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Aimed at building autonomous service robots, reasoning, perception, and action should be properly integrated. In this paper, the
depth cue has been analysed as an early stage given its importance for robotic tasks. So, from neuroscience findings, a hierarchical
four-level dorsal architecture has been designed and implemented. Mainly, from a stereo image pair, a set of complex Gabor filters
is applied for estimating an egocentric quantitative disparity map.)is map leads to a quantitative depth scene representation that
provides the raw input for a qualitative approach. So, the reasoning method infers the data required to make the right decision at
any time. As it will be shown, the experimental results highlight the robust performance of the biologically inspired approach
presented in this paper.

1. Introduction

Robotics research in industrial settings has resulted in
a productivity improvement and a reduction in danger for
humans. From this success, the Robotics community is
aiming to build autonomous robot systems able to assist
human beings in any activity (from their mundane tasks
(e.g., cooking or cleaning) to more intellectual and social
efforts of entertainment and caregiving). Along these lines,
all aspects of intelligent processing—from perception to
action—must be engaged and integrated. )at is, the de-
veloped robots should be capable of completing their tasks
by properly interacting with their environment, even when it
is dynamic and unknown. Nevertheless, most of the current
robot systems compute their actions from their perceived
input by using models of the environment and, conse-
quently, they cannot imagine other models when they find
themselves in unforeseen situations. )erefore, a key point
in any autonomous system is its adaptability to the envi-
ronment and its changes.

From a biological point of view, humans use many kinds
of sensory information (i.e., sight, hearing, smell, taste, and/or
touch) to obtain a complete and reliable representation of

their surroundings. In this sense, though the understanding of
the human brain still remains a great challenge [1], neuro-
science research is making progress towards understanding
how human neurons encode information and how the
complex dynamical interactions within and among neuronal
networks lead to learning and produce sensorimotor co-
ordination and motor control [2]. Apparently, the strategy
adopted by all the superior vertebrates consists of separating
the recognition of an object (the what problem) from finding
its position (the where problem) [3]. )us, the temporal
regions of the cerebral cortex are involved in the what
pathway, while the parietal regions try to find where the target
objects are [4–6]. Actually, a wide range of neurobiological
studies have analysed the organization and connectivity of
sensory andmotor areas in themammalian cerebral cortex. In
particular, many researchers have focused on the visual
cortex, given its importance (around 55% of the neocortex of
the primate brain is concerned with vision [3]).

On this topic, cognitive studies show that the knowledge
about the retinoptic image of a visual object is qualitative,
although this image is quantitative by nature (i.e., the retina
locations are stimulated by light of a specific spectrum of
wavelengths and intensity [7]). So, the qualitative sensory
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data allows the system to abstract the relevant features of the
environment and to extract more information by means of
qualitative reasoning processes, otherwise unavailable.

According to the neuropsychological research [8–13],
mental processes form a hierarchy of mental representations
with maximally egocentric representations at the bottom
and maximally allocentric representations at the top, pro-
gressively abstracting away from the particularities of the
egocentric representations. So, the processing pipeline of the
primate brain is hierarchically organised into 8 to 10 levels
such that the neurons in the early visual areas extract simple
image features (e.g., motion, orientation, colour, etc.) over
small local regions of visual space and this quantitative
information is transmitted to neurons in higher visual areas
responding to even more complex features and covering
larger regions of the visual field [14]. )at is, the neuronal
visual processing starts in the retina of the left and right eyes.
)en, the low-level processing is performed by the cortical
areas V1 and V2, providing input for both the ventral (what)
and the dorsal (where) streams, which perform a deeper
analysis. So, as the ventral pathway is involved in object
recognition and categorization, the complexity of the
extracted features increases up to an object level for specific
object classes like faces [15]. On its behalf, the dorsal
pathway is engaged in the analysis of space and in action
planning and, similarly to the ventral stream, the complexity
of the stimulus features increases progressively such that the
higher areas encode the location of stimuli in spatial or head-
fixed coordinates.

1.1. Contributions. In this paper, we have simplified the
mammalian brain model by focusing on depth estimation
when a visual input is considered. Given that the dorsal
where pathway deals with localization of scene objects,
a four-level dorsal architecture for depth estimation is
presented. In rough outlines, from a stereo image pair (an
egocentric representation of the scene in image coordinates),
the system quantitatively estimates an egocentric depth map
of the observed scene. From that information, egocentric
qualitative depth information is generated to be able to infer
the corresponding allocentric depth map. Note that this
allocentric data can easily be transformed to the necessary
egocentricmotor coordinates to properly perform the task at
hand. )us, this egocentric-allocentric combination provides
the system with the vision-for-action and vision-for-
perception models, by improving the efficiency in the co-
ordination of sensory input and motor output.

In addition, this egocentric-allocentric integration allows
the system to locate objects in the scene along time in a more
precise way by properly dealing with the lack of information
and/or data uncertainty. )at is, according to biological
findings, the egocentric representation is temporary and it
depends on the robot’s location. On the contrary, the
allocentric representation is independent on the robot’s
situation and, in addition, it survives over extended periods
of time not relying on immediate visual input. )erefore,
allocentric data provides the system with object’s spatial
information in the robot’s surroundings, even when those

objects are not visible. So, the robot system could always plan
a path free of obstacles (visible or not) to manipulate an
object at any time.

