to be confirmed on an alternate
sample, and through further studies. This replication
strengthens confidence in the inferences, and provides
implications for theoretical development and practical
application.

Further Considerations

Before executing SEM procedures, there are many addi-
tional topics to consider. As for any research study, care-
ful planning of design, sampling, and measures is needed
to develop valid models. SEM can be used in either
cross-sectional or longitudinal studies, whereby the for-
mer are identified by links among variables measured at
the same point in time, and the latter are specified by the
links among variables measured at different points in
time. These models often include autoregressive effects
where a variable measured at two time points is corre-
lated with itself. This corrects for an over-estimation of
the relationship among exogenous (independent) and
endogenous (dependent) variables [26]. While this is a
distinct advantage of SEM, it is often disregarded.

Types of measures must also be considered [27]. Calcu-
lations of variances, covariances and product-moment cor-
relations all assume that values are measured on an
interval scale. Measures that include, for example, rating
scales without equal distances between data points, are
not necessarily considered appropriate [28]. Researchers
must be prudent in selecting the appropriate procedures
for particular levels of measurement including, for exam-
ple, dichotomous and polytomous data [29]. Indeed,
another advantage of SEM is the ability to manage contin-
uous and binary data simultaneously.

SEM can be employed for both exploratory and con-
firmatory models. An exploratory approach is more
traditional in that a detailed model specifying the rela-
tionships among variables is not made a priori. All
latent variables are assumed, therefore, to influence all
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observed variables so that the number of latent vari-
ables are not pre-determined, and measurement errors
are not allowed to correlate [29]. Although both
exploratory and confirmatory factor analyses are a sub-
set of SEM involving the measurement model only, the
latter is more frequently used to test hypothetical con-
structs. The following section presents three examples
of application of SEM in medical and health sciences
research.

2. Examples of SEM

SEM has been applied in psychiatry to understanding
patients’ experiences of schizophrenia. Loberg and col-
leagues examined the role of positive symptoms and
duration of schizophrenia on dichotic listening of
patients [30]. Dichotic listening tasks are used as a
means of assessing functioning within the left temporal
lobe language areas. Previous research suggested
increased impairment in left temporal lobe language
processing among patients with a high number of posi-
tive symptoms (e.g., hallucinations and delusions) of
schizophrenia.

Loberg, Jorgensen, Green, Rund et al [30] attempted
to replicate these results as well as determine whether
duration of illness further decreases language function-
ing. A total of 129 patients from clinics in Norway and
California diagnosed with schizophrenia were included.®
All patients were taking haloperidol (an antipsychotic)
or an equivalent.

The Extended Brief Psychiatric Rating Scale and Posi-
tive and Negative Syndrome scale were completed by
blind observers to measure symptoms of schizophrenia,
and the duration of the disease was calculated based on
initial onset of symptoms. Dichotic listening was mea-
sured by patients’ responses to consonant and vowel
blends spoken through headphones. In one condition
patients were told which ear to listen with (attention)
and in another they were not (laterality). The theoretical
model tested is shown in Figure 2.

Analysis of this model using SEM indicated it fit the
data well. The CFI was 0.986 based on 11 degrees of
freedom. Close inspection of the model (Figure 2) shows
that all the path coefficients to the predicted latent vari-
ables are moderate to high (range from .32 to .87). The
RMSEA was .048. Positive symptoms were measured by
hallucinations, disorganized thoughts, and unusual
thought content. Dichotic listening was measured by
accuracy of sounds identified in each ear according to
the condition in which the patients heard the sounds.

In terms of the relationship between dichotic listening
and schizophrenia, duration of schizophrenia and num-
ber of positive symptoms were related to accuracy of
sound detection. That is, patients who have had schizo-
phrenia for a longer duration and experience more
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Figure 2 Model of positive symptoms, duration of schizophrenia, and dichotic listening.

positive symptoms, the poorer their identification of
vowel-consonant blends. These results support findings
from previous research suggesting impaired language
processing and structural abnormalities in the left super-
ior temporal gyrus for patients with schizophrenia.

The advantage of this research over other studies is that
it examines three types of positive symptoms and duration
of schizophrenia simultaneously, rather than separately, in
relation to dichotic listening. In other words, the model
also suggests that patients with many positive symptoms
are likely to have difficulty identifying sounds accurately,
especially if the duration of the illness is long. Greater con-
fidence can be placed in these results than other regres-
sion models because more than one indicator of the
constructs of interest was used in the model. Identifying
basic underlying latent variables (positive symptoms and
dichotic listening) is another advantage over interpreting
simple correlations among measured variables.