With that purpose, this paper is organised as follows:
a brief overview of the system is given in Section 2. Section 3
introduces our algorithm for 2D binocular depth estimation
based on phase difference in the Fourier domain. Its output
is the input to a qualitative spatial inference mechanism,
introduced in Section 4. Some experimental results are
presented in Section 5 and discussed in Section 6.

2. System Overview

One of the great research challenges is to build autonomous
systems completely based on biological models. In this sense,
general vision problems are divided into more specific tasks
in order to be biologically solved such as simultaneous lo-
calization andmapping (SLAM) [16, 17], navigation [18, 19],
or feature extraction [20, 21]. Nevertheless, these approaches
present flat processing schemes unlike the hierarchical
structure of the biological systems.

Going a step further, we have designed and implemented
a four-level architecture based on the dorsal pathway with
the purpose of providing robotic systems with biological
depth estimation. Figure 1 gives an overview of our system
that can be summarised as follows: the early vision area
(V1/V2) is modelled as a set of complex Gabor filters with a
cosine-based real part and a sine-based imaginary part. )is
processing at multiple scales and orientations, results in a
quantitative stereo disparity estimation that leads to a
quantitative depth map. From this knowledge, an egocentric
representation of the object localization within the scene is
obtained by following a qualitative approach. Finally,
a qualitative reasoning method allows the system to infer
new information and make decisions more accurately.

2.1. Depth Estimation: A Quantitative Approach. )e first
issue to be solved is how to perceive depth (i.e., the distance
of individual points from the observer) from 2D visual
fragments. )is is a classic problem in the field, analysing
different visual cues based on the raw data about the 3D
layout of objects they provide.

In this context, one of the major categories for depth
perception is visual monocular cues such as shadows, motion
parallax, linear perspective, or occlusion. Nevertheless, these
cues provide relative distance considering that they provide
information about the object’s location (or its parts) with
respect to other objects in the scene (i.e., allocentric rep-
resentation). )is representation is independent of the
system’s current location since it is indexed to a world-based
coordinate system, and it survives over extended periods of
time [8]. Note that this representation must be built up from
vision over time, but it does not rely on immediate visual
input.

As a solution, binocular disparity can be used since it
provides absolute distances by triangulating the distance to
an object. )us, this cue provides an egocentric represen-
tation, which is temporary and is based on the object’s
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directions relative to the current system’s pose within the
scene. Consequently, the depth encoder will allow the system
to act upon its environment with the aim of locating,
reaching, and/or manipulating objects.

Focusing on obtaining a disparity map and given that
two images from different points of view are required, the
first issue to be solved is the correspondence problem.
Basically, it refers to the problem of matching corresponding
image points in the stereo pair images. Although a large
number of algorithms have been proposed, they can be
classified into two main groups [22]:

(i) Feature-based matching algorithms. )ey concern
two steps:

(a) Feature extraction. Features such as edges, colour,
and so on are extracted from the images and used
as key points for the correspondence method.

(b) Solving the correspondence problem. A corre-
spondence between image elements is chosen
from among the many conceivable ones. Various
types of knowledge, constraints, and plausibility
considerations are used at this stage:

(1) Search space: for an element in the left image,
a matching element is sought only within
a certain region of the right image.

(2) Feature attributes: in the case the image el-
ements can be distinguished from one an-
other, then only those of the same type (line
terminations, edges) and with the same
characteristics (e.g., polarity of contrast,
colour) are matched.

(3) Ordering constraints: because the plausibility
of other matches changes once a match be-
tween two features has been established.

Note that this method results in sparse disparity maps
since it only gets disparities for the extracted features.

(ii) Area-based matching algorithms. )ey try to match
each pixel independently of the image content.
)erefore, the resulting disparity map can be very
dense what makes them be an interesting alternative
to quantify and solve early vision problems.

As our goal is to extract dense and reliable depth in-
formation from the observed scene, stereo-matching

algorithms based on area have been studied. Nevertheless,
matching correspondence approaches cannot be efficiently
adapted to changing camera geometry information, a very
common situation when a robot system performs its ac-
tivities in real scenarios. Consequently, nearly all the pro-
posed stereo vision methods divide their performance into
two stages: camera calibration (used for stereo rectification)
and dense disparity estimation. With regard to the cali-
bration step, it is typically performed offline by means of
feature-based methods [23–25]. Note that this stage is
problematic when a noisy visual input is processed and/or
the stereo system is decalibrated.

As an alternative, biological studies have revealed that
the response of visual cortex is turned to the band-limited
portion of the frequency domain. )at is, the brain de-
composes the spectra into perceptual channels that are
bands in spatial frequency [26]. Similarly, images can be seen
as sinusoidal functions moved in depth such that the same
gray value function appears in both images of a stereo pair at
different phase angle. )is fact leads to the possibility of
extracting disparity by using frequency filters. In this con-
text, Gabor functions have been extensively used because of
their similarity with the receptive field of cells in the virtual
cortex (e.g., [27–29]). In fact, they have been particularly
successful in many computer vision and image-processing
applications [30, 31]. However, a fundamental problem with
these approaches is the inherently large memory and
computational overheads required for training and testing in
the overcomplete Gabor domain, what makes them hardly
suitable for real-time robot applications.