Because this is a cross-sectional model, it is unknown
whether the language processing deficit existed before, at
the same time, or after the onset of schizophrenia. Direc-
tion of cause in the model is, thus, unknown. Given that
time was an important variable in this model, we can
explore the advantages of longitudinal modeling, or mea-
suring variables at more than one point in time. That is,
using the same measures of positive symptoms of schizo-
phrenia and language processing taken at Time 1 and
Time 2, path coefficients between the two latent variables
at both points in time can be simultaneously examined to
determine those that are significant. Previously a cross-
lagged design would have been used whereby positive
symptoms at Time 1 are correlated with language proces-
sing at Time 2. This correlation is then compared to the
correlation between language processing at Time 1 and
positive symptoms at Time 2. This comparison does not
account for autoregression, does not include latent vari-
ables, and cannot be easily applied to multiple time
points or multiple variables. An alternate method is mul-
tiple regression analysis whereby the positive symptoms
of schizophrenia and language processing measured at

Time 1 are used to predict language processing at Time
2. The magnitude of the regression weights would indi-
cate the strength of the relationship between schizophre-
nia and language processing while controlling for initial
language processing. Although this takes autoregression
into account and includes multiple measured variables,
latent variables cannot be used, and reciprocal patterns
(impact of language processing on positive symptoms)
cannot be examined.

A second example of SEM is of a model in population
health that depicts the relationship between childhood
victimization and school achievement. Beran and Lupart
postulated that children who are targeted by acts of
aggression from their peers may be at risk for poor
achievement [31]. This argument is supported by Eccles’
Expectancy-Value theory [32]. Accordingly, achievement
involves the culture, socialization, and the environmental
“fit” of schools for students. When children are exposed
to positive experiences within this environment they are
likely to gain academic and social competence [33].
Exposure to aggressive initiations from peers, however,
may reduce a child’s sense of competence for interperso-
nal interactions. Given that learning at school takes place
in a social environment these harmful interactions may
reduce learning behaviors such as volunteering answers
and asking questions. Rather, children who are targeted
may become discouraged and disengaged from peers and
classroom learning [33].

In further developing their model, Beran and Lupart
[31] included several correlates of achievement reported
in previous research: impaired peer social skills (helping
others), limited friendships (feeling disliked), and disrup-
tive behaviors (aggression towards others, hyperactivity/
inattention). All of these factors were simultaneously
examined to determine the likelihood of targeted adoles-
cents experiencing poor achievement. The theoretical
SEM model is depicted in Figure 3.

Adolescents between 12-15 years of age (n = 4,111)
were drawn from the Canadian National Longitudinal
Survey of Children and Youth, which is a stratified
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Figure 3 Latent variable path model of harassment and achievement employing maximum likelihood estimation (n = 613).
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random sample of 22,831 households in Canada [34]. As
shown in Figure 3, harassment was related to disruptive
behavior problems and peer interactions, which were
related to achievement, x2(32) = 300.00, p < .001, SRMR
= .05; CFI = .91. Achievement was measured by four
report sources including the language arts and math tea-
chers, who reported on performance in those subjects,
and the parent and child’s report of overall achievement.
Victimization was measured by adolescents’ reports of
frequency of attack and threats received from peers as
well as degree of discomfort they feel among their peers.
Victimization and achievement were used as latent vari-
ables in the model and were found to be mediated by
disruptive behaviors and friendship experiences. This is
shown by the arrows and coefficients whereby there is
no arrow directly linking victimization with achieve-
ment. Rather, harassment was related to friendships and
conduct problems, indicating that adolescents who were
harassed reported having few or no friends (as shown by
the negative sign) and exhibited conduct problems.
These conduct problems were related to hyperactivity/
inattention and prosocial behaviors such that adoles-
cents with more rule breaking tendencies were likely to
demonstrate hyperactive and inattentive behaviors as
well as few prosocial, or helping, behaviors. These fac-
tors were also related to achievement. These combined
results suggest that adolescents who are targeted by
their peers are at risk of experiencing poor school
achievement if they exhibit disruptive behavior problems
and poor peer interactions.

A third example applies SEM within the field of clini-
cal epidemiology by examining how health nutrition
behaviors can serve to reduce risk of illness within a
senior population. Specifically, Keller [35] examined
behaviors that constitute risk of poor nutrition among
seniors as part of a screening intervention. A measure-
ment model of risk factors that constitute poor nutrition
was developed a priori based on exploratory results from
a previous study that identified four factors from 15
measured variables. A total of 1,218 Canadian seniors
were interviewed or self-administered 15 questions
about eating behaviors that matched those used pre-
viously. Variables such as type and frequency of food
eaten created the latent factor food intake; appetite and
weight change loaded on the factor adaptation; swallow-
ing and chewing ability loaded on the factor physiologic;
and cooking and shopping ability formed the variable
functional. These factors were then loaded onto a higher
level factor nutritional risk. The model fit the data well
according to the CFI (>.90) and the RMSEA (<.05). Fac-
tor loadings varied between .15 and .66. It was, thus,
concluded that these factors provide a comprehensive
and valid indicator of nutritional risk for seniors. This
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framework was developed from previous research and
presents confirmatory evidence for the nutrition beha-
viors used in the model of nutrition risk.