As a solution, we propose an approach for disparity
estimation based on phase-difference that does not require
precise calibration information (in terms of the relative
transformation (position and orientation) between the two
cameras) that provides accurate results in real time. )us,
given that the presented approach does not use the external
camera parameters, cameras are only calibrated at the be-
ginning of the experiment to obtain internal camera pa-
rameters, and no more calibration procedure is performed
although the system’s location has changed. In addition, this
approach is robust to changes in contrast, scale, and ori-
entation, what is very important in the context of disparity
estimation.

Mainly, the phase-based binocular disparity estimation
(PBBDE) approach (see [32] for a detailed description)
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Figure 1: Overview of our biologically inspired active vision system for depth.
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assumes that an image is a sinusoidal gray value function
moved in depth such that the difference in the object’s
position in the stereo input (i.e., disparity) is estimated as the
phase difference between the two images. For that, and
considering the x-y image dimensionality, a bank of 2D-
oriented Gabor filters is used. )e different orientations, θq,
are evenly distributed and equal to (qπ)/K. Let q be in the
range from 0 to K− 1, while K � 8 orientations are con-
sidered in our implementation. )us, for a specific orien-
tation θq, the spatial phase at pixel location x � (x, y)T is
extracted as follows:

Qq(x) � I∗fq (x) � ρq(x)e
jφq � Cq(x) + jSq(x), (1)

where ρq(x) �
�������������
Cq(x)2 + Sq(x)2


and φq(x) � arctan

(Sq(x), Cq(x)) are the amplitude and the phase compo-
nents, respectively, and Cq(x) and Sq(x) are the responses of
the quadrature filter pair. )e ∗ operator corresponds to the
convolution operation.

In this way, the 1D disparity can be estimated from each
oriented filter response (at orientation θq) by projecting the
phase difference along the direction of the epipolar lines as

δ(x) �
φL(x)−φR(x) 2π

ω(x)
�

[Δφ(x)]2π

ω(x)
, (2)

where φL(x) and φR(x) represent the phase values of band-
pass-filtered versions and ω(x) is the average instantaneous
frequency of the band-pass signal at point x and, under
a linear phase model, it can be approximated by ω0(x) [33].
Nevertheless, with the aim of generalizing the approach for
active stereo vision systems, the 2D disparity (δ(x)) is ob-
tained by differencing the combination of disparity estimates
(δc,θ) of the bank filters as follows:

δ∗(x) � 
θ
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,

(3)

where dx,θ and dy,θ are the projection of δc,θ along the
horizontal and vertical axis, respectively. In this way,
multiple disparity estimates are obtained at each location.
)ese estimates can be integrated over the different pyramid
levels. For that a disparity map is first computed at the
coarsest level. )en, this disparity estimation is up sampled
by means of an expansion operator and a method to double,
in order to make it compatible with the next level estimation.
After that sample up, the obtained map is used to reduce the
disparity at level n + 1, by warping the right filter responses
before computing the phase difference:

δn
�

φL x′( −φR x′(  2π
k(x)

+ 2 expand δn−1
  , (4)

where x′ � (x + dn−1
x (x), y + dn−1

y (x)), being dn−1
x the hor-

izontal disparity at the level n− 1 and dn−1
y the vertical

disparity at the level n− 1. Consequently, the remaining
disparity is guaranteed to lie within the filter range. )is
procedure is repeated until the finest level is reached.

Once the disparity map has been generated, the following
step is to infer the object’s depth within the visual scene. For
that and considering that a convergent stereo camera system
could be used, the depth estimation is obtained by

z � f
4 +(b/f)2

2((b/f)− 2 tan(δ/2))
tan

δ
2

 , (5)

where b represents the intercamera distance, δ corresponds
to the binocular disparity, and f is the focal length. Note that
the binocular disparity is expressed in radians in this for-
mula. )erefore, the camera-centred polar coordinates are
considered instead of the Cartesian ones.

In this way, disparity and depth are properly intertwined,
providing the robotic system with the required knowledge
for an autonomous interaction with its surrounding envi-
ronment, even when it is dynamic and/or unknown. Nev-
ertheless, this egocentric spatial representation provides
depth information relative to the current system’s position
with respect to the surrounding space. In addition, the
disparity estimation, and consequently the depth estimation,
depends on the fixation point of the visual system since
a zero disparity is obtained on that point. So, although this
representational frame allows the system to act upon its
environment for the purposes of locating, reaching, and/or
manipulating objects, an indexed-to-a-world-based co-
ordinate system (i.e., allocentric) is required for properly
locating objects within a scene at any time, considerably
improving the efficiency in the coordination of sensory input
and motor output. )us, the built depth map is abstracted to
an appropriate allocentric representation that provides the
system with the ability to reason and infer information,
otherwise unachievable, necessary to autonomously act in
any scenario. For this, a qualitative spatial representation
together with a reasoning mechanism is used.

2.2.DepthEstimation:AQualitativeApproach. According to
psychological studies, qualitative reasoning models provide
a bridge between the perceptual and the conceptual ap-
proach by imposing discrete, symbolic frameworks on the
continuous work. So, qualitative representations establish
a natural connection to their quantitative representation by
the abstraction of the physical world, emulating the human
spatial cognition. )erefore, qualitative approaches provide
the atomic representation to build higher-level cognitive
functions by enabling any robot system to integrate per-
ception, reasoning, and action and make predictions about
spatial relations, even when precise quantitative information
is not available.

In this sense, a growing trend is to obtain qualitative
knowledge from images. So, for instance, Quattoni and
Torralba [34] presented a prototype-based model to classify
images of indoor scenes in semantic categories (e.g., bath-
room and kitchen) by using a learning distance for object
recognition and training on a dataset. Oliva and Torralba [35]
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proposed a computational model for classifying perceptual
properties (e.g., naturalness, openness, roughness, expansion,
and ruggedness) into semantic categories such as street,
highway, or coast. Going a step further, Qayyum and Cohn
[36] used more than one concept to semantically describe
landing images, while Lim and Chan [37] labelled images of
natural scenes by means of a fuzzy qualitative approach. On
their behalf, Buoncompagni et al. [38] represented the robot
environment using a fuzzy ontology.

Nevertheless, a very few approaches describe real images
as a set of components arranged in the space. In fact, visual
spatial information is typically encoded by a binary relation
model of spatial entities. Furthermore, most of the calculi are
based on a single aspect of space (e.g., direction, topology,
distance, or position) what may be ambiguous unless a ref-
erence coordinate system is provided. In this context, one of
the most well-known approaches is the region connection
calculus (RCC) [39].)is method is based on extended spatial
entities (regions) and the relationships between them (con-
nections). Despite its strength in describing and reasoning
about spatial structures (especially for topological structures),
it is based on topological relations instead of positional in-
formation. In addition, the spatial objects are represented by
regions that can be difficult to extract from a visual input
when real-world scenarios are considered.

On the other hand, Freksa and Zimmermann [40] proposed
an approach based on directional orientation information and
motivated by considerations on how spatial information is
available to humans and animals (i.e., directly through their
perception). Despite including a description for static situations,
it is not a unified representation for distance and orientation. As
an alternative, Hernandez [41] proposed a cognitive model of
space based on space nature, although it avoids falsifying the
effects of an exact geometric approach. )ose effects are likely
due to the common limited perception acuity. As an im-
provement, Clementini et al. [42] developed a unified frame-
work for qualitative representation of positional information in
2D space by combining the distance and orientation relation-
ships. An advanced research integrates qualitative spatial rea-
soning with reasoning about actions and change [43–45].
Despite the very appealing idea of these approaches for rea-
soning in agent’s control, the underlying concept of spatial
neighbourhood based on the dipole calculus can result in a high
time consumption, what makes it inappropriate for robot tasks.
An early approach integrating qualitative representations and
reasoning for positional information for domestic service ro-
botics domains was presented in [46]. However, on the way to
autonomous systems, the robotics domains cannot be con-
strained to domestic environments.

So, with the aim of overcoming all these issues, we have
developed a method for adequately representing and rea-
soning with qualitative depth based on our previous work
[47]. )e implemented qualitative model allows the system to
properly deal with situations in which the quantitative in-
formation is not sufficiently precise, and a number of dis-
tinctions that are of interest can provide the system with the
ability to properly act and interact with the environment,
independently of the extension of the surrounding elements.
For this, depth relations (resulting from disparity estimation)

are combined to orientation. In this way, it provides a re-
stricted form of positional information that is mainly useful in
small-scale environments like objects in a room. )e in-
tegration of qualitative orientation information to the qual-
itative distance model is especially important for the inference
process [40, 48].)is integration leads to ternary relationships
such that four points are required to infer new knowledge.
)e distance can be measured from the first point of the
front/back dichotomy of the reference system (RS) or from
the second point of the front/back dichotomy of the RS.
)erefore, it is possible to define four different atomic cases
for the reasoning process (see Figure 2 where dashed lines
correspond to the distance relationship to be inferred).

(i) CASE 1: given the depth relationships c,ab from 1st
(represented in the Figure 2 by Dbc) and d,bc from
1st (Dcd)—that is, both depth cues are measured
from the first point of the front/back dichotomy of
the RS—the relationship d,ab from 1st (Dab) is
obtained

(ii) CASE 2: given the depth relationships c,ab from 2nd
(Dac) and d,bc from 1st (Dcd)—that is, the first
depth cue is measured from the second point of the
front/back dichotomy of the RS and the second
depth relationship is obtained from the first point of
the front/back dichotomy of the RS—the relation-
ship d,ab from 2nd (Dad) is found

(iii) CASE 3: given the relationships c,ab from 1st (Dbc)
and d,bc from 2nd (Dbd)—that is, the first depth cue
is measured from the first point of the front/back
dichotomy of the RS, whereas the second re-
lationship is obtained from the second point of the
front/back dichotomy of the RS—the relationship d,
bc from 1st (Dcd) is inferred

(iv) )e fourth case occurs when both depth cues (Dac
and Dbd) are measured from the second point of
the front/back dichotomy of the RS. In this case,
the depth relationships are independent; there-
fore, it is not possible to derive any further in-
formation unless the depth relationship between
the origin entities is known by means of another
relationship.