3. Strengths and Weaknesses of SEM

Strengths

SEM is a set of statistical methods that allows research-
ers to test hypotheses based on multiple constructs that
may be indirectly or directly related for both linear and
nonlinear models [36]. It is distinguished from other
types of analyses in its ability to examine many relation-
ships while simultaneously partialing out measurement
error. It can also examine correlated measurement error
to determine to what degree unknown factors influence
shared error among variables - which may affect the
estimated parameters of the model [37]. It also handles
missing data well by fitting raw data instead of summary
statistics. SEM, in addition, can be used to analyze
dependent observations (e.g., twin and family data). It
can, furthermore, manage longitudinal designs such as
time series and growth models. For example, Dahly,
Adair, and Bollen [22] developed a longitudinal latent
variable medical model showing that maternal charac-
teristics during pregnancy predicted children’s blood
pressure and weight approximately 20 years later while
controlling for child’s birth weight. Therefore, SEM can
be used for a number of research designs.

A distinct advantage of SEM over conventional multi-
ple regression analyses is that the former has greater
statistical power (probability of rejecting a false null
hypothesis) than does the latter. This is demonstrated in
Budtz-Jergensen’s epidemiological study of benchmark
calculations to exposure of environmental toxins [38].
They were able to show that SEM statistics were more
sensitive to changes in toxin exposure than were regres-
sion statistics, which resulted in estimates of lower, or
safer, exposure levels than did the regression analyses.

SEM has sometimes been referred to as causal model-
ing; however, caution must be taken when interpreting
SEM results as such. Several conditions are deemed
necessary, but not sufficient for causation to be deter-
mined. There must be an empirical association between
the variables - they are significantly correlated. A com-
mon cause of the two variables has been ruled out, and
the two variables have a theoretical connection. Also,
one variable precedes the other, and if the preceding
variable changes, the outcome variable also changes
(and not vice versa). These requirements are unlikely to
be satisfied; thus, causation cannot be definitively
demonstrated. Rather, causal inferences are typically
made from SEM results. Indeed, researchers argue that
even when some of the conditions of causation are not
fully met causal inference may still be justifiable [39].
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Weaknesses

As with any method, SEM has its limitations. Although
a latent variable is a closer approximation of a construct
than is a measured variable; it may not be a pure repre-
sentation of the construct. Its variance may consist of,
in addition to true variance of the measured variables,
shared error between the measured variables. Also, the
advantage of simultaneous examination of multiple vari-
ables may be offset by the requirement for larger sample
sizes for additional variables to derive a solution to the
calculations.

SEM cannot correct for weaknesses inherent in any
type of study. Exploration of relationships among vari-
ables without a priori specification may result in statisti-
cal significance but have little theoretical significance. In
addition, poor research planning, unreliable and invalid
data, lack of theoretical guidance, and over interpreta-
tion of causal relationships can result in misleading
conclusions.

4. Summary

With the development of SEM, medical researchers now
have powerful analytic tools to examine complex causal
models. It is superior over other correlational methods
such as regression as multiple variables are analyzed
simultaneously, and latent factors reduce measurement
error. When used as an exploratory or confirmatory
approach within good research design it yields informa-
tion about the complex nature of disease and health
behaviors. It does so by examining both direct and
indirect, and unidirectional and bidirectional relation-
ships between measured and latent variables. Despite
the valuable contribution of SEM to research methodol-
ogy, the researcher must be aware of several considera-
tions to develop a legitimate model. These include using
an appropriate research design, a necessary sample size,
and adequate measures. Nevertheless, the theory and
application of SEM and their relevance to understanding
human phenomena are well established. In the context
of medical research it promises the opportunity of
examining multiple symptoms and health behaviors that,
with model development and refinement, can be utilized
to enhance our research capabilities in medicine and the
health sciences.

Appendix
? ANOVA and multiple regression analysis are instances
of the General Linear Model.

b #p = p (p+1)/2 can be used to determine the number
of free parameters (*p) that can be estimated from the
number of measured variables (p).

¢ A model with equal values and parameters is said to
be identified, and one with more values than parameters
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is overidentified; both models can be empirically
assessed.

4 http://www.mvsoft.com/

http://www.ssicentral.com/lisrel/

http://www.statmodel.com/

http://www.spss.com/amos/

¢ Diagnoses were based on the criteria listed for classi-
fication in both the third revised or fourth edition of the
Diagnostic Statistical Manual (DSM-IV), which is an
international classification system for mental health dis-
orders in children and adults published by the American
Psychiatric Association.
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