As a consequence, the implemented procedure to obtain
the resulting depth relationship depends on the orientation
relationships. An analysis of the different orientation re-
lationships reveals that, for CASE 1, the depth relationship
inferred is the qualitative sum of the qualitative depths when
the orientations of Dbc and Dcd are the same and the
qualitative difference of the qualitative distances when these
orientations are the opposite. By means of a similar rea-
soning process, CASE 2 is solved. In this case, the involved
depth cues are Dbc and Dcd, although the concepts of same
and opposite orientations have changed. In both cases, the
same and opposite orientations will determine the upper and
lower bounds for the composition of heterogeneous depth
ranges in any orientation. Nevertheless, for the CASE 3, the
resulting depth relationship (Dcd), when the depth cues Dbc
and Dbd are in the same orientation, is obtained by solving
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the qualitative difference between the qualitative depth cues,
whereas when these depth cues are in the opposite orien-
tation, the qualitative sum of those qualitative depth cues will
be required. In this case, the same orientation will determine
the lower bound of the result, and the opposite orientation
will determine the upper bound when the depth cues are
measured from any orientation. )is knowledge has been
taken into account in the implemented inference algorithm.

)erefore, with the aim of obtaining an appropriate
allocentric representation of the scene, the quantitative depth
mapmust be encoded in a qualitative way. For this, in addition
to the depth map, an image where the interest objects have
been segmented and labelled is provided. Note that in the
current version, the input images are labelled by hand although
its implementation is part of our future work. So, for each
target object, the object-to-object relationships are obtained
from the self-to-object relationships provided by the depth
map (Figure 3). In particular, in our current implementation,
the depth relationships are determined byΔr� {[0, 60[, [60, 100
[, [100, 150[, [150, 250[, [250, ∞[} and Q� {very_close (vc),
close (c), nearby (n), far (f), very_far (vf)}, while the orien-
tation relationships are coded according to the Freksa and
Zimmermann’s approach [48] (i.e., LAB0� {front_left (fl),
straight_front (sf), front_right (fr), left (l), none (n), right (r),
back_left (bl), straight_back (sb), back_right (br)} and
INT0� {]90, 180[, [90, 90], ]0, 90[, [180, 180], _, [0, 0], ]180, 270
[, [270, 270], ]270, 360[}). From these definitions, the quali-
tative relationships for each object of interest can be established
and the object-to-object relationships can be inferred bymeans
of the inference process. It is worth noting that each object of
interest is represented by its centroid to properly determine the
orientation relationship, whereas the orientation reference
system is centred at the robot vision system.

3. Experimental Results

As a proof of concept for the presented approach, a robotic
application has been developed. For this, a humanoid torso

endowed with a pan-tilt-vergence stereo head and two
multijoint arms (Figure 4) was used. )e head mounts two
cameras separated 270mm that can acquire colour images at
30Hz with a resolution of 1024× 768 pixels.

So, with the aim of evaluating the system’s performance,
two different kinds of experiments were carried out. On the
one hand, the two constituent approaches have been ana-
lysed separately, and on the other hand, the whole perfor-
mance has been examined.

3.1. Separate Performance Evaluation. Firstly, the perfor-
mance of the different approach components has been
assessed. )is analysis was carried out by following the flow
of the approach.

)us, we start with the disparity estimation approach.
For this, some experiments were carried out on image pairs
from Middlebury dataset for Stereo Evaluation [49], which
allows a quantitative comparison, thanks to the availability
of the disparity ground-truth for each stereo image pair.
Aimed at evaluating the accuracy in feature extraction of the
disparity estimation module, we analysed and compared its
performance with other band-pass representations. For this
reason, the integer-based measures proposed in the dataset
are not used. In its stead, the mean and standard deviation of
the absolute disparity error by comparing the results with
the ground-truth have been obtained. As summarised in
Table 1, where average and standard deviation of the ab-
solute disparity error expressed in pixels, three classes of
filters are used for comparison: Gabor-like kernels, spherical
quadrature filters (SQF), and steerable filters (second (s2)
and fourth order (s4)). Note that the used parameters for
estimating the disparity maps with the PBBDE 2D shift were
6 scales and an energy threshold of 10−6. )e obtained
average and standard deviation of the absolute disparity
error, expressed in pixels, highlight that our approach has
better results than Gabor filters, which are slightly better
than those for the fourth-order steerable filters (s4). )e

CASE 1 CASE 2 CASE 3 

Dbc

Dcd

Dbd
Dad 

Dcd

Dac 
Dbc

Dcd

Dbd

Dac 

Dbd

Figure 2: Four different atomic cases for qualitative depth estimation (integration).

6 Computational Intelligence and Neuroscience
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Figure 3: Qualitative encode for the wooden house from the estimated depth map and an image labelling all the objects of interest for the
robotic system. For this, the depth reference system (DRS) has been defined as Δr � {[0, 60[, [60, 100[, [100, 150[, [150, 250[, [250,∞[} and
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(a) (b)

Figure 4: Experimental setup: external view of the used humanoid robot (a) and a detailed view of pan-tilt-vergence head (b).
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second-order filters (s2), comparable with those obtained by
the spherical quadrature filters (SQF), yield results about
twice as bad as the fourth-order filters.

)en, the accuracy in depth estimation from the
generated disparity maps was studied. For this, three
different disparity situations were considered: only hori-
zontal disparity, only vertical disparity, and both hori-
zontal and vertical disparities exist. So, after applying (5)
for depth estimation, the generated depth maps have an
error less than 1 cm, making this approach suitable for
robotic tasks.

Finally, the inference process is evaluated. With that
purpose, two different depth reference systems (DRSs) have
been defined according to two levels of granularity.)us, the
DRS for the coarse level is composed of Q1 � {close (c),
nearby (n), far (f )} and Δr1 � {[0, 40[, [40, 60[, [60, ∞[},
while for the DRS for the fine level is defined by
Q2 � {closer_than_halfway (ch), halfway (h), closer_than
(ct), nearby (n), closer_than_twice (ctw), double (d), fur-
ther_than_double (fd) } and Δr2 � {[0, 20[, [20, 30[, [30, 40[,
[40, 60[, [60, 80[, [80, 120[, [120, ∞[}.

)us, with the two defined depth reference systems
DRS1 and DRS2, the basic step of the inference process
(BSIP) for the concept of depth is solved and illustrated
by means of the corresponding composition tables (Ta-
bles 2 and 3). )e first column of both tables refers to the
depth relationship b with respect to a (Dab), and the first
row corresponds to the depth relationship c with respect
to b (Dbc). )e rest of cells of both tables indicate the
inferred depth relationship which is included into
brackets because, sometimes, it contains a disjunction of
relations. Note that both tables are symmetric with re-
spect to the main diagonal. For that reason, it is possible
to represent only the upper or lower part of both tables.
)e values given in bold can be omitted if we only
consider the upper part of these tables. )ese composi-
tion tables have been obtained by using the proposed
algorithm, and the obtained results are the same to the
handwritten ones [50].

3.2. Whole Approach’s Performance Evaluation. Once the
performance of the constituent approaches has been ana-
lysed, the whole architecture’s performance is studied. So,
from a stereo image (in retinoptic coordinates), a six-level
image pyramid is obtained and filtered by a set of 8 oriented
Gabor filters as early processing for feature extraction

(Figures 5–9). From these image features, the system is able
to generate a disparity map without requiring precise cali-
bration information (in terms of the relative orientation of
the cameras). )is map together with the internal camera
parameters results in an egocentric depth map since the
depth cue is expressed in the camera’s reference system. As
shown in the examples in dark blue (Figures 5–9), no dis-
parity and, consequently, no depth information are provided
for areas monocularly visible (i.e., present in one or another
stereo image but not both of them) and for textureless
objects (e.g., walls). )is lack of information, also common
in novel sensors providing depth-like RGB-D cameras, re-
quires an abstraction mechanism to infer the missing data
and/or reduce the uncertainty.

In our case, that mechanism is the qualitative reasoning
approach. For this, firstly, the depth reference should be
established. With that aim, as illustrated in Figure 10, the
surrounding space has been divided into five different areas
based on the robot’s reach. So, there is an area that cannot be
reached due to its proximity to the robot’s body and the arm
range. )is area covers from 0 cm (the robot itself ) to 60 cm
and, in our experiments, it has been labelled as very_close.

)e next zone, the close area, corresponds to the robot
peripersonal space, that is, the region (between 60 cm and
100 cm) in which the objects can be grasped and manipu-
lated in an easy way. Approaching to the mechanic limi-
tations, the nearby sector is defined. So, the objects within
this area are reachable with difficulty. On the contrary, the
two following qualitative areas (far and very_far) are

Table 1: Quantitative comparison (average and standard deviation of the absolute errors in pixels) in disparity estimation between different
band-pass representations on Middlebury images [49].

Venus Sawtooth Tsukuba
Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

Gabor 0.25 0.77 0.41 1.26 0.32 0.61
s4 0.40 1.30 0.50 1.86 0.36 0.68
s2 0.98 2.44 1.12 2.50 0.47 0.79
SQF 0.95 2.40 0.93 2.20 0.46 0.85
PBBDE 2D shift 0.04 0.74 0.57 1.08 0.12 0.67

TABLE 2: )e composition table which solves the BSIP for the coarse
DRS1 with Q1 � {close (c), nearby (n), far (f )} such that the first
column represents the relation b with respect to a, while the first
row indicates the relation c with respect to a, which is included into
brackets because, sometimes, it contains a disjunction (list) of
relationships. )e values given in bold can be omitted since table is
symmetric with respect to the diagonal.

Dab/Dbc c n f
CASE 1
c {c, n, f} {c, n, f} {f}
n {c, n, f} {c, n, f} {f}
f {f} {f} {c, n, f}
CASE 2 and 3
c {c} {n} {f}
n {n} {c} {f}
f {f} {f} {f}
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Table 3: )e composition table which solves the BSIP for the fine DRS2 with Q2 � {closer_than_halfway (ch), halfway (h), closer_than (ct),
nearby (n), closer_than_twice (ctw), double (d), further_than_double (fd)} where the first column represents the relation bwith respect to a,
while the first row indicates the relationship cwith respect to b. )e rest of cells of the table correspond to the inferred distance relationship c
with respect to a, which is included into brackets because, sometimes, it contains a disjunction (list) of relationships.)e values given in bold
can be omitted since table is symmetric with respect to the diagonal.

Dab/Dbc ch h ct n ctw d fd
CASE 1
ch {ch, h, ct, n} {ch, h, ct, n} {ch, h, ct, n, ctw} {h, ct, n, ctw, d} {h, ctw, d} {ctw, d, fd} {fd}
h {ch, h, ct, n} {ch, h, ct, n, ctw} {ch, h, ct, n, ctw} {ch, h, ct, n, ctw, d} {ct, n, ctw, d} {n, ctw, d, fd} {fd}

ct {ch, h, ct, n, ctw} {ch, h, ct, h, ctw} {ch, h, ct, n,
ctw, d} {ch, h, ct, n, ctw, d} {h, ct, n, ctw, d, fd} {n, ctw, d, fd} {fd}

n {h, ct, n,
ctw, d}

{ch, h, ct, n,
ctw, d}

{ch, h, ct, n,
ctw, d}

{ch, h, ct, n,
ctw, d, fd}

{ch, h, ct, n,
ctw, d, fd}

{h, ct, n, ctw,
d, fd} {fd}

ctw {h, ctw, d} {ct, n, ctw, d} {ch, ct, n,
ctw, d, fd}

{ch, h, ct, n,
ctw, d, fd}

{ch, h, ct, n,
ctw, d, fd}

{ch, h, ct, n,
ctw, d, fd} {fd}

d {ctw, d, fd} {n, ctw, d, fd} {n, ctw, d, fd} {h, ct, n, ctw,
d, fd}

{ch, h, ct, n,
ctw, d, fd}

{ch, h, ct, n,
ctw, d, fd} {fd}

fd {fd} {fd} {fd} {fd} {fd} {fd} {ch, h, ct, n,
ctw, d, fd}

CASE 2 and 3
ch {ch} {h} {ct} {n} {ctw} {d} {fd}
h {h} {ch} {ch} {ct} {n} {d} {fd}
ct {ct} {ch} {ch} {h} {n} {d} {fd}
n {n} {ct} {h} {ch} {ct} {ctw} {fd}
ctw {ctw} {n} {n} {ct} {ch} {n} {fd}
d {d} {d} {d} {ctw} {n} {ct} {fd}
fd {fd} {fd} {fd} {fd} {fd} {fd} {fd}
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Figure 5: Samples of our architecture’s performance when the depth reference system is defined as Δr � {[0, 60[, [60, 100[, [100, 120[,
[120, 250[, [250,∞[} and Q � {very_close (vc), close (c), nearby (n), far (f ), very_far (vf )}, while the orientation relationships are coded
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(n), right (r), back_left (bl), straight_back (sb), back_right (br)} and INT0 � {]90, 180[, [90, 90], ]0, 90[, [180, 180], _, [0, 0], ]180, 270[,
[270, 270], ]270, 360[}).
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unreachable without robot motion. )e distinction between
them lies in the distance necessary to be workable.

On its behalf, nine orientations have been defined based on
the direction information required to properly locate (and
manipulate) an object within the surrounding space (Figure 11).
Note that this space division was done keeping in mind the
grasping task. However, it can be adjusted to a different space
distribution according to the task at hand without any cost.)is
is because of the qualitative approach generality.

)erefore, in our experiments, the depth reference
system has been defined as Δr � {[0, 60[, [60, 100[, [100, 120[,
[120, 250[, [250,∞[} (expressed in cm) and Q� {very_close
(vc), close (c), nearby (n), far (f ), very_far (vf)}; while the
orientation relationships are coded as LAB0 � {front_left (fl),
straight_front (sf), front_right (fr), left (l), none (n), right
(r), back_left (bl), straight_back (sb), back_right (br)} and
INT0 � {]90, 180[, [90, 90], ]0, 90[, [180, 180], _, [0, 0], ]180,
270[, [270, 270], ]270, 360[}.

From this definition, the egocentric quantitative map is
translated into an egocentric qualitative depth representation.
Realise that the qualitative depth relationships from the
system to the considered objects of interest can easily be
obtained when the interest objects are defined by their
centroid. As depicted in Figures 5–9, only some scene objects
have been considered as interesting for the system (and used

for generating the egocentric qualitative depth representation).
Although in the current implementation the objects of in-
terest have been manually segmented and labelled, it is
intended to be automatically done in the future.

)e egocentric qualitative scene representation is the
input for the higher areas where the inference process takes
place. In this way, an allocentric representation (i.e., object-
to-object) is obtained (Figures 5–9). It is worth noting that
the inference process is applied for each new stereo image
and is repeated until no more information can be obtained.
In this way, depth data independent of the robot’s current
location are generated. )is is a key issue since these depth
data survive over extended periods of time providing the
robot with a conscious perception of the objects around it.
)at is, the robot is endowed with a cognitive representation
of the whole visual surrounding space, what is essential to
properly plan and execute the next robot action. A clear
example is illustrated in Figure 12 (only one image of the
stereo pair for simplicity), where a visual scrutiny of the
surrounding space has led to change in the initial robot
position. Nevertheless, thanks to the allocentric qualitative
depth information, the robot knows that a PC screen is
located very close to the CD box and at the right side of it
despite its invisibility. In this way, a success path free of
obstacles can be properly generated.
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On the contrary, the egocentric representations are
temporary, relying on immediate visual input. So, this robot-
to-object depth information depends on the current robot
position, and it can be used to focus the robot’s attention on
a particular zone of the perceptive field, that is, on the object
to work with. As a consequence, the combination of both
depth representations is required to acquire a natural be-
haviour flexible enough to successfully perform robot tasks.

4. Conclusions

With the purpose of providing robot systems with the
capabilities of integrating reasoning, perception, and ac-
tion, an analysis of the human visual cortex is the starting
point. In this sense, neuroscientific studies have shown
that it is hierarchically organised progressively abstracting
away from the particularities at the bottom processing
levels. So, visual depth information must be initially coded
in retinotopic space, while that information must be ul-
timately coded in head-centred and/or body-centred
representations. Aiming at emulating that behaviour, we
presented a biologically inspired multilevel architecture
for robot depth estimation, which combines different
methods into a coherent whole. )us, based on the dorsal

where pathway design, from a stereo image pair, the early
vision (V1/V2-level) is modelled as a set of complex Gabor
filters with a cosine-based real part and a sine-based imaginary
part.)is processing at multiple scales and orientations results
in a quantitative stereo disparity estimation. )is estimation
allows the system to easily compute other features such as
depth, optic flow, or orientation, from the filtering stage. In
addition, the correspondence estimation and autocalibration
are performed simultaneously by the proposed approach, not
requiring precise calibration information (in terms of the
relative orientation of the cameras).

From this knowledge, an egocentric, abstract represen-
tation of the scene object localization is obtained by following
a qualitative approach since the ability to reason in and about
space is crucial for a robotic system involved in physical
actions and decisions. Finally, a qualitative reasoning method
allows the system to infer new information (otherwise un-
available) and make decisions more accurately. Actually, that
qualitative representation connects the low-level quantitative
data with their corresponding higher-level cognitive func-
tions. )is connection is required for the perception-action
cycle present in intelligent Robotics. In addition, it helps to
overcome some quantitative deficiencies as the missing in-
formation when textureless areas are observed.
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Figure 8: Samples of our architecture’s performance when the depth reference system is defined asΔr� {[0, 60[, [60, 100[, [100, 120[, [120, 250[,
[250,∞[} and Q� {very_close (vc), close (c), nearby (n), far (f), very_far (vf)}, while the orientation relationships are coded according to the
Freksa and Zimmermann’s approach [48] (i.e., LAB0� {front_left (fl), straight_front (sf), front_right (fr), left (l), none (n), right (r), back_left
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DSystemFrog = {close}
OSystemFrog = {straight_front}

DSystemPlant = {very_close}
OSystemPlant = {front_left}

DSystemFlowerpot = {close}
OSystemFlowerpot = {front_left}

DSystemTeddy = {nearby}
OSystemTeddy = {front_left}

DSystemPainting = {nearby}
OSystemPainting = {front_right}

DSystemCurtain = {close}
OSystemCurtain = {front_right}

VIP

Qualitative depth

DFrogPlant = {close}
OFrogPlant = {front_left, left, back_left}
DFrogFlowerpot = {very_close}
OFrogFlowerpot = {front_left, left, back_left}
DFrogTeddy = {close}
OFrogTeddy = {front_left, left, back_left}
DFrogPainting = {close}
OFrogPainting = {front_right, right, back_right}
DFrogCurtain = {very_close}
OFrogCurtain = {front_right, right, back_right}
DPlantFlowerpot = {close}
OPlantFlowerpot = {∗}
DPlantTeddy = {nearby}
OPlantTeddy = {∗}
DFlowerpotTeddy = {close}
OFlowerpotTeddy = {∗}
DPlantPainting = {nearby}
OPlantPainting = {front_right, right, back_right}
DPlantCurtain = {close}
OPlantCurtain = {front_right, right, back_right}
DFlowerpotPainting = {close}
OFlowerpotPainting = {front_right, right, back_right}
DFlowerpotCurtain = {very_close}
OFlowerpotCurtain = {front_right, right, back_right}
DTeddyPainting = {very_close}
OTeddyPainting = {front_right, right, back_right}
DTeddyCurtain = {close}
OTeddyCurtain = {∗}
DPaintingCurtain = {close}
OPaintingCurtain = {∗}

Higher areas

Re
as

on
in

g,
 p

la
nn

in
g

V3, MT, MST

Quantitative depth

V1/V2

Early vision

St
er

eo
 im

ag
e

10
0

15
050

100
150
200
250
300
350

50

80
100
120
140
160
180
200

60
40
20
0

20
0

25
0

30
0

35
0

40
0

45
0

Figure 9: Samples of our architecture’s performance when the depth reference system is defined asΔr� {[0, 60[, [60, 100[, [100, 120[, [120, 250[,
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)e approach’s performance has been evaluated in
several scenarios. )e results show that it is able to properly
deal with uncertainty by means of the combination of the
visual processes despite the difficulty in combining different
biological vision algorithms. However, this system is focused on

depth estimation. Not considering other cues results in a lack of
generality and robustness inherent in the primate visual system.
)us, there are still many challenges to be solved on the way to
achieve a complete biological active vision system. Conse-
quently, our future work is aimed at broadening the
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Figure 10: Qualitative depth areas defined according to the robot’s reach.
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right_frontstraight_frontleft_front

right_backstraight_backleft_back
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Figure 11: Qualitative orientations defined from the required direction information in order to properly locate and manipulate objects.
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information extracted from a visual input as well as working in
the integration with other sensory data to gather more robust
information about the environment to interact with.
